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|. 8 families of standard

({a, b}, k)-spheres



General

(R, k)-spheres: Ci=2k-i(k-2) of i-gons

e Fix R C N, an (R, k)-sphere is a k-regular, k > 3, map on S?
whose faces are i-gons, i € R. Let m=min and M=max;¢cRg.

@ Let v,eand f =), pi be the numbers of vertices, edges and
faces of S, where p; is the number of i-gonal faces. Clearly,
kv=2e=}, ipj and the Euler formula v — e + f =2 become
4k=) . piC;, where C;=2k-i(k-2) is curvature of i-gons.

° i—gon is elliptic, parabolic, hyperbo/ic if <75 2k 2k ,>%

C->0—0<0 e, t+4>3 §<

e So, m< . For m>3, it implies 3 < m, k <5, i.e. 5 Platonic
pairs of parameters (m, k)=(3,3), (4,3), (3,4), (5,3), (3,5).

o If M< 25 (min;eg C;i>0), then M<5, k=3 or M<3, ke{4,5}
So, for m > 3, they are only Octahedron, Icosahedron and
11 ({3, 4,5}, 3)-spheres: 8 dual deltahedra, Cube and its
truncations on 1 or 2 opposite vertices (Durer octahedron).
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General

Standard (R, k)-spheres

@ An (R, k)-sphere is standard if /\/l:k2—f2, i.e. min;eg C;=0.
So, (M, k)=(6,3), (4,4), (3,6) (Euclidean parameter pairs).
Exclusion of hyperbolic faces simplifies enumeration, while the
number py, of parabolic faces not being restricted, there is an
infinity of such (R, k)-spheres.

@ The number of such v-vertex (R, k)-spheres with |R|=2
increases polynomially with v; their set is countable.
Such spheres admit parametrization and description in terms
of rings of (Gaussian if k=4 and Eisenstein if k=3, 6) integers.
All 8 series of such spheres will be considered in detail.

o Remaining (R, k)-spheres (with M>;2%) not admit above, in
general. The number of such v-vertex ({3,4},5)-spheres
grows at least exponentially with v; their set is a continuum.



General

8 families of standard ({a, b}, k)-spheres

e An ({a, b}, k)-sphere is an (R, k)-sphere with R = {a, b},
1<a<b. Ithasv=7(ap.+ bpb) vertices.

@ Such standard sphere has b = k 2; so, (b, k)=
(6,3), (4,4), (3,6) and Euler formula become

Y i(6—i)pi if k=3

Z ( - I)pl if k=4

>3 _,-)p,. if k=6

o Further, p, = 2 (a, pa) are:
(5,12), (4,6), (3, 4) (2,3) for (b, k)=(6,3);
(3.8), (2,4) for (b, k)=(4, 4);
(2,6), (1,3) for (b, k)=(3,6).

@ Those 8 families can be seen as spheric analogs of the regular
plane partitions {63}, {4*}, {3°} with p, a-gonal " defects”,
disclinations added to get the curvature of the sphere S.
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General

8 families: existence criterions

Griinbaum-Motzkin, 1963: criterion for k=3 < a:; Griinbaum, 1967:
for ({3,4}, 4)-spheres; Griinbaum-Zaks, 1974: for other cases.

[ k] (ab) ]| smallestone | itexistsifandonlyif | p, | v |

3| (5,6) || Dodecahedron ps # 1 12 20 + 2pe

3] (4,6) Cube ps 7 1 6 8 + 2ps

41 (3,4) Octahedron ps # 1 8 6+ pa

6| (2,3) 6 x Ky p3 is even 6 2+ 5

3| (3,6) || Tetrahedron Pe is even 4 44 2ps

4| (2,4) 4 x Ky Py is even 4 24 pg

31 (2,6) 3x Ko pe=(k> + kI +1?) —1 3 2+ 2pg

6 | (1,3) Trifolium p3=2(k> + kI + 1?) — 1 3 Hp
[5](3,4) [ Icosahedron | ps # 1 | 2p4+20 | 2ps+12 |

({3,6},3)- (Griinbaum-Motzkin, 1963) and ({2,4}, 4)-spheres
(Deza-Shtogrin, 2003) admit a simple 2-parametric description.



General

8 families of standard ({a, b}, k)-spheres

Let us denote ({a, b}, k)-sphere with v vertices by {a, b},.

