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THREE GEOMETRIC STRUCTURES

Triangulations Pseudotriangulations Multitriangulations

T~

triangulation = maximal crossing-free set of edges,
= decomposition into triangles.

pseudotriangulation = maximal crossing-free pointed set of edges,
= decomposition into pseudotriangles.

k-triangulation = maximal (k 4 1)-crossing-free set of edges,
= decomposition into k-stars.

VP & F. Santos, Multitriangulations as complexes of star polygons, 2009.
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Triangulations Pseudotriangulations Multitriangulations
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A

flip = exchange an internal edge with the common bisector of the two adjacent cells.




THREE GEOMETRIC STRUCTURES

Triangulations Pseudotriangulations Multitriangulations

associahedron <+—  crossing-free sets of internal edges.
pseudotriangulations polytope <—  pointed crossing-free sets of internal edges.
multiassociahedron <+—  (k + 1)-crossing-free sets of k-internal edges.




THREE GEOMETRIC STRUCTURES

Triangulations Pseudotriangulations Multitriangulations

2y S

“Our main limits in understanding the combinatorial structure of polytopes still
lie in our ability to raise the good questions and in the lack of examples,
methods of constructing them, and means of classifying them.”

G. Kalai, Handbook of Discrete & Computational Geometry.
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VP & M. Pocchiola, Multitriangulations, pseudotriangulations and primitive sorting networks, 2010,
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NETWORKS & PSEUDOLINE ARRANGEMENTS

network NV = n horizontal levels and m vertical commutators.

bricks of N' = bounded cells.




NETWORKS & PSEUDOLINE ARRANGEMENTS

network NV = n horizontal levels and m vertical commutators.

bricks of N' = bounded cells.

pseudoline = z-monotone path which starts at a level [ and ends at the level n+1 — (.

crossing = II contact = ‘

pseudoline arrangement (with contacts) = n pseudolines supported by A/ which have
pairwise exactly one crossing, eventually some contacts, and no other intersection.




CONTACT GRAPH OF A PSEUDOLINE ARRANGEMENT

Contact graph A" of a pseudoline arrangement A =

e a node for each pseudoline of A, and
e an arc for each contact point of A oriented from top to bottom.

)




FLIPS

flip = exchange a contact with the corresponding crossing.

THEOREM. Let NV be a sorting network with n levels and m commutators. The graph

of flips G(N) is (m — (g))—regular and connected.

QUESTION. Is G(N) the graph of a simple (m — (g))—dimensional polytope?
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BRICK POLYTOPE

A pseudoline arrangement supported by ' ——  brick vector w(A) € R".
w(A); = number of bricks of A/ below the jth pseudoline of A.

Brick polytope Q(N) = conv{w(A) | A pseudoline arrangement supported by N'}.
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BRICK POLYTOPE

A pseudoline arrangement supported by ' ——  brick vector w(A) € R".
w(A); = number of bricks of A/ below the jth pseudoline of A.

O O OO — O

Brick polytope Q(N) = conv{w(A) | A pseudoline arrangement supported by N'}.

REMARK. The brick polytope is not full-dimensional:

( T )

QN)cC ¢ | Za:z = Z depth(d) » .

L \Zn ' b brick of A/ )




EXAMPLE: 2-LEVELS NETWORKS

X,, = network with two levels and m commutators.

AT Tl TI0

Graph of flips G(X,,) = complete graph K,,.

e} [()()

Brick polytope €2(&},,) = conv { (m _f)
2




BRICK VECTORS AND FLIPS

REMARK. If A and A’ are two pseudoline arrangements supported by N and related by
a flip between their ith and jth pseudolines, then w(A) — w(A") € Noj(e; — €;).




INCIDENCE CONE OF A DIRECTED MULTIGRAPH

G directed (multi)graph —— Incidence configuration I(G) = {e; —e; | (i,7) € G},
— Incidence cone C(G) = cone generated by I(G).

