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The thirteen spheres problem: proofs

K. Schiitte, and B. L. van der Waerden (1953)
John Leech (1956) : two-page sketch of a proof

. It also misses one of the old chapters, about the “problem of the
thirteen spheres,” whose turned out to need details that we couldn’t
complete in a way that would make it brief and elegant.

Proofs from THE BOOK, M. Aigner, G. Ziegler, 2nd edition.

W. —Y. Hsiang (2001);
H. Maehara (2001, 2007);
K. Boroczky (2003);

K. Anstreicher (2004);

M. (2006)
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The Tammes problem
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The Tammes problem

How must N congruent non-overlapping spherical caps be packed on
the surface of a unit sphere so that the angular diameter of spherical
caps will be as great as possible

Tammes PML (1930). “On the origin of number and arrangement of the
places of exit on pollen grains”. Diss. Groningen.
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The Tammes problem

Let X be a finite subset of S2. Denote

P(X) := min {dist(z,y)}, where z # y.
T, yeX

Then X is a spherical ¥(X)-code.

Denote by dy the largest angular separation ¢ (X) with |X| = N that
can be attained in S?, i.e.

dy = X here |X|= N.
N )Iglgé{w( )}, where |X|
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The Tammes problem

L. Fejes T6th (1943) N = 3,4, 6,12, 00

K. Schiitte, and B. L. van der Waerden (1951) N =5,7,8,9
L. Danzer (1963) N = 10,11

R. M. Robinson (1961) N = 24

M. & T. (2010) N = 13
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Packing spheres by spheres: Methods

I. Area inequalities. L. Fejes Téth (1943); for d > 3 Coxeter (1963) and
Boroczky (1978)

II. Distance and irreducible graphs. Schiitte, and van der Waerden
(1951); Danzer (1963); Leech (1956);...

III. LP and SDP. Delsarte et al (1977); Kabatiansky and Levenshtein
(1978);...

¥ Robert Connelly, Rigidity of packings, European Journal of
Combinatorics, 2008
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Contact graphs

Let X be a finite set in S?. The contact graph CG(X) is the graph with
vertices in X and edges (x,y), z,y € X such that

dist(, y) = ¥(X)
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Shift of a single vertex

Let X be a finite set in S?. Let z € X be a vertex of CG(X) with
deg(x) > 0, i.e. there is y € X such that dist(z,y) = ¥ (X). We say
that there exists a shift of z if z can be slightly shifted to 2’ such that

dist(2/, X \ {z}) > ¢(X).
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Danzer’s flip

Danzer [1963] defined the following flip. Let x,y, z be vertices of CG(X)
with dist(x,y) = dist(x, z) = ¥(X). We say that x is flipped over yz if
x is replaced by its mirror image x’ relative to the great circle yz. We
say that this flip is Danzer’s flip if dist(2’, X \ {z,y, z}) > ¥(X).

z
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Irreducible contact graph

We say that the graph CG(X) is irreducible [Schiitte - van der Waerden,
Fejes Toth| (or jammed [Connelly]) if there are no shift of vertices.

If there are neither Danzer’s flips nor shifts of vertices, then we call
CG(X) as a (Danzer’s) irreducible graph.
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Maximal graphs Gy

Let X be a subset of S? with |X| = N. We say that CG(X) is mazimal
if ¥(X) = dy and its number of edges is minimum. We denote this
graph by Gy .

Actually, this definition does not assume that G is unique. We use
this designation for some CG(X) with ¢(X) = dy.

Proposition. Let CG(X) be a maximal graph Gy. Then for N > 6
the graph CG(X) is irreducible.

Oleg R. Musin, Alexey S. Tarasovrreducible contact graphs and T:



Properties of irreducible graphs

Let the graph CG(X) be irreducible. Then
© CG(X) is a planar graph.
© Degrees of CG(X) vertices can take only the values 0 (isolated
vertices), 3, 4, or 5.
Q All faces of CG(X) in S? are equilateral convex polygons of sides
length ¥(X).
© All faces of CG(X) are polygons with at most |27 /¢ (X)]| vertices.
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The contact graph I'1g :=CG(Py3) with ¢(Py3) ~ 57.1367°

11 10

12 13
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Tammes’ problem for N =13

The value d = 1(P;3) can be found analytically.

9t 3T a 1—2cosa
an| —— - | = ——
8 4 cos?a

_ cosa
d=cos ' | ——— .
1 ——cosa

Thus, we have a ~ 69.4051° and d ~ 57.1367°.

Oleg R. Musin, Alexey S. Tarasovrreducible contact graphs and T:

41



Tammes’ problem for N =13

Theorem. The arrangement of 13 points P53 in S? is the best possible,
the maximal arrangement is unique up to isometry, and di3 = ¥ (P;3).
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Tammes’ problem for N = 13: graphs Fgg

0 1 2 3
Iy Iy Iy Iy

Figure: Graphs I‘gg .
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Main lemmas

Lemma 1. Gi3 is isomorphic to ngg) with i =0,1,2, or 3.