({5,6},3)- and ({4,6}, 3)-spheres are (geometric) fullerenes
and boron nitrides. {5,6}60(/n): a new carbon allotrope Cep.
{5,6}620(/)=GCs1({5,6}20) ~ Callaway golf ball {5,6}e60-
({a, b}, 4)-spheres are minimal projections of alternating links,
whose components are their central circuits (those going only
ahead) and crossings are the verices.

By smallest member Dodecahedron {5,6}2, Cube {4,6}s,
Tetrahedron {3,6}4, Octahedron {3,4}¢ and 3xK; {2,6}»,
4x Ky {2,4}2, 6x Ky {2,3}0, Trifolium {1,3}1, we call eight
families: dodecahedrites, cubites, tetrahedrites, octahedrites
and 3-bundelites, 4-bundelites, 6-bundelites, trifoliumites.

b-icosahedrites (({3, b}, 5)-spheres) are not standard if b>3,
pp>0 since p3=pp(3b — 10)+20 and b-gons are hyperbolic.



General
Digression on Rose of Three Petals

@ The polar equation of the rose (or rhodonea) is r=cos(nf).
{1,3}1 models its case n=3: quartic (algebraic of degree 4)
plane curve Trifolium (x?+y?)2=x(x2-3y?) shown below.

e It models also sextic (x2+y?)3=2x(x?-3y?) or r3=2cos(36):
Kiepert curve d(x, A)d(x, B)d(x, C)=1 for reg. triangle ABC

ly
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General

Generation of standard ({a, b}, k)-spheres

e ({2,3},6)-spheres, except 2 x K> and 2 x K3, are the duals of
({3,4,5,6}, 3)-spheres with six new vertices put on edge(s).
Exp: ({5,6}, 3)-spheres with 5-gons organized in six pairs.

e ({1,3},6)-spheres, except {1,3}; and {1, 3}3, are as above
but with 3 edges changed into 2-gons enclosing one 1-gon.

e ({2,6},3)-spheres are given by the Goldberg-Coxeter
construction from Bundles = 3 x K, {2,6},.

e ({1,3},6)-spheres come by the Goldberg-Coxeter construction
(extended below on 6-regular spheres) from Trifolium {1,3};.



General

Computer generation of the families

Main technique: exhaustive search. Sometimes, speedup by proving
that a group of faces cannot be completed to the desired graph.

@ The program CPF by Brinkmann-Delgado-Dress-Harmuth,
1997 generates 3-regular plane graphs with specified p-vector.

@ ENU by Brinkmann-Harmuth-Heidemeier, 2003 and
Heidemeier, 1998 does the same for 4-regular plane graphs.
Dutour adapted ENU to deal with 2-gonal faces also.

@ CGF by Harmuth generates 3-regular orientable maps with
specified genus and p-vector.

e Plantri by Brinkmann-McKay deals with general graphs.

@ The package CaGe by Brinkmann-Delgado-Dress-Harmuth,
1997 is used for plane graph drawings.

@ The package PlanGraph by Dutour, 2002 is used for handling
planar graphs in general.



[I. Connectedness of

({a, b}, k)-spheres



Polyhedra and planar graphs

@ A graph is called k-connected if after removing any set of
k — 1 vertices it remains connected.

@ The skeleton of a polytope P is the graph G(P) formed by its
vertices, with two vertices adjacent if they generate a face.

@ Steinitz Theorem: a graph is the skeleton of a polyhedron
(3-polytope) if and only if it is planar and 3-connected.

@ A polyhedron is usually represented by the Schlegel diagram
of its skeleton, the program used for this is CaGe.

@ The dual graph G* of a plane graph G is the plane graph
formed by the faces of G, with two faces adjacent if they
share an edge. The skeletons of dual polyhedra are dual.



3-connectedness of ({a, b}, 3)-spheres

e Any ({a, b}, k)-sphere is 2-connected. But some infinite series
of ({1,2,3},6)-spheres with (p1, p2)=(2,2) are not.

e Any ({a,6},3)-sphere is 3-connected if a = 4,5 and not if
a = 2 (one can delete two vertices adjacent to a 2-gon).

@ Except the following series, ({3,6},3)-spheres (moreover, all
({3,4,5,6}, 3)-spheres) are 3-connected.

