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Outline

I The chromatic number of Euclidean space
I Frankl and Wilson intersection theorems (1981)
I A theta like bound (F. M. de Oliveira Filho, F. Vallentin 2010)
I Combining the approaches: numerical results in small

dimensions (joined work (in progress) with F. Oliveira, F.
Vallentin).



χ(Rn)

I χ(Rn) is the smallest number of colors needed to color every
point of Rn, such that two points at distance 1 receive different
colors. (E. Nelson, 1950, introduced χ(R2))

I Easy: χ(R) = 2. No other value is known!

I For n = 2: 4 ≤ χ(R2) ≤ 7 (Nelson, Isbell, 1950).



χ(Rn)

I χ(Rn) ≥ χ(G) for all finite graph G = (V ,E) embedded in Rn

(G ↪→ Rn) i.e. such that V ⊂ Rn and the edges have length 1.
I De Bruijn and Erdös (1951):

χ(Rn) = max
G finite
G↪→Rn

χ(G)

I Good sequences of graphs: Raiski (1970), Larman and Rogers
(1972), Frankl and Wilson (1981), Székely and Wormald (1989).

I Erdös conjectured an exponential growth for χ(Rn). Frankl and
Wilson show exponential growth (1981). Raigorodskii (2000)
slight improvement.



How to estimate χ(G), G finite

I The independence number α(G) of G = (V ,E) is the maximum
number of pairwise unconnected vertices.

I Every color class of an admissible coloring is an independent set
so

χ(G) ≥ |V |
α(G)

.

Example: G = the Moser’s spindle, α = 2 so χ(G) ≥ 7/2.
I How to upper bound α(G): two general methods: Lovász theta

number ϑ(G) and the linear algebra method.



The unit distance graph

I The unit distance graph

V = Rn E = {(x , y) : ‖x − y‖ = 1}.

I Its independent sets are the 1-avoiding sets, i.e. the sets S not
containing pairs of elements at distance 1.

I Problem: to have a substitute for |S| and for α(G). Requires S is
measurable.

I Next problem: to upper bound it.



χm(Rn), m1(Rn)

I The measurable chromatic number χm(Rn): the color classes are
required to be measurable.

I χm(Rn) ≥ χ(Rn). Falconer (1981): χm(Rn) ≥ n + 3. In particular
χm(R2) ≥ 5!

I m1(Rn) is the supremum of the density of a measurable subset
of Rn containing no pair of points at distance 1:

m1(Rn) = sup
{
δ(S) : S ⊂ Rn, S avoids 1

}
where δ(S) = lim supr→+∞ vol(S ∩ Bn(r))/ vol(Bn(r)).

I Larman and Rogers (1972):

χm(Rn) ≥ 1
m1(Rn)

m1(Rn) ≤ α(G)

|V |
for all G ↪→ Rn.



Frankl and Wilson Intersection Theorem

Theorem (FW, 1981)
n ≥ 1, w ≤ n/2, q a prime power such that w/2 < q < w.
S ⊂ {0,1}n,w such that for all (u, v) ∈ S2, |u ∩ v | 6= w − q. Then

|S| ≤
(

n
q − 1

)
.

I S is an independent set of the graph G = (V ,E),

V = {0,1}n,w , E = {(u, v) : |u ∩ v | = w − q}.

The theorem gives an upper bound for α(G).
I Proof uses the linear algebra method.
I Better than the upper bound given by Lovász ϑ.



Frankl and Wilson Intersection Theorem

Sketch of proof:

I To every u ∈ S is associated fu ∈ L({0,1}n,w ).

fu(v) =
1

(q − 1)!

q−1∏
`=1

(|u ∩ v | − w + `).

I These fu fall into a subspace of dimension
( n

q−1

)
, the subspace of

functions of “degree” at most (q-1).
I Moreover they are linearly independent. Indeed, they take

integral values, and, if q = pk , p prime,(
fu(v)

)
u,v∈S

= Id mod p.



Applications to chromatic numbers

I Using {0,1}n,w ⊂ Rn, ‖u − v‖2 = 2w − 2|u ∩ v |. So avoiding one
intersection value means avoiding one distance. So

χ(Rn) ≥ |V |
α(G)

=

(n
w

)( n
q−1

) .
With w = min(2q − 1,n/2) and q ≈ αn, optimizing α, leads to
(Frankl and Wilson 1981):

χ(Rn) ' (1.207)n m1(Rn) / (0.829)n

I Raigorodskii: using {0,1,−1}n,w1,w2 improves to (1.239)n.



