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The dodecahedral theorem

LetX;, i = 1,...,mbe points in R®3, with ||x;|| > 1 for each i, and

|X; — X;|| > 1 forall i # j. Then the points 2x; can be taken to be the
centers of m non-overlapping spheres of radius one which also do not
overlap a sphere of radius one centered at xo = 0.
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The dodecahedral theorem

LetX;, i = 1,...,mbe points in R®3, with ||x;|| > 1 for each i, and

|X; — X;|| > 1 forall i # j. Then the points 2x; can be taken to be the
centers of m non-overlapping spheres of radius one which also do not
overlap a sphere of radius one centered at xo = 0.

The Voronoi cell associated with xo = 0 induced by the points 2Xx;,
i=1,....,mis

{x Xl < 12X = x|, i=1,...,m}
= {X‘)_(iTXS “)_(I'Hza 1:177m}
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Theorem (Dodecahedral conjecture; L. Fejes Toth, 1943)

In any packing of unit spheres in 2, the Voronoi cell associated with
each sphere has volume at least that of the regular dodecahedron with
in-radius one.
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Theorem (Dodecahedral conjecture; L. Fejes Toth, 1943)

In any packing of unit spheres in 2, the Voronoi cell associated with
each sphere has volume at least that of the regular dodecahedron with
in-radius one.

Proof: T. Hales and S. McLaughlin (1998, 2010).
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Theorem (Kepler conjecture, 1611)

The highest density of any packing of R® with unit spheres is achieved
by the Face-Centered Cubic (FCC) packing.

2

Kurt M. Anstreicher (University of lowa) | An Approach to the Dodecahedral Theorem Workshop on Optimization 6/33



Theorem (Kepler conjecture, 1611)

The highest density of any packing of R® with unit spheres is achieved
by the Face-Centered Cubic (FCC) packing.

Proof: T. Hales (1998, 2005); T. Hales and S. Ferguson (2006)
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The dodecahedral theorem

Figure: Regular and rhombic dodecahedra
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Fejes Toth’s proof scheme

Let D denote a regular dodecahedron with inradius one,
Rp = v/3tan 36° ~ 1.2584 be the radius of a sphere that
circumscribes D and Bp = {x € ®3|||x|| < Rp}.
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Fejes Toth’s proof scheme

Let D denote a regular dodecahedron with inradius one,
Rp = v/3tan 36° ~ 1.2584 be the radius of a sphere that
circumscribes D and Bp = {x € R || x| < Rp}.

Fejes Toth’s 1943 paper contains a proof of the dodecahedral
conjecture under the assumption that there are at most twelve i such
that x; € Bp.
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Fejes Toth’s proof scheme

Let D denote a regular dodecahedron with inradius one,
Rp = v/3tan 36° ~ 1.2584 be the radius of a sphere that
circumscribes D and Bp = {x € R || x| < Rp}.

Fejes Toth’s 1943 paper contains a proof of the dodecahedral
conjecture under the assumption that there are at most twelve i such
that x; € Bp.

In his 1964 book Regular Figures, Fejes To6th restates the
dodecahedral conjecture and describes a scheme that would lead to a
complete proof if a key inequality were established.
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Fejes Toth’s proof scheme

The first important component of Fejes Téth’s proof scheme is a
strengthened version of the result from his 1943 paper.
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Fejes Toth’s proof scheme

The first important component of Fejes Téth’s proof scheme is a
strengthened version of the result from his 1943 paper.

Theorem (Fejes Toth, 1964)

LetX;, i=1,...,m be points in R® with |X;|| > 1 foreachi. If m < 12,
then Vol(V (X1, ..., Xm) N Bp) > Vol(D).
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Fejes Toth’s proof scheme

The first important component of Fejes Téth’s proof scheme is a
strengthened version of the result from his 1943 paper.