QO S




3-connectedness of ({a, b}, 6)- and ({a, b}, 4)-spheres

e Any ({a, b}, 6)-sphere is 3-connected, except ({2,3},6)- ones
which are duals of only 2-connected ({3,6}, 3)-spheres, with
six vertices of degree 2 added on edges.

e Any ({a, b}, 4)-sphere is 3-connected, except the following
series of ({2,4},4)-spheres.
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REMARK. {2,4},(D2y4,D2p) are k-inflations of above. Dg,Dyp, are
GCy /(4xK3). Remaining D>: 2 complex or 3 natural parameters.



Hamiltonicity of ({a, b}, k)-spheres

@ Griinbaum-Zaks, 1974: all ({1,3},6)- and ({2,4},4)-spheres
are Hamiltonian, but ({2,6},3)- with v =0 (mod 4) are not
e Goodey, 1977: ({3,6},3)- and ({4,6}, 3)- are Hamiltonian.

@ Conjecture: an Hamiltonian circuit exists in all other cases.

To check hamiltonicity of a ({a, b}, k)-map on the projective plane
P2, the following theorem (Thomas-Yu, 1994) could help:

every 4-connected graph on P? has a contractible (i.e. being a
boundary of 2-cell) Hamiltonian circuit.



II'. ({a, b}, k)-spheres
with small py: listings



Listing of ({a, b}, k)-spheres with p, <3 <a<b

e Remind: (a, k)=(3,3),(4,3),(3,4),(5,3) or (3,5) if a > 3.

o The only ({a, b}, k)-spheres with p, < 1 are 5 Platonic (a¥):
Tetrahedron, Prismg4, APrisms, snub Prisms, snub APrisms.

@ There exists unique 3-connected ({a, b}, k)-sphere with p,=2
for ({4, b}v 3)" ({37 b}7 4)_' ({57 b}v 3)" ({37 b}7 5)':
Prismp Dpp, APrismy Dy, snub Prismy, or snub APrismy Dpy
each (2 b-gons separated by 2 b-rings of 5-gons or 3b-rings of
3-gons). Doubled b-gon Dy, is such ({2, b}, 4)-sphere.

e Also, for any (a, k)=(3,3),(3,4),(4,3),(3,5),(5,3), there is
unique only 2-connected such sphere (Dyj) iff b= 0(mod a).



Listing of ({a, b}, k)-spheres with p, <3 <a<b

e Remind: (a, k)=(3,3),(4,3),(3,4),(5,3) or (3,5) if a > 3.

o The only ({a, b}, k)-spheres with p, < 1 are 5 Platonic (a¥):
Tetrahedron, Prismg4, APrisms, snub Prisms, snub APrisms.

@ There exists unique 3-connected ({a, b}, k)-sphere with p,=2
for ({4, b}v 3)" ({37 b}7 4)_' ({57 b}v 3)" ({37 b}7 5)':
Prismp Dpp, APrismy Dy, snub Prismy, or snub APrismy Dpy
each (2 b-gons separated by 2 b-rings of 5-gons or 3b-rings of
3-gons). Doubled b-gon Dy, is such ({2, b}, 4)-sphere.

e Also, for any (a, k)=(3,3),(3,4),(4,3),(3,5),(5,3), there is
unique only 2-connected such sphere (Dyj) iff b= 0(mod a).

e ({a, b}, k)-sphere with p, = 3 exists if and only if
b=2a,2a—2(mod?2a) and b= 4,6 (mod 10) if a=5.

@ Such sphere has symmetry # Dsy, iff b = a(mod 2a).
Such sphere is not unique iff b=a(mod 2a) and (a, k)#(3, 3).

@ Pictures illustrating all 5 cases with pp=3 follow; removing
central line on them illustrate the cases with p,=2.



({ , b}, 3)-spheres with

Such sphere exists iff b = 2,3,4(mod 6). For b=4+6m, 2+6m,
3+6m, it come from Prisms, 3K,, Tetrahedron K, by adding m
Ks-€e's on 3 edges creating symmetry D3, D3 and resp. Gs,,.
It is 3-connected only for b=4: Prisms.

b=4+6 2412 3412, G,

Removing central line gives ({3, b=3m}, 3)-spheres with pp=2.



({ , b}, 3)-spheres with

Such sphere exists iff b = 2,4,6 (mod8). For b=6+8m, 2+8m,
44+8m, it come from 4-triakon Prismz, 3K5, Cube K23 (two) by
adding m K23—e's on 3 edges creating Dsp, D3p and resp. G3,, Gy,.
It is 3-connected only for b=6: 4-triakon Prisms below.

