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Condorcet paradox

collective choice can be intransitive!

Marquis de Condorcet
(1743-1793)

THUS: There may be no “pairwise winner”!
(Condorcet winner)
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* Impartial Anonymous Culture (IAC) assumption:
every voting situation is equally likely

* for three candidates a, b and c, let

n., humber of voters with choice a > b > ¢
n.. humber of voters with choice a >c > b
nss humber of voters with choice b > a > ¢

(Mab, Mac, Mbas Mhe, Tea, Neb) deSCribes a voting situation
No
N = Nab 1+ Mac + Mba T Nbe T Mca T Ncb

IS total number of voters
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Counting Lattice Points

e Candidate a is a Condorcet winner if

(1) Nab T Mac + Nca > MNpa T Npc + Ncb ( a beats b )

(2) and Mab T NMac + Mpa > Nca + Neb + N ( a beats ¢ )

That is: (naba Nacs Mbay Nbey Tleas ncb) = Zgo

is in the polyhedron

Py = {nER6 | N:an, ngy > 0 and (1),(2)}

Xy
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Ehrhart theory

#(Py NZ%) = Nd—l ..+ a1 N+ ag
VOId_l(Pl)
. . Eugene Ehrhart
e P, Integral = polynomial (1906-2000)

Ex: P = COnV{Gl, oo ed} = #(PN a Zd) — (Nc_ll_—dl_l)

P, rational = quasi-polynomial

 “Reinvented” in Social Choice Theory by
Chua and Huang (2000)

* Parallelity of Approach discovered in 2006
(by Lepelley et al. and Wilson / Pritchard)
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Likeliness of Condorcet paradox

Quasi-polynomial for #(Px N Z°) can be obtained

using barvinok or latte

1/384 x N™5

( -1/64 % {( 1/2 *x N + @ )} + 3/64 ) x N™4

( -19/96 % {( 1/2 * N + 0 )} + 31/96 ) % N~3
( -29/32 % {( 1/2 *x N + @ )} + 17/16 ) * N~2
( -343/192 x {( 1/2 x N+ ©0 ) } +5/3 ) x N
( -83/64 x {( 1/2 *xN+0 )} + 1)

( Number of voting situations with N voters and candidate a as Condorcet winner )

b
\ 4

-
O 7 -
Ii—.& L-L

+ + + + +

Likeliness of ) gq—poly For large elections (N — 0):

Condorcet 1 (N+5)

Paradox 5 1_31/384 = 1 = 0.0625

1/120 16
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Other paradoxes and voting situations

e Condorcet winner, but Plurality loser

Nab T Nac T Nca > MNpa T Mpe T Ncb ( a beats b )
Nab T Nac T Npa > Mca T Nch T Npc ( a beats ¢ )
Nba T Mbec > Mab + Nac , Nca + Ncb ( b wins plurality)

16

Likeliness for large elections (N — 00): o = 01185

* Plurality vs. Plurality Runoff

Nab T Nac > MNpa T Npc ( a wins plurality over b )
Npa T NMbe > Meca T Nch ( b wins plurality over C )
Nab + Mac + Nca < Mpa T Npe T Neb ( b beats a )

71

Likeliness for large elections (N — o0): oo = 0.12326. .
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Four candidates? Or ¢

hardly any exact probabilitie

* for 4 candidates 24 variables are used in polyhedral mode

=> polyhedral computations are too difficult

(“most of the time”, due to LattE integrale, July 201 I)

IDEA: Reduce dimension by exploiting symmetry !
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na _|_ nca > nba _|_ nR

U
Uz + Npa > Mg T+ "R
U
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(na, Npa, Nca, Nr) describes (n, + 1)(ng + 1) voting situations

(former lattice points)

THUS: the polytope decomposes into fibers of
simplotopes (cross products of simplices)
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Exploiting symmetry via integration

LyNPNZY
Prob(N) = ‘ Ly = {2z eR%: r; =N
) Ly N g NZY N { Z }
P, S homogeneous polyhedral cones
>, 1 ) poly(n)
~ m€LyNPNZ4  neLyNP/NZY
> 1Y oy
ne€L yNSNZA ncL NNS/ NZ
y / lt-poly(z)dx
fim Prob(N) — Jim [LLOPO@ENIYJuap
N — 00 N — 00 ‘Ll ﬂSﬂ(Z/N)d‘

/ t-poly(z)dx
LiNS’
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Large elections with four candidates

* No Condorcet winner exists (Condorcet paradox)

331
§ Prob(N) = — 0.1616 . ..
Aim_ Prob(N) = oo ¢ =0.1616

( by integrating polynomial of degree 16 over a 7-dimensional polytope )

In an email of Sep. 7th 201 I:

Your results particularly got my attention when | finally
realized that you had obtained limiting representations
for four candidates. This is a significant step forward,
and you are not the only person who has been trying to
produce such results. However, | believe that you are
the first to successfully accomplish this. The only four
candidate result that | am aware of is cited in your paper,
and | only managed to obtain that by using a trick.