Theorem (Fejes Toth, 1964)

LetX;, i=1,...,m be points in R® with |X;|| > 1 foreachi. If m < 12,
then Vol(V (X1, ..., Xm) N Bp) > Vol(D).

Note that in the above theorem it is not assumed that the points satisfy
% — ;|| > 1, i # j. Also, the assumption that ||%;|| < Rp for each i
could be added, since if ||%;|| > Rp the constraint % x < ||%;||> does not
eliminate any points in Bp.
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Fejes Toth’s proof scheme

The second important component of Fejes To6th’s scheme is a “point
adjustment procedure” that facilitates the use of the above theorem
when m > 12.
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Fejes Toth’s proof scheme

The second important component of Fejes To6th’s scheme is a “point
adjustment procedure” that facilitates the use of the above theorem
when m > 12.

For the Voronoi cell V(X4,...,Xm), let Fi(Xq,...,Xm) be the face of
V(%4,...,%m) N Bp corresponding to the points with X" x = ||%;||? (it is
possible that Fi(Xq, ..., Xm) = 0).
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Fejes Toth’s proof scheme
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Fejes Toth’s proof scheme

Point Adjustment Procedure

Step 0. Inputx;, 1 < ||X;|| < Rp, i=1,...,mwithm > 12 and
1% —X;| >1,i#j. LetXi =X, i=1,....,m.
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Fejes Toth’s proof scheme

Point Adjustment Procedure

Step 0. Inputx;, 1 < ||Xj|| < Rp,i=1,...,mwithm > 12 and
1Xi — Xj|| > 1,1 #j. Letx,_x,,/_1 , m.

Step 1. If|{i|1 < ||Xi|| < Rp}| < 2 then go to Step3 Otherwise
choose j # k such that 1 < ||X;|| < Rp, 1 < ||Xx|| < Rbp,
and the surface area of (. .. .. Xm) is less than or
equal to that of Fk(x1,...,xm).
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Fejes Toth’s proof scheme

Step 0.

Step 1.

Step 2.

Point Adjustment Procedure

Input X;, 1 < ||xj|| < Rp,i=1,...,mwithm > 12 and
1Xi — Xj|| > 1,1 #j. Letx,_x,,/_1 , m.
If|{i|1 < ||X|l < Rp}| <2 thengo to Step3 Otherwise

choose j # k such that 1 < ||X;|| < Rp, 1 < ||Xx|| < Rbp,
and the surface area of (. .. .. Xm) is less than or
equal to that of Fi(Xq,..., Xm).

Lets = min{Rp — [|X;||, | X|| — 1}, and

A A~

Xk

%]l

- - X o o
5 — (1511 +0) s S (1%l = )

1%
Go to Step 1.
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Fejes Toth’s proof scheme

Step 0.

Step 1.

Step 2.

Step 3.

Point Adjustment Procedure

Input X;, 1 < ||xj|| < Rp,i=1,...,mwithm > 12 and
1Xi — Xj|| > 1,1 #j. Letx,_x,,/_1 ,m.
If|{i|1 < ||X|l < Rp}| <2 thengo to Step3 Otherwise

choose j # k such that 1 < ||X;|| < Rp, 1 < ||Xx|| < Rbp,
and the surface area of (. .. .. Xm) is less than or
equal to that of Fi(Xq,..., Xm).

Lets = min{Rp — [|X;||, | X|| — 1}, and

Xk

— (Xl +0) 7= X = (Xl = 0) 7= -
! Xl

I /H

Go to Step 1.
Output X, i=1,....m
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Fejes Toth’s proof scheme

Obvious that the adjustment in Step 2 leaves >, || %;|| unchanged,
and can be shown that Vol(V(X1, ..., Xm) N Bp) is nonincreasing. Note
that adjustment in Step 2 is executed at most m — 1 times, since each
adjustment decreases | {i|1 < || Xi|| < Rp}| by at least 1. At
termination have at most one i with 1 < ||%|| < Rp.
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Fejes Toth’s proof scheme

Obvious that the adjustment in Step 2 leaves >, || %;|| unchanged,
and can be shown that Vol(V(X1, ..., Xm) N Bp) is nonincreasing. Note
that adjustment in Step 2 is executed at most m — 1 times, since each
adjustment decreases | {i|1 < || Xi|| < Rp}| by at least 1. At
termination have at most one i with 1 < ||X;|| < Rp.