W &

- 4+8, C3v 448, C2V

@@%%

2416 20, Gs, 20, Gy,




({ , b}, 4)-spheres with

Such sphere exists iff b = 2,3,4 (mod 6). For b=4+6m, 2+6m,
3+6m, it come from 9-vertex ({3, b}, 4)-sphere, 3K>, Octahedron
K222 (three) by adding m vertex-split K22 2's on 3 edges creating
symmetry D3y, D3p and resp. Csy, Cs, Cs.

It is 3-connected iff the symmetry is not Cs.

vPY
el

3+6, G3y 346, G 346, G



({ , b}, 3)-spheres with

Such sphere exists iff b= 2,4,5,6,8(mod 10). For b=4+10m,
6+10m, 8410m 2+10m, 5+10m, it come from 14,26, 38-vertex
({5, b}, 3)-spheres with b=4,6,8, 3K, and Dodecahedron (five) by
adding m (5, 3)-polycycles C; on 3 edges creating symmetry Dsp,
D3y, Dsp, Dsp and resp. two Gy, three Cs.

%@@%

5+10, G3, 15, G 15, Gy 15,



[11. 8 standard families:

4 smallest members



First four ({2,4},4)- and ({3,4}, 4)-spheres

Dyp 22 (22)  Dyp 43 (4%) Dop 2x22 (22,4) Doy 63 (62)

@@

On 63 (4%) D3, 940 ( D, 10%
Borr. rings  Dag 818 (16) (Herschel) (6;14)

Above links/knots are given in Rolfsen, 1976 and 1990 notation.
Herschel graph: the smallest non-Hamiltonian polyhedral graph.



First four ({2,3},6)- and ({1, 3}, 6)-spheres

SDOA

Dep (23) D3, (3;6) Dy (22,8 T4 (3%)
Gy (3 Gsp (3;6) Gy ( 62

Griinbaum-Zaks, 1974: {1,3}, exists iff v = k? + kI + I? for
integers 0 < / < k. We show that the number of {1,3},'s is the
number of such representations of v, i.e. found GCy ;({1,3}1).



First four ({2,6},3)- and ({3,6}, 3)-spheres

Number of ({2,6},'s is nr. of representations v=2(k? + kI + [?),
0 </ <k (GCy ({2,6}2)). It become 2 for v=72=52+15+32,

SO L

D3y, (6) Dsp, (63)  Dsp (122) Ds (42)

) A

T4 (4%) Dy, (82,42) 4 (123) Ty (89




First four ({4,6},3)- and ({5,6}, 3)-spheres

@) A =

Dep, (182) Dsp, (6%;30) Doy (242)

@@@@

I, (106) Deg (12;60)  Dsp, (123;42) (127)



V. Symmetry groups of
({a, b}, k)-spheres



Finite isometry groups

All finite groups of isometries of 3-space E are classified.
In Schoenflies notations, they are:

(i is the trivial group

Cs is the group generated by a plane reflexion

Ci = {h, —1k} is the inversion group

Cm is the group generated by a rotation of order m of axis A

Cmv (=~ dihedral group) is the group generated by C,, and m
reflexion containing A

Cmh = Cy x Cs is the group generated by C,, and the
symmetry by the plane orthogonal to A

Som is the group of order 2m generated by an antirotation, i.e.
commuting composition of a rotation and a plane symmetry



Finite isometry groups D,,, Dnp, D

@ Dp, (~ dihedral group) is the group generated of C,, and m
rotations of order 2 with axis orthogonal to A

@ D, is the group generated by D, and a plane symmetry
orthogonal to A

@ D,q is the group generated by D,, and m symmetry planes
containing A and which does not contain axis of order 2

3 SRR

Dsp Doy




Remaining 7 finite isometry groups

I, = Hs is the group of isometries of Dodecahedron;
I, ~ Alts x G

| ~ Alts is the group of rotations of Dodecahedron

Op, = Bs is the group of isometries of Cube

O ~ Sym(4) is the group of rotations of Cube

T4 = Az ~ Sym(4) is the group of isometries of Tetrahedron
T ~ Alt(4) is the group of rotations of Tetrahedron
Th=TU-T

While (point group) Isom(P) C Aut(G(P)) (combinatorial group),
Mani, 1971: for any 3-polytope P, there is a map-isomorphic
3-polytope P’ (so, with the same skeleton G(P’) = G(P)), such
that the group Isom(P’) of its isometries is isomorphic to Aut(G).