William V. Gehrlein
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New results with four candidates

* Condorcet Efficiency of Plurality

10658098255011916449318509
lim Prob(N) = — 0.74261 ...
N-oo (V) = 11352135240302080000000000

( by integrating polynomial of degree 11 over a 13-dimensional polytope )

® Plurality vs. Plurality Runoff

2988379676768359
5 Prob(N) = — (0.24548 . ..
Jm Prob(N) = 1o o oo = 0-24548

( by integrating polynomial of degree 18 over a 5-dimensional polytope )






WANT: generalization of Ehrhart theory,
counting lattice points with polynomial weights
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The next generation Ehrhart theory
Counting with polynomial weights

." - : M V B . 5 A ,z; N "
® Two new methods: #E‘z;

AAA

Baldoni, Berline,Vergne, 2009

* via rational generating functions

¢ via local Euler-Maclaurin formula

® “experimental”’ implementation

available in barvinok

e available soon in LattE integrale

Want:

® Methods exploiting general polyhedral symmetry groups
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Representation Conversion
up to symmetry

Recent computational successes:
(with Mathieu Dutour Sikiric and Frank Vallentin)

® Classification of eight dimensional perfect forms, Electron. Res. Announc. AMS, 13 (2007)

® | orbit with 120 vertices in 35 dimensions
e 25075,566,937,584 facets in 83092 orbits

® Complexity and algorithms for computing Voronoi cells of lattices, Math. Comp., 78 (2009)

® computation of vertices for many different Voronoi cells of lattices
* verified that Leech Lattice cell has 307 vertex orbits (Conway, Borcherds, et. al.)

® The contact polytope of the Leech lattice, preprint at arXiv:0906.1427

® | orbit with 196,560 vertices in 24 dimensions i :'
® |,197,362,269,604,214,277,200 many facets in 232 orbits
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A New C++ Tool

® helps to compute linear automorphism groups (7)
o

® converts polyhedral representations using

Recursive Decomposition Methods (Incidence/Adjacency)

(also used by Christof/Reinelt, Deza/Fukuda/Pasechnik; ...)

EX: 4-dim. cube

‘ DM

Input | n-l

Output 0
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Symmetry Groups

® Combinatorial, Linear, or Geometric Symmetries

O O

6 X C2 6 X C2 6 X C2
trivial Ce X (> Ce X (>
trivial Cr Xy Ce X ()

DEF: A linear automorphism of {vy,...,v,,} CR"isa

regular matrix A € R"*" with Av; = v4(;) for some 6 €
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Detecting Linear Automorphisms

THM: The group of linear automorphisms 1s equal to

the automorphism group of the complete graph K,

with edge labels viQ ™!y i, where Q = Z vt
=1

l

=> use NAUTY by Brendan McKay
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Adjacency Decomposition Method

(for vertex enumeration)

h .‘ ® Find initial orbit(s) / representing vertice(s)

wt‘ ® For each new orbit representative

® enumerate neighboring vertices (up to symmetry)

Oﬁldd as orbit representative if in a new orbit

i:j
e

Representation conversion problem

BOTTLENECK: Stabilizer and In-Orbit computations

=> Need of efficient data structures and algorithms for
permutation groups: BSGS, (partition) backtracking
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Ingredient |:
Permutation Group Algorithms

® BSGS and (partition) backtrack
could be provided by GAP, MAGMA or SAGE

® We use the callable C++ library PermLib

* open source (new BSD license)

* with compact API to access core functionality
* can replace NAUTY

Vision:
® Create “integrated algorithms” combining tools of

Polyhedral Combinatorics and Computational Group Theory
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Ingredient ll:
Established Representation Conversion Tools

® cddlib by Komei Fukuda (Double Description Method)

incrementally adding inequalities and recomputing vertices at every step

® |[rslib b)’ David Avis (Lexicographic Reverse Search)

pivoting using “Simplex Pivots”

WHAT ABOUT Symmetry Exploiting Methods ?