The previous theorem could then be applied to bound
VO]( V()_(1 Yo ,)_(m)) > VOI( V()_(1 e ,)_(m) ﬂBD) > VOI( V(j\(1 e ,f(m) OBD)

if the X; output by the procedure have at most twelve i with ||X;|| < Rp.
Note that the output points X; may not satisfy ||X; — X;|| > 1, i # j, but
this assumption is not required in the theorem.
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Fejes Toth’s proof scheme

This would be the case if the input points x; satisfy the key inequality

m
D lIxill =12+ (m - 12)Rp.
i=1
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Fejes Toth’s proof scheme

This would be the case if the input points X; satisfy the key inequality
m
> Xl = 12+ (m - 12)Rp.
i=1

Recall that have at most one i with 1 < ||Xj|| < Rp. Thenif ||X;|| =1,
i=1,...,12, key inequality and the fact that X; < Rp for each i
together imply

m
(m—=12)Rp > > |IXll = 12+ (m—12)Rp — 12 = (m— 12)Rp,
i=13

so ||Xj|| = Rpfori=13,...,m.
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Fejes Toth’s proof scheme

A complete proof of the dodecahedral conjecture thus requires only a
proof that the key inequality holds for any X;, i = 1,..., m with
1 < ||x;|| < Rp for each i, and | x; — x;|| > 1 for all i # j.
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Fejes Toth’s proof scheme

A complete proof of the dodecahedral conjecture thus requires only a
proof that the key inequality holds for any X;, i = 1,..., m with
1 < ||x;|| < Rp for each i, and | x; — x;|| > 1 for all i # j.

Unfortunately Fejes Toth was unable to prove the key inequality, even
though all evidence suggests that it actually holds with Rp replaced by
the larger constant 7/v/27 ~ 1.347.
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Fejes Toth’s proof scheme

A complete proof of the dodecahedral conjecture thus requires only a
proof that the key inequality holds for any X;, i = 1,..., m with
1 < ||x;|| < Rp for each i, and | x; — x;|| > 1 for all i # j.

Unfortunately Fejes Toth was unable to prove the key inequality, even
though all evidence suggests that it actually holds with Rp replaced by
the larger constant 7/v/27 ~ 1.347.

Note key inequality for m = 13 would give immediate proof of “Thirteen
Spheres Problem.”

Theorem (13 spheres problem; Kissing number in dimension 3)

In a packing of unit spheres in R2, at most 12 spheres can
simultaneously touch (“kiss”) another sphere.
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Kurt M. Anstreicher (University of lowa) | An Approach to the Dodecahedral Theorem Workshop on Optimization 15/33



Fejes Toth’s proof scheme

To prove key inequality, need solution (or very good lower bound) for
m-point norm minimization problem

m

min > ||x]
i=1

st X=X =1, i#j
1<|%|<Rp, i=1,...,m.

How to solve (or obtain good lower bound for) this problem?
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Fejes Toth’s proof scheme

To prove key inequality, need solution (or very good lower bound) for
m-point norm minimization problem

m

min > ||x]
i=1

st X=X =1, i#j
1<|%|<Rp, i=1,...,m.

How to solve (or obtain good lower bound for) this problem?
@ Global optimization?
@ Polynomial optimization?
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Fejes Toth’s proof scheme

To prove key inequality, need solution (or very good lower bound) for
m-point norm minimization problem

m

min > [lx]
i—1

st X=Xl =1, i#j
1<|Xx|<Rp, i=1,...,m.