8 families: symmetry groups

® 28 for {5,6},: C1, G, Gi; G2, Gov, Cop, Sa; G, Gav, Gap, Se;
D>, Dop, Dag; D3, D3p, D3g; Ds, Dsp, Dsq; Ds, Dep, Ded; T,
T4, Th; 1, In (Fowler-Manolopoulos, 1995)

® 16 for {4,6},: C1, G, Gi; Co, Goy, Gop; Do, Dap, Dag; Ds,
Dsp, D3g; Ds, Dep; O, Op (Deza-Dutour, 2005)

® 5 for {3,6},: Da, Dop, Day; T, Ty (Fowler-Cremona,1997)
® 2 for {2,6},: D3, D3; (Griinbaum-Zaks, 1974)

® 18 for {3,4},: G, G, C; Go, Gov, Cop, Sa; D2, Doy, Dag; D3,
Dsp, D3g; Ds, Dyp, Duag; O, Op (Deza-Dutour-Shtogrin, 2003)

® 5 for {2,4},: Dy, Dop, Dag; Da, Dap, all in [Da, Dyp] (same)
® 3 for {1,3},: G, Gy, G3p (Deza-Dutour, 2010)

® 22 for {2,3},: G, G, Gi; o, Goy, Gop, Sa; G, Gay, Gap, Se;
D>, Dyp, Dog; D3, D3p, D3g; Ds, Den; T, Ty, Th (same)

@ 38 for icosahedrites ({3,4},5)- (same, 2011).



8 families: Goldberg-Coxeter construction GCy (.)
With T={T, Tg, T}, O={0, Op}, I=11, I}, C1=1C1, Cs, C; ),
Cov={Cm, Cv, Cnt, S2m}+ Dm={Dm, Dimh, Dmqg }, we get

for ({5,6},3)-: Cq, Ca, C3, Dy, D3, D5, Dg, T, |

for ({2,3},6)-: Cy, Ca, C3, D2, D3, {Dp, D}, T

for ({4,6}.3)-: C1, C2\S4, D2, D3, {Ds, Den}, O

for ({3,4},4)-: Cy, Ca, Dy, D3, D4, O

for ({3,6},3-: Do, {T, Ty} {D3,D3p}
for (
for (
for (

r ({2,4},4)-: Dg, {Dy, Dyp}

{2,6},3)-: {D3, D3}

{1,3},6)-: C3\Se={Gs, C3v, C3n}

if ({3,4},5)—2 C1, C2, C3, C4, C5, Dz, D3, D4, D5, T, O, l.

r
r

Coo0000000



8 families: Goldberg-Coxeter construction GCy (.)
With T={T, Tg, Tn}, O=10, On}, I={1, I}, C1=1C1, Cs, Gi
Cov={Cm, Cv, Cnt, S2m}+ Dm={Dm, Dimh, Dmqg }, we get

® for ({5,6},3)-: Cq, Ca, C3, D2, D3, D5, Dg, T, |
for ({2,3},6)-: Cy, Ca, C3, D2, D3, {Dp, D}, T

({476},3)—: Ci1, C2\54, Dy, D3, {D6, Dﬁh}, 0]

or ({3,4},4)-: C1, Cy, D3, D3, D4, O
(
(
(

or ({3,6},3- Da, {T, Ty} {D3,Ds3s}
or ({2,4},4)-: Da, {D4, D4p}
for ({2,6},3)-: {D3, D3p}
for ({1,3},6)-: C3\S6={Gs, Gav, C3n}
o if ({3,4},5)—2 C1, C2, C3, C4, C5, Dz, D3, D4, D5, T, O, |.

Spheres of blue symmetry are GCj; from 1st such; so, given by
one complex (Gaussian for k=4, Eisenstein for k=3,6) parameter.
Goldberg, 1937 and Coxeter, 1971: {5,6},(/, ln), {4,6}.,(0, Op),
{3,6},(T, Ty). Dutour-Deza, 2004 and 2010: for other cases.



V. Goldberg-Coxeter

construction



Goldberg-Coxeter construction GCy (.)

o Take a 3- or 4-regular plane graph G. The faces of dual graph

G* are triangles or squares, respectively.

@ Break each face into pieces according to parameter (k, /).

Master polygons below have area A(k?+kl+1?) or A(k?+1?),

where A is the area of a small polygon.