Lemma 2. Gy3 is isomorphic to T\9) and dys = (Py3) ~ 57.1367°.
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Properties of G13

@ It is a planar graph with 13 vertices.

© The degree of a vertex is 0,3,4, or 5.

© All faces are polygons with m=3,4,5, or 6 vertices.

@ If there is an isolated vertex, then it lies in a hexagonal face.

© No more than one vertex can lie in a hexagonal face.

Oleg R. Musin, Alexey S. Tarasovrreducible contact graphs and T: / 41



Proof of Lemma 1

The proof consists of two parts:
(I) Create the list L3 of all graphs with 13 vertices that satisfy 1-5;
(IT) Using linear approximations and linear programming remove from

the list Lq3 all graphs that do not satisfy the geometric properties of
Gis
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Proof of Lemma 1: The list L3

To create Lj3 we use the program plantri (Gunnar Brinkmann and
Brendan McKay). This program is the isomorph-free generator of
planar graphs, including triangulations, quadrangulations, and convex
polytopes.

The program plantri generates 94,754,965 graphs in Li3. Namely, L3
contains 30,829,972 graphs with triangular and quadrilateral faces;
49,665,852 with at least one pentagonal face and with triangular and
quadrilaterals; 13,489,261 with at least one hexagonal face which do not
contain isolated vertices; 769,375 graphs with one isolated vertex, 505
with two isolated vertices, and no graphs with three or more isolated
vertices.
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Proof of Lemma 1

Let G be a graph from the list L3 .
Variables: d (the length of edges), angles of faces.

Equations and inequalities:

Q d > 571367,

© For each vertex sum of its angles = 2.

@ For a triangle: u = arccos (cosd/(1 + cosd)).

© For a quadrilateral: an explicit equation.

© For a pentagon: an approximation by linear inequalities.

Q@ For an empty hexagon: an approximation by linear inequalities.

@ For a hexagon with an isolated vertex: an approximation by linear
inequalities.
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Proof of Lemma 1: Feasible solutions of the system

o
2]
o
o
o

Do linear estimations of equations.
Using LP find a convex region containing a possible solution.

Using a region do more precise linear approximations and go back
to steps 1,2.

If a region becomes empty — system is unfeasible.

if a region is still not empty split it into two parts, and go back to
steps 1-5.

Q If all regions (after splitting) become empty — system if unfeasible.
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Proof of Lemma 2
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Research directions

© Danzer (1963) considered (Danzer’s) irreducible graphs with
N <10 vertices. We plan to verify and extend Danzer’s
classification for IV up to 13.

© We plan to consider maximal and other irreducible graphs for the
Tammes problem with N = 14 and higher.

© We will also explore the applicability of the methods discussed here
to solve the Tammes problem for N = 14 and higher.

© We plan to extend the concept of irreducible graphs for packing
equal circles into two-dimensional manifolds. In according to
Daniel Usikov the case of a flat torus is especially interesting for
the problem of “super resolution of images”.

@ Connelly considered rigidity of circles packings from the point of
view of the theory of tensegrity structures. An interesting
follow-up project is extending these ideas to combinatorial
structure of irreducible graphs.
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Irreducible graphs for N=7

N dmin dmax
1% 1.34978  1.35908
2 % x
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Irreducible graphs for N=8

N dmin

1 1.17711
6 1.28619
8 1.23096

12x % 1.30653

eightd_int.png
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1.18349
1.30653
1.30653

1.30653




Irreducible graphs for N=9

N dmin dmax
4 1.14099 1.14143
T 1.22308  1.23096
8 1.10525 1.14349
11 1.17906 1.18106
13 1.15448 1.17906
15 1.17906  1.17906
18 %+ 1.23096 1.23096
20 1.15032 1.18106
21 1.10715 1.14342
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Irreducible graphs for N=10

N
5
15
18
20
29
35
44
48
64 * *
67
80
89
92x%
98
104
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dmin

1.0839
1.03067
1.07529
1.15278
1.06344
1.0843
1.09504
1.06278
1.15448
1.0843
1.15341
1.14372
1.15191
1.15191
1.10715

dmax

1.09751
1.04695
1.09431
1.15448
1.07834
1.08442
1.10429
1.1098
1.15448
1.0844
1.15341
1.15191
1.15245
1.15191
1.10715

N

16
19
28
30
37
45
60
66
75
81
91
93
103=

dmin
1.08161
1.10715
1.09386
1.10012
1.15074
1.10055
1.06032
1.09567
0.998657
1.08334
1.0988
1.09249
1.09658
1.10715

dmax

1.08439
1.0988
1.12285
1.10801
1.15191
1.10889
1.09604
1.10715
1.0467
1.09547
1.10608
1.1098
1.10977
1.10715
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Toric packings: N=2 and N=5
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Toric packings: N=4 and N=8
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Toric pa
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