How to solve (or obtain good lower bound for) this problem?
@ Global optimization?
@ Polynomial optimization?

Expect that these approaches may have difficulty due to number of
variables (40-60), very high degree of symmetry, and need for a
relatively tight bound. We will consider another possibility based on the
h f spherical .

theory of spherical codes &%
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Relationship to spherical codes

AsetC = {x;}", c R®is called a spherical z-code if || x;|| = 1 for each
i, and x,-ij < zfor all i # j. A packing of unit spheres that all touch a
unit sphere centered at the origin generates a spherical 1/2-code.
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Relationship to spherical codes

AsetC = {x;}", c R®is called a spherical z-code if || x;|| = 1 for each
i, and x,.Tx/ < z for all i # j. A packing of unit spheres that all touch a
unit sphere centered at the origin generates a spherical 1/2-code.

To begin we establish that for R sulfficiently small, if {x;}” ; are points
with 1 < ||X;|| < R foreach jand ||X; — X;|| > 1 forall / 7&/, then the
normalized points x; = X/||X;|| form a z-code for a suitable z.
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Relationship to spherical codes

AsetC = {x;}, c R3is called a spherical z-code if || x;| = 1 for each
i, and x,Tx/ < z for all i # j. A packing of unit spheres that all touch a
unit sphere centered at the origin generates a spherical 1/2-code.

To begin we establish that for R sulfficiently small, if {x;}” ; are points
with 1 < ||X;|| < R foreach jand ||X; — X;|| > 1 forall / 7&/, then the
normalized points x; = X/||X;|| form a z-code for a suitable z.

Lemma (Normalized points form spherical z-code)

Suppose that1 < ||xj|| < R,i=1,...,m, where R < %5 ~ 1.618
and||)'(,-—)'(/|| >1foralli+#j. Letx; = Xx;/||Xi||, i=1,...,m. Then

xTx; <1— 55 foralli # j.

2
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Next, for x;  x; with || x;[| = [|Ix;]| = 1, xTx < 1 —
consider the 2-point norm mlnlmlzatlon problem

RZaRS H
min A + A;
S.t. H)\,'X,' — )\/X/“ >1

1<MN<R 1<)\<R

%

Kurt M. Anstreicher (University of lowa)

An Approach to the Dodecahedral Theorem



Relationship to spherical codes

Next, for x; # x; with ||| = [|x]| =1, xTx <1 54, R < 1%/5
consider the 2-point norm mlnlmlzatlon problem

min - A; + A;
S.t. H)\,‘X,‘ — )\]X]H >1
1<)\ <R, 1 S)\ng-

Theorem (Solution of 2-point norm minimization problem)

Let1 < R< Y5 |x| = [Ix| = 1and.5 < s =x7x <1 ;L. Then
problem solution has A} + A7 = f(s, R), where
f(sR):{1+23 %3337’?’
’ 1
R(1+s)+/1-R¥(1-5%) 5<s<1- 5. J

)
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Relationship to spherical codes
26
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Figure: Solution value in 2-point norm minimization problem for R = Rp
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Relationship to spherical codes

Now assume that m > 12,1 < ||x;|| < Rp,i=1,...m, and
| X; — Xj|| > 1foralli#j. Let \; = [|X]| and x; = (1/A;)X;. Goal is to
prove the key inequality, which can be written

i(/\,-—ﬂ >12+(m—-12)Rp —m=(m—-12)(Rp — 1).

i=1

2
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Relationship to spherical codes

Now assume that m > 12,1 < ||x;|| < Rp,i=1,...m, and
| X; — Xj|| > 1foralli#j. Let \; = [|X]| and x; = (1/A;)X;. Goal is to
prove the key inequality, which can be written

> (Ai=1)=12+4+(m—-12)Rp — m=(m—12)(Rp — 1).

i=1
Define N; = | {j # i| x/ x; > .5} to be the number of “close neighbors”
of x;, and N = {(i,)). i # j| x/x; > .5}. Then |N| =3, N;, and

SoitN-2)= > (/\,-—1)+()\,-—1):2§:N;()\,—1).
i=1

(ij)eN (ij)eN

2
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Relationship to spherical codes

Applying the solution of the 2-point norm minimization problem, get

m
2 N(Ni—1) = > [f(x7x,Rp) —2]
i=1 (if)eN
m
d(i-1) = 2 > 1f(x %, Rp) - 2],
P max "5 2nr

where Npax := max{N;}7",.