~
VY,
T _ AR
\ NSNS NN —
SR e e e N I=2

-

k=5 k=5

3-valent case 4-valent case



Gluing the pieces together in a coherent way

@ Gluing the pieces so that, say, 2 non-triangles, coming from
subdivision of neighboring triangles, form a small triangle, we
obtain another triangulation or quadrangulation of the plane.

@ The dual is a 3- or 4-regular plane graph, denoted GC /(G);
we call it Goldberg-Coxeter construction.

@ It works for any 3- or 4-regular map on oriented surface.



GCy./(Cube) for (k, ) = (1,0)

(1,1),(2,0),(2,1)

)







The case (k,/) = (1,1)

/- 1 A
\ . /
3-regular case 4-regular case
GCy 1 is called leapfrog GCy 1 is called medial
(%—truncation of the dual) (%—truncation)

truncated Octahedron Cuboctahedron



The case (k, 1) = (k,0) of GCx(G): k-inflation

Chamfering (quadrupling) GC0(G) of 8 1st ({a, b}, k)-spheres,
(a, b)=(2,6),(3,6), (4,6),(5,6) and (2,4),(3,4),(1,3),(2,3), are:

D3y, (122) Tq (8%) Op (128) In (2012)
D H T &
Dyp (44) Op (86) & (62) Den (43762)

For 4-regular G, GCp2 o(G)=GCy k(GCy k(G)) by (k+ki)?=2k?i.



First four GCk.’/(3 X K2) and GCk’/(4 X Kz)

All ({2,6},3)-spheres are Gy j(3xK>): Dsp, D3p, D3 if 1=0, k, else.

SO >

D3h 3 x Kz D3h Ieapfrog D3h G270 D3 G2,1

OE@mE

Dyp 4 x Ko D4, medial Dap G0 Dy G2




First four GCy /(6% K3) and GCy /( Trifolium)

S AEE

D3y Gi1 Den G20 Ds Go1
G Gi1 Gy Goy G G

All ({2,3},6)-spheres are Gy (6xK2): Gav, Gz, G3 if =0, k, else.



Plane tilings {4*}, {3°} and complex rings Z[i], Z[w]

@ The vertices of regular plane tilings {4*} and {3°} form each,
convenient algebraic structures: lattice and ring. Path-metrics
of those graphs are /1- 4-metric and hexagonal 6-metric.

o {4%}: square lattice Z? and ring Z[i|={z=k+Ii : k,| € Z} of
Gaussian integers with norm N(z)=zz=k>+1?=||(k, 1)||?.

o {3%}: hexagonal lattice A%2={x € Z3 : xo+x1+x2=0} and ring
Zw|={z=k+lw : k,| € Z}, where w=e'5=1(1+iV/3), of
Eisenstein integers with norm N(z):zE:k2+k/+/2:%Hx|]2
We identify points x=(xp, x1, %) € A? with xo+x1w € Z[w].



Plane tilings {4*}, {3°} and complex rings Z[i], Z[w]

@ The vertices of regular plane tilings {4*} and {3°} form each,
convenient algebraic structures: lattice and ring. Path-metrics
of those graphs are /1- 4-metric and hexagonal 6-metric.

o {4%}: square lattice Z? and ring Z[i|={z=k+Ii : k,| € Z} of
Gaussian integers with norm N(z)=zz=k>+1?=||(k, 1)||?.

o {3%}: hexagonal lattice A%2={x € Z3 : xo+x1+x2=0} and ring
Zw|={z=k+lw : k,| € Z}, where w=e'5=1(1+iV/3), of
Eisenstein integers with norm N(z):zE:k2+k/+/2:%Hx|]2
We identify points x=(xp, x1, %) € A? with xo+x1w € Z[w].

@ A natural number n = []; p{"' is of form n=k>+/? if and only
if any «; is even, whenever p; = 3(mod 4) (Fermat Theorem).
It is of form n = k2 + kI + /? if and only if p; =2 (mod 3).

@ The first cases of non-unicity with ged(k, I)=gcd(ki, h)=1
are 91=92+9+12=62430+52 and 65=8°+1°=7+4.

The first cases with /=0 are 72=52415+32 and 52=42+432.



The bilattice of vertices of hexagonal plane tiling {63}

o We identify the hexagonal lattice A> (or equilateral triangular
lattice of the vertices of the regular plane tiling {3°}) with
Eisenstein ring (of Eisenstein integers) Z[w].