Lovász theta number

I The theta number ϑ(G) (L. Lovász, 1979) satisfies the Sandwich
Theorem:

α(G) ≤ ϑ(G) ≤ χ(G)

I It is the optimal value of a semidefinite program:

ϑ(G) = max
{ ∑

(x,y)∈V 2

B(x , y) : B ∈ RV×V , B � 0,∑
x∈V

B(x , x) = 1,

B(x , y) = 0 xy ∈ E
}

I If S is an independent set of G, BS(x , y) := 1S(x) 1S(y)/|S|
satisfies the constraints of the above SDP. Thus |S| ≤ ϑ(G).



Semidefinite programs

I Primal program:

γ := inf
{
〈A0,Z 〉 : Z � 0,

〈Ai ,Z 〉 = bi , i = 1, . . . ,m
}

where Ai are real symmetric matrices of some size n.
I Dual program:

γ∗ := sup
{

b1x1 + · · ·+ bmxm :
A0 − x1A1 − · · · − xmAm � 0

}



Semidefinite programs

I Linear programs (LP) occur when the matrices Ai are diagonal.
I In general, γ∗ ≤ γ: if x is dual feasible and Z is primal feasible,

m∑
i=1

bixi ≤ 〈A0,Z 〉.

I Under some mild conditions, γ = γ∗, i.e. there is no duality gap.
I In this case, interior point methods lead to algorithms that allow

to approximate γ to an arbitrary precision in polynomial time.
Good free solvers are available (NEOS)!



ϑ(Rn)

I A generalization of ϑ(G) to the unit distance graph

V = Rn E = {(x , y) : ‖x − y‖ = 1}

after Fourier analysis, linear programming, and densities of distance
avoiding sets in Rn, F. M. de Oliveira Filho, F. Vallentin, JEMS 2010.

I Turns out to be explicitely computable.
I Recall when G finite:

ϑ(G) = max
{ ∑

(x,y)∈V 2

B(x , y) : B ∈ RV×V , B � 0,∑
x∈V

B(x , x) = 1,

B(x , y) = 0 xy ∈ E
}



ϑ(Rn)

I Over Rn: take B(x , y) continuous, positive definite, i.e. for all k ,
for all x1, . . . , xk ∈ Rn,

(
B(xi , xj )

)
1≤i,j≤k � 0.

I Assume B is translation invariant: B(x , y) = f (x − y) (the graph
itself is invariant by translation).

I Replace
∑

(x,y)∈V 2 B(x , y) by

δ(f ) := lim sup
r→+∞

1
vol(Bn(r))

∫
Bn(r)

f (z)dz.



ϑ(Rn)

I Leads to:

ϑ(Rn) := sup
{
δ(f ) : f ∈ Cb(Rn), f � 0

f (0) = 1,
f (x) = 0 ‖x‖ = 1

}
Theorem

m1(Rn) ≤ ϑ(Rn)

I Bochner characterization of positive definite functions:

f ∈ C(Rn), f � 0⇐⇒ f (x) =

∫
Rn

eix·y dµ(y), µ ≥ 0.



ϑ(Rn)

I f can be assumed to be radial i.e. invariant under O(Rn):

f (x) =

∫ +∞

0
Ωn(t‖x‖)dα(t), α ≥ 0.

where
Ωn(t) = Γ(n/2)(2/t)(n/2−1)Jn/2−1(t).

I Leads to:

ϑ(Rn) := sup
{
α(0) : α ≥ 0∫ +∞

0 dα(t) = 1,∫ +∞
0 Ωn(t)dα(t) = 0

}



ϑ(Rn)

I The dual program:

ϑ(Rn) = inf
{

z0 : z0 + z1 ≥ 1
z0 + z1Ωn(t) ≥ 0 for all t > 0 }

I For n = 4, graphs of Ω4(t) and of the optimal function
f ∗4 (t) = z∗0 + z∗1 Ω4(t):

The minimum of Ωn(t) is reached at jn/2,1 the first zero of Jn/2.



ϑ(Rn)

I We obtain

f ∗n (t) =
Ωn(t)− Ωn(jn/2,1)

1− Ωn(jn/2,1)
ϑ(Rn) =

−Ωn(jn/2,1)

1− Ωn(jn/2,1)
.

I The resulting bound

m1(Rn) ≤ ϑ(Rn) =
−Ωn(jn/2,1)

1− Ωn(jn/2,1)

decreases exponentially but not as fast as Frankl Wilson
Raigorodskii bound (1.165−n instead of 1.239−n).



ϑG(Rn)

I To summarize, we have seen two essentially different bounds:

m1(Rn) ≤

{
α(G)
|V | with FW graphs and lin. alg. bound for α(G)

ϑ(Rn) encodes ϑ(G) for every G ↪→ Rn?