2
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Relationship to spherical codes

Applying the solution of the 2-point norm minimization problem, get

m
2 N(Ni—1) = > [f(x7x,Rp) —2]
i=1 (if)eN
m
d(i-1) = 2 > 1f(x %, Rp) - 2],
P max "5 2nr

where Ny := max{N;}!",. To prove key inequality, suffices to show

> [f(x] x;, Rp) — 2] > (m—12)(Rp — 1).

2 max (I,j)GN

2

Kurt M. Anstreicher (University of lowa) | An Approach to the Dodecahedral Theorem Workshop on Optimization 22/33



Relationship to spherical codes

Using results from spherical trigonometry, can prove

Lemma (Maximum number of close neighbors)
Nnax < 6. Moreover, for m = 13, if Nmax = 6 then key inequality holds. J

2
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Relationship to spherical codes

Using results from spherical trigonometry, can prove

Lemma (Maximum number of close neighbors)
Nnax < 6. Moreover, for m = 13, if Nmax = 6 then key inequality holds. J

To get lower bound for

1
> [f(x/x. Ro) — 2]
2Nmax (i)eN

can apply Delsarte bound for spherical codes. Recall C = {x;}["; is a
spherical z-code in ®3, with z =1 — 1/(2R2) ~ .6843.

2
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For o € [—1, 1], define the distance distribution of the code to be

o(s) - M) x5 = s}
Thena(-) >0,and >~ 4, a(s)=m—1.

m
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Relationship to spherical codes

For o € [-1, 1], define the distance distribution of the code to be

{0 1% = s}
m

a(s) =

Thena(-) >0,and >~ 4, a(s)=m—1.

Let ®4(-), Kk =0,1,... denote the Gegenbauer, or ultraspherical,

polynomials ®(t) = P%(t) where P{*% is a normalized Jacobi

polynomial. It can be shown that

T+ > a(s)dk(s) =0, k=1.2,....

—-1<s<z

2
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Relationship to spherical codes

Then Z(,’j)eN[f(x,ij, Rp) — 2] > v*(m), where v*(m) is solution value
in the semi-infinite LP problem

LP(m) : min -m Y [f(s, Rp) — 2]a(s)
5<s<z
st Y a(8)Pk(s) =1, k=1,....d
—1<s<z
> als)=m-1
—1<s<z

a(s)>0, -1<s<z

2
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Relationship to spherical codes

Then Z(,’j)eN[f(x,ij, Rp) — 2] > v*(m), where v*(m) is solution value
in the semi-infinite LP problem

LP(m) : min -m Y [f(s, Rp) — 2]a(s)
5<s<z
st Y a(8)Pk(s) =1, k=1,....d
—1<s<z
> als)=m-1
—1<s<z

a(s)>0, -1<s<z

Constraints of LP(m) are feasible up to m = 21. To establish key
inequality, need

v*(m)/(2Nmax) > (m—12)(Rp — 1), m=13,...,21.
(&R
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lationship to spherical codes
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Relationship to spherical codes

Result: Bound from LP(m) sufficient to prove key inequality for
m > 17. Remains to prove inequality for m=13,...,16.

2
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Relationship to spherical codes

Result: Bound from LP(m) sufficient to prove key inequality for
m > 17. Remains to prove inequality for m=13,...,16.