® with David Bremner we work(ed) on

* pivoting methods up to symmetry

* incremental methods using fundamental domains



.
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arxiv:1 105.1715
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Example |: Abhinav’s Polytope

[Kumll] Abhinav Kumar, FElliptic fibrations on a generic Jacobian Kummer surface,
arxiv:1 105.1715

~> computing all classes of elliptic divisors on ...

H-representation permutation group
begin 9
316 17 1integer 35,7 9,11 14,13 16,19 21,23 25,27 30,2
Q100000000000 0000 e
4
end 33 17 49 308
Getting the group: V-representation

. * UP TO SYMMETRY
sympol —-—automorphisms-only begin

- - end
Gettmg vertices up to symmetry : permutation group
sympol —-—-adm 40 input-file * order 11520

*w.r.t. to the original 1inequalities/vert
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Example ll: Paco’s Prismatoid

x R & 4L XN x n n 5 0n
™ { 8 0 0 -] ! \ ( 0 0 0 12 -
2! 12 0 0 0 1 2 ] 0 0 -18 -1
3 0 " 0 o 1 3- 0 0 "0 0 -1
4" 0 18 0 4] 1 4 0 0 8 0 1
5 0 0 45 o 1 s & 0 0 o -
6* 0 0 a 0 1 [ a 0 0 0 1
7 0 0 0 PO | 7 0 45 0 L |
Ly 0 0 0 -4 8- 0 4 0 0 1
o 15 15 0 ] 1 9 0 0 15 15 -1
10* 15 16 0 o 1 0 0 0 16 15 -
nt 5 -5 0 [ | " 0 0 -5 15 1
12* -15 -1 0 o 1227 0 0 15 <15 -1

Qméiry 5 o 0 30 B 1 13- | %0 W 0 o0 -1
14* 0 0 W W 14~ N W 0 0 1
15* 0 0 0 N 1 15 % -3 0 0 -1
16* 0 0 -3 -3 1 16~ -3% -3 0 0 -
17t 0 10 &0 4] 1 17 &0 0 10 0 -1
18 0 10 & [ | 15 &0 0 W o0 1
19 0 10 40 0 1 9 0 10 0 1
x* O -1 -4 0O 1 2~ -8 0 - 0 -
el 10 0 0 @ 21 0 40 0 10 -1
2" -10 0 0 @0 2~ 0 40 0 -10 -1
23° 10 0 0 @0 1 23 0 40 0 10 1
24 \-10 0 0 -4 1/ 20- Lo -0 0 -1 -1/
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Example ll: Paco’s Prismatoid

Xy R & 4L XN x n n 5 0n

™ { 8 0 0 -] ! \ ( 0 0 0 12
2! 12 0 0 0 1 2 ] 0 0 -18 -1
3 0 " 0 o 3- 0 0 " 0 -
4" 0 18 0 4] 1 4 0 0 8 0 1
5 0 0 45 <] 1 L & 0 0 0 -1
6* 0 0 a 0 1 6 a4 0 0 0 1
7 0 0 0 PO | 7 0 45 0 L |
Ly 0 0 0 -4 8- 0 4 0 0 1
o 15 15 0 ] 1 9 0 0 15 15 -1
10* 15 16 0 o 1 0 0 0 16 15 -
nt 5 -5 0 [ | " 0 0 -5 15 1
12* -15 -5 0 o 1227 0 0 15 <15 -1
Qméiry 5 o 0 30 B 1 13- | %0 W 0 o0 -1
14* 0 0 W W 14~ N W 0 0 1
15* 0 0 0 N 1 15 % -3 0 0 -1
16* 0 0 -3 -3 1 16- -3% -3 0 0 -
17t 0 10 &0 4] 1 17 &0 0 10 0 -1
18 O 10 & 4] 1 15 &0 0 W o0 1
19° 0 10 40 0 1 9 0 10 0 1
x* O -1 -4 0O 1 2~ -8 0 - 0 -
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Example |l: Paco’s Prismatoid