REMARK. independant sets in 1(G) forests in G,
spanning sets of (1 |z ) =0
basis of (1 |z ) =0
circuits in I(G)

cocircuits in I(G) minimal cuts in G,
and signs correspond to the orientations of the edges.

connected spanning subgraphs of G,
spanning trees of G,
simple cycles in G,

[TT1]

REMARK. H subgraph of G. Then I(H) forms a k-face of C'(G) <= H hasn —k
connected components and G/ H is acyclic. In particular:

C(G) is pointed <+— G is acyclic,
facets of C(G) <— complements of the minimal directed cuts of G.




CONTACT GRAPH OF A PSEUDOLINE ARRANGEMENT

Contact graph A# of a pseudoline arrangement A =

e a node for each pseudoline of A, and
e an arc for each contact point of A oriented from top to bottom.

R

THEOREM. The cone of the brick polytope Q(N\) at the brick vector w(A) is the incidence
cone C(A") = cone {ej —e; | (i,9) € A#} of the contact graph of A.




COMBINATORIAL DESCRIPTION

THEOREM. The cone of the brick polytope Q2(N) at the brick vector w(A) is the incidence
cone C(A7) of the contact graph of A:

cone {w(A') — w(A) | A" supported by N'} = cone {e; — ¢;

(¢,5) € A"}

VERTICES OF Q(N)
The brick vector w(A) is a vertex of Q(N) <= the contact graph A¥ is acyclic.

GRAPH OF Q(N)
The graph of the brick polytope is a subgraph of G(N') whose vertices are the
pseudoline arrangements with acyclic contact graphs.

FACETS OF Q(N)
The facets of (V) correspond to the minimal directed cuts of the contact graphs of

the pseudoline arrangements supported by .




BRICK POLYTOPES AND MINKOWSKI SUMS

N network with n levels, b a brick of A/, A pseudoline arrangement supported by N .
w(A, b) € R" characteristic vector of the pseudolines of A passing above b.
Q(N,b) = conv{w(A,b) | A pseudoline arrangement supported by N'} C R".

THEOREM. QN) = convy D>, w(A,b) =, convaw(A, b) = >, Q




BRICK POLYTOPES AND GENERALIZED PERMUTOHEDRA

Generalized permutohedra = polytope whose inequality description is of the form

p
I )

A ({z]}le[n]) = < : | e R” Zazz = 2} and Z:UZ >z for I C [n]
1=1

L \Zn el )

for some tight values {z7} -, € R2" satisfying z;r + 25 < zruy + 2z1ny-

A. Postnikov, Permutohedra, associahedra and beyond, 2009.

THEOREM. Any generalized permutahedron is a Minkowski sum of simplices:
Z <{ZI}Je[n]> = Z yrAr  where y; = Z(—l)’]\ﬂzj (ie. 2 = Z?JJ>
IC[n] JCI

F. Ardila, C. Benedetti & J. Doker, Matroid polytopes and their volumes, 2010.

REMARK. All brick polytopes are generalized permutohedra. Compute {yr}7cp.
Which generalized permutohedra are brick polytopes?







DUPLICATED NETWORKS: PERMUTAHEDRA

Reduced network = network with n levels and (g) commutators.

It supports only one pseudoline arrangement.

Duplicated network II = network with n levels and 2(’;) commutators obtained by
duplicating each commutator of a reduced network.

Any pseudoline arrangement supported by II has one contact and one crossing among

each pair of duplicated commutators.




DUPLICATED NETWORKS: PERMUTAHEDRA

Graph of flips G(II) = (g‘)—dimensional cube.

H\
A | J/
@ )

J/

— \




DUPLICATED NETWORKS: PERMUTAHEDRA

T

Any pseudoline arrangement supported by II has one contact and one crossing among

each pair of duplicated commutators. = The contact graph A" is a tournament.

Vertices of ()(II) <= acyclic tournaments <= permutations of |n],
Facets of ()(II) <= cuts in a tournament <= ordered bipartitions of |n|.

Brick polytope Q(II) = permutahedron.