Note v*(13) = 0. In fact knew this would be the case ahead of time,
since Delsarte bound for kissing number in dimension 3 is 13, not 12.
Need to strengthen Delsarte bound to have any chance of proving key
inequality for m = 13.
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Outline

° Strengthened bounds for spherical codes
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Strengthened bounds for spherical codes

To prove key inequality for 13 < m < 16 need to strengthen Delsarte
bound. Several approaches in recent years:
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Strengthened bounds for spherical codes

To prove key inequality for 13 < m < 16 need to strengthen Delsarte
bound. Several approaches in recent years:

e A (2003)
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Strengthened bounds for spherical codes

To prove key inequality for 13 < m < 16 need to strengthen Delsarte
bound. Several approaches in recent years:

o A (2003)
@ Musin (2003)
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Strengthened bounds for spherical codes

To prove key inequality for 13 < m < 16 need to strengthen Delsarte
bound. Several approaches in recent years:

@ A (2003)
@ Musin (2003)
@ Bachoc and Vallentin (2007)

75

Kurt M. Anstreicher (University of lowa) | An Approach to the Dodecahedral Theorem Workshop on Optimization 29/33



Strengthened bounds for spherical codes

To prove key inequality for 13 < m < 16 need to strengthen Delsarte
bound. Several approaches in recent years:

@ A (2003)
@ Musin (2003)
@ Bachoc and Vallentin (2007)

All three are sufficient to prove that kissing number in dimension 3 is
12. Last approach is most powerful and results in SDP in place of LP.
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Strengthened bounds for spherical codes

Resulting problem SDP(m) has form:

min -m Y [f(s, Rp) — 2]a(s)

5<s<z
st Y a(s)P(s) > -1, k=1,...d
seZ
da(s)=m-1, a(s)=0, se€Z=[-1,7
seZ

2
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Strengthened bounds for spherical codes

Resulting problem SDP(m) has form:

min -m Y [f(s, Rp) — 2]a(s)

5<s<z
st Y a(s)P(s) > -1, k=1,...d
seZ
da(s)=m-1, a(s)=0, se€Z=[-1,7
seZ

3 a(s)Sk(s,s, 1)+ Y (s, t,u)Sk(s, t,u) = —Sk(1,1,1),

seZ s,tueZ

k=1,...,d
> (s tu)=(m-1)(m-2)

s,t.ueZ
(s, t,u) >0, s tuelZ.
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Strengthened bounds for spherical codes

In SDP(m), /(+, -, -) is the 3-point distance distribution

’ |{(Ivj7 k) ‘ XiTXj =S, XiTXk =1, X/‘TXk = U}|
a'(s, tu)= p= ,

and Sk(s,t,u)isa (d+ 1 — k) x (d + 1 — k) symmetric matrix whose
entries are symmetric polynomials of degree k in the variables (s, t, u)
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Strengthened bounds for spherical codes

In SDP(m), /(+, -, -) is the 3-point distance distribution

’ ‘{(Iab k) ‘ XiTXj =S, XiTXk =1, X/‘TXk = U}|
a'(s, tu)= p= ,

and Sk(s,t,u)isa (d+1— k) x (d + 1 — k) symmetric matrix whose
entries are symmetric polynomials of degree k in the variables (s, t, u)

Can also add constraints relating 2-point and 3-point distance
distributions and remove original constraints based on ®(-).
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trengthened bounds for spherical codes
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Strengthened

What next?

unds for spherical codes
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What next?

@ Can add constraints on 3-point distance distribution based on
spherical Delaunay triangulation.
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What next?

@ Can add constraints on 3-point distance distribution based on
spherical Delaunay triangulation.

@ Can work with 3-point norm minimization problem instead of
2-point norm minimization problem.
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What next?

@ Can add constraints on 3-point distance distribution based on
spherical Delaunay triangulation.

@ Can work with 3-point norm minimization problem instead of
2-point norm minimization problem.

Thank Youl!
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