Xy R & 4L XN x n n 5 0n

™ { 8 0 0 -] ! \ ( 0 0 0 12
2! 12 0 0 0 1 2 ] 0 0 -18 -1
3 0 " 0 o 3- 0 0 " 0 -
4" 0 18 0 4] 1 4 0 0 8 0 1
5 0 0 45 <] 1 L & 0 0 0 -1
6* 0 0 a 0 1 6 a4 0 0 0 1
7 0 0 0 PO | 7 0 45 0 L |
Ly 0 0 0 -4 8- 0 4 0 0 1
o 15 15 0 ] 1 9 0 0 15 15 -1
10* 15 16 0 o 1 0 0 0 16 15 -
nt 5 -5 0 [ | " 0 0 -5 15 1
12* -15 -5 0 o 1227 0 0 15 <15 -1
Qméiry 5 o 0 30 B 1 13- | %0 W 0 o0 -1
14* 0 0 W W 14~ N W 0 0 1
15* 0 0 0 N 1 15 % -3 0 0 -1
16* 0 0 -3 -3 1 16- -3% -3 0 0 -
17t 0 10 &0 4] 1 17 &0 0 10 0 -1
18 O 10 & 4] 1 15 &0 0 W o0 1
19° 0 10 40 0 1 9 0 10 0 1
x* O -1 -4 0O 1 2~ -8 0 - 0 -
21 10 0 0 @ 21 0 40 0 10 -1
2* -10 0 0 @0 2~ 0 40 0 -10 -1
23° 10 0 0 @0 1 23 0 40 0 10 1
2 \-10 0 0 -4 1/ 24 \ 0 -0 0 -10 -1

sympol —--idm-adm-level O 1 --adjacencies input-file

graph adjacencies {

1--2;
2 -~ 4,
2 -~ 3
2 -~ 2}
3 -- 10;
3 -~ 3;
3 -- 6;
4 -- 5;
4 -- 4,
4 -- 6;
5 --5;
5--7
5 -- 6;
5 -- 8;
6 -- 6;
7--7;
7--9;
7 -- 8,
8 -- 8,
Q -~ 12"



Example |l: Paco’s Prismatoid

Xy R & 4L XN x n n 5 0n

1 0 0 0 1) o0 0 0 1®
2! 12 0 0 ] 1 2 0 0 0 -18 -1
3 0 " 0 o 1 3- 0 0 " 0 1
4" 0 18 0 4] 1 4 0 0 8 0 1
5 0 0 45 <] 1 L & 0 0 4] -1
6* 0 0 a 0 1 6 a4 0 0 0 1
7 0 0 0 P | 7 0 45 0 L |
Ly 0 0 0 -4 8- 0 4 0 0 1
o 15 15 0 ] 1 9 0 0 15 15 -1
10 1 16 0 4] 1 0 0 ] 15 15 1
nt 5 -5 0 [ | " 0 0 -5 15
12 -15 -1 0 <] 1 127 0 0 15 15 1
OQmoowy 3 | 0 0o 230 = 1 13- | 3 2 0 o0 -1
14* 0 0 W W 14~ N W 0 0 1
15* 0 0 0 N 1 15 % -3 0 0 -1
[ 0 0 -3 -3 16~ -0 -3 0 0 -
17t 0 10 &0 4] 1 17 &0 0 10 0 -1
18 0 -10 &0 4] 1 185 & 0 W0 o 1
19° 0 10 40 0 1 9 0 10 0 1
x* 0 -10 -40 © 1 2~ -4 0 -0 0 -1
2 10 0 0 @ 21 0 40 0 10 -1
2" -10 0 0 @0 2~ 0 40 0 -10 -1
23° 10 0 0 @0 1 23 0 0 0 10 1
2 \-10 0 0 -4 1/ 24 \ 0 -0 0 -10 -1

graph adjacencies {
1--2;
- 4;
- 3;
- 2;

2
2
2
3
3
3
4
4
4
5--
5
5
5
6
7
7
7
3
Q9

] '
' '
W b
- S

~> peato ~~
(Graphviz)

|
'
4 V0O NN

Niwe we we
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Exploiting Symmetries in LPs and IPs

® For LPs one can intersect feasible polyhedron f

with invariant linear subspace

(not possible for IPs) /[

® For IPs several new approaches have been proposed

=> see survey “Symmetry in Integer Linear Programming” by Frangois Margot (2010)



Exploiting Polyhedral
Symmetries in |Ps

using invariant linear subspace

Coming
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Exploiting Polyhedral Symmetries

® in Lattice Point Counting ;“;‘ﬁ |
Yow

® in Polyhedral Representation Conversions M

® in Integer Programming and MILPs Thomas
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Exploiting Polyhedral Symmetries

f

® in Lattice Point Counting ;"’-‘% #
1ol S

® in Polyhedral Representation Conversions

® in Integer Programming and MILPs Thomas

Sym

Pol

Universitat © 4
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ToDo

® Create efficient computational tools / use more math!

® |ntegrate tools from Computational Group Theory



Thanks!

http://www.geometrie.uni-rostock.de
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