DUPLICATED NETWORKS: PERMUTAHEDRA

Brick polytope Q(II) = permutahedron.
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DUPLICATED NETWORKS: PERMUTAHEDRA
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DUPLICATED NETWORKS: PERMUTAHEDRA

T

Minkowski sum decomposition

Q(IT) = Z QIT,b) = Z segment [e; — e;] + Zvertices = permutahedron

b brick of IT i<j

P(0,1,...,n — 1) = Newton (det [tg_l]z.je[n]) = Newton ( H (t; — tz))

1<i<i<n

= Z Newton (¢; — t;) = Z le; — €]

1<i<ji<n 1<i<ji<n




ALTERNATING NETWORKS: ASSOCIAHEDRA

For z € {a,b}" 2, we define a reduced alternating network N, and a polygon P,.

N W s Ot

5 5
[, . . . [
a 3 a 3
a 2 b 2
1 1
9 3 4 2 3
R
a__a 0 N5 1 5 1

N, is the dual pseudoline arrangement of the polygon P,.




ALTERNATING NETWORKS: ASSOCIAHEDRA

THEOREM. There is a duality between the pseudoline arrangements supported by N}
and the triangulations of the polygon P,.

N W =~ Ot

2 4
1- 5
3
T triangulation of P,

A triangle of T
e common edge of A and A’

1

T* pseudoline arrangement supported by N}
A* pseudoline of T*

e* contact between A* and A

f* crossing between A* and A™

111

f common bissector of A and A’

COROLLARY. (i) The graph of flips G(N}) is (isomorphic to) the graph of flips G(P,).
(i) The contact graph (T™)* is (isomorphic to) the dual binary tree of T'.




HOHLWEG & LANGE'S ASSOCIAHEDRA

THEOREM. For any word = € {a,b}" ?, the simplicial complex of crossing-free sets of
internal diagonals of the convex n-gon P, is (isomorphic to) the boundary complex of
the polar of the brick polytope Q(A}).

REMARK. Up to translation, we obtain Hohlweg & Lange's associahedra.
C. Hohlweg & C. Lange, Realizations of the associahedron and cyclohedron, 2007.
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GEOMETRY OF COXETER GROUPS

W = finite Coxeter group = finite group generated by orthogonal reflections.

S = simple system of generators = internal normal vectors of the fundamental chamber.
W-Permutahedron = convex hull of the WW-orbit of a generic point.

Type A3 = &, Type B; = &3 % (Z)* Type H; = U5
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W = finite Coxeter group = finite group generated by orthogonal reflections.
S = simple system of generators = internal normal vectors of the fundamental chamber.
W-Permutahedron = convex hull of the WW-orbit of a generic point.

Type A3 = G,



SUBWORD COMPLEX

(W, S) a finite Coxeter system, ) a word on S and 7 € W.
Subword complex A(Q, ) = simplicial complex of subsets of positions of () whose
complement contains a reduced expression of 7.

A. Knutson & E. Miller, Subword complexes in Coxeter groups, 2004.

W= A 12121

Q = 12121
o 12121 12121
12121 12121
12121
12121 12121

12121 12121 12121

A(Q, ) spherical if and only if 7 = Kronecker product §(Q)). We assume m = §(Q) = w..




SUBWORD COMPLEX

(W, S) a finite Coxeter system, ) a word on S and 7 € W.
Subword complex A(Q, ) = simplicial complex of subsets of positions of ) whose
complement contains a reduced expression of 7.

A. Knutson & E. Miller, Subword complexes in Coxeter groups, 2004.

142324 2 13 24 24 3 14 2 3 24 213 2424 3




BRICK POLYTOPES OF SUBWORD COMPLEXES

(W, S) a finite Coxeter system, ) a word on S.
Brick polytope €2(Q)) = convex hull of the brick vectors of all facets of A(Q, w.).

SIMILAR COMBINATORIAL PROPERTIES
GENERALIZATION OF THE CAMBRIAN LATTICES N. Reading, Cambrian Lattices, 2006.
SIMILAR EXAMPLES:

e IV-permutahedron for a duplicated word

e IW-associahedra (vertex description, Minkowski decomposition, ... )

F. Chapoton, S. Fomin & A. Zelevinsky, Polytopal realizations of generalized associahedra, 2002.
C. Hohlweg, C.Lange & H. Thomas, Permutahedra and generalized associahedra, 2011.
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