I It is possible to combine the two methods.
I G ↪→ Rn, for xi ∈ V , let ri := ‖xi‖.

ϑG(Rn) := inf{z0 + z2
α(G)
|V | : z2 ≥ 0

z0 + z1 + z2 ≥ 1
z0 + z1Ωn(t) + z2( 1

|V |
∑|V |

i=1 Ωn(ri t)) ≥ 0
for all t > 0}.



ϑG(Rn)

Theorem

m1(Rn) ≤ ϑG(Rn) ≤ ϑ(Rn)

I ϑG(Rn) ≤ ϑ(Rn) is obvious: take z2 = 0.
I Sketch proof of m1(Rn) ≤ ϑG(Rn): let S a measurable set

avoiding 1. Let

fS(x) :=
δ(1S−x 1S)

δ(S)
.

fS is continuous bounded, fS � 0, fS(0) = 1, fS(x) = 0 if ‖x‖ = 1.
Moreover δ(fS) = δ(S).



ϑG(Rn)

I If V = {x1, . . . , xM}, for all y ∈ Rn,

M∑
i=1

1S−xi (y) ≤ α(G).

I Leads to the extra condition:

M∑
i=1

fS(xi ) ≤ α(G).

I Design a linear program, apply Bochner theorem, symmetrize by
O(Rn), take the dual.



ϑG(Rn)

I Bad knews: cannot be solved explicitly (we don’t know how to)
I Challenge: to compute good feasible functions.
I First method: to sample an interval [0,M], solve a finite LP, then

adjust the optimal solution (OV, G = simplex).

Figure: f ∗4 (t) (blue) and f ∗4,G(t)(red) for G = simplex



ϑG(Rn)

I Observation: the optimal has a zero at y > jn/2,1.
I Idea: to parametrize f = z0 + z1Ωn(t) + z2Ωn(rt) with y :

f (y) = f ′(y) = 0, f (0) = 1 determines f .
I We solve for: 

z0 + z1 + z2 = 1
z0 + z1Ωn(y) + z2Ωn(ry) = 0
z1Ω′n(y) + rz2Ω′n(ry) = 0

I Then, starting with y = jn/2,1, we move y to the right until
fy (t) := z0(y) + z1(y)Ωn(t) + z2(y)Ωn(rt) takes negative values.



Numerical improvements

n LP upper bound LP lower bound LP upper bound LP lower bound LP upper bound LP lower bound
for m1(Rn) for χm(Rn) for m1(Rn) for χm(Rn) for m1(Rn) for χm(Rn)

without without with with with with
graphs graphs simplex simplex FW graph FW graph

15 0.00404638 248 0.00359372 279 0.00349172 287
16 0.00314283 319 0.00282332 248 0.00253343 395
17 0.00245212 408 0.00223324 448 0.00188025 532
18 0.00192105 521 0.00177663 563 0.00143383 698
19 0.00151057 663 0.00141992 705 0.00102386 977
20 0.001191806 840 0.00113876 879 0.000729883 1371
21 0.0009432098 1061 0.00091531 1093 0.000524659 1907
22 0.000748582 1336 0.00073636 1359 0.000392892 2546
23 0.000595665 1679 0.00059204 1690 0.000295352 3386
24 0.000475128 2105 0.00047489 2106 0.000225128 4442
25 0.0003798295 2633 0.000173756 5756
26 0.000304278 3287 0.000135634 7373
27 0.000244227 4095 0.000103665 9647
28 0.000196383 5093 0.0000725347 13787
32 0.00008342574 11987 0.00003061037 32669
36 0.000036212868 27615 0.000010504745 95196
44 0.000007168656 139497 0.0000013007413 768793
52 0.0000014908331 670766 0.00000016991978 5885131



Questions, comments

I Exponential behavior of ϑFW (Rn) ?
I Further improvements for small dimensions: change the graph,

consider several graphs. For n = 2, several triangles lead to
0.268412 (OV); several Moser spindles to 0.262387 (F. Oliveira
2011).

I Can we reach m1(R2) < 0.25 ? (conjectured by Erdös; would
give another proof of χm(R2) ≥ 5).

I Applies to other spaces, expecially to m(Sn−1, θ). The theta
approach was developed (B. Nebe Oliveira Vallentin 2009).

I In turn, a bound for m1(S(0, r)) can replace a finite graph G in
ϑG(Rn).

I The Lovász theta method was successfuly adapted to Rn. What
about the linear algebra method (Gil Kalai) ?