@ The hexagon centers of {6°} form {3°}. Also, with vertices of
{6}, they form {3°}, rotated by 90° and scaled by /3.

o The complex coordinates of vertices of {63} are given by
vectors vi=1 and vo=w. The lattice L=Zv1+Zv, is Z[w].

o The vertices of {63} form bilattice L1 U Ly, where the bipartite
complements, Lyj=(14+w)L and Ly=1+(1+w)L, are stable
under multiplication. Using this,

GCy,(G) for 6-regular graph G can be defined similarly to 3- and
4-regular case, but only for k + Iw € Ly, i.e. k =1+ 1(mod 3).



Ring formalism

Z[i] (Gaussian integers) and Z[w] (Eisenstein integers) are
unique factorization rings

Dictionary
3-regular G 4-regular G 6-regular G
the ring Eisenstein Z[w] | Gaussian Z[i/] | Eisenstein Z[w]
Euler formula | >°.(6 — i)pi=12 | > (4 —i)pi=8 | >_;(3 —i)pi=6
curvature 0 hexagons squares triangles
ZC-circuits zigzags central circuits both
GCu(G) leapfrog graph medial graph or. tripling




Goldberg-Coxeter operation in ring terms

@ Associate z=k+Iw (Eisenstein) or z=k+/i (Gaussian integer)
to the pair (k, /) in 3-,6- or 4-regular case. Operation GC,(G)
correspond to scalar multiplication by z=k+Iw or k+Ii.

e Writing GC,(G), instead of GCy (G), one has:
GC(GC(G)) = GCy(G)

o If G has v vertices, then GC ;(G) has vN(z) vertices, i.e.,
v(k?+1?) in 4-regular and v(k?+kl+I?) in 3- or 6-reg. case.



Goldberg-Coxeter operation in ring terms

@ Associate z=k+Iw (Eisenstein) or z=k+/i (Gaussian integer)
to the pair (k, /) in 3-,6- or 4-regular case. Operation GC,(G)
correspond to scalar multiplication by z=k+Iw or k+Ii.

e Writing GC,(G), instead of GCy (G), one has:
GC(GC(G)) = GCy(G)

o If G has v vertices, then GC ;(G) has vN(z) vertices, i.e.,
v(k?+1?) in 4-regular and v(k?+kl+I?) in 3- or 6-reg. case.

@ G(C,(G) has all rotational symmetries of G in 3- and 4-regular
case, and all symmetries if /=0, k in general case.

e GC,(G)=GGC(G) where G differs by a plane symmetry only
from G. So, if G has a symmetry plane, we reduce to 0</<k;
otherwise, graphs GCy ;(G) and GC; x(G) are not isomorphic.



GCy (G) for 6-regular plane graph G and any k, |

Bipartition of G* gives vertex 2-coloring, say, red/blue of G.
Truncation Tr(G) of {1,2,3}, is a 3-regular {2,4,6}¢,.
Coloring white vertices of G gives face 3-coloring of Tr(G).
White faces in Tr(G) correspond to such in GCy ;(Tr(G)).
For k =1+ 1(mod3), i.e. k+ Iw € Ly, define GC, )(G) as
GCy.i(Tr(G)) with all white faces shrinked.

If k = I((mod 3), faces of Tr(G) are white in GCy ;(Tr(G)).
Among 3 faces around each vertex, one is white. Coloring
other red gives unique 3-coloring of GCy /(Tr(G)). Define
GCkJ(G) as pair Gi, Gy with Tr(Gl):TI’(GQ):GC/(7/(TI‘(G))
obtained from it by shrinking all red or blue faces.

GC10(G) = G and GCy1(G) is oriented tripling.



Oriented tripling GG, 1(G) of 6-regular plane graph G

@ Let G, (5 be bipartite classes of G*. For each C;, oriented
tripling GCy,1(G) is 6-regular plane graph Orc,(G) coming by
each vertex of G — 3 vertices and 4 3-gonal faces of Or¢,(G).
Symmetries of Orc,(G) are symmetries of G preserving C;.

@ Orient edges of C; clockwise. Select 3 of 6 neighbors of each
vertex v: {2,4,6} are those with directed edge going to v; for
{1,5,5}, edges go to them.

o Any z=k+Iw#0 with k=/ (mod 3) can be written as
(14+w)*(k’'+I'w)w, where s>0 and k'=/"+1 (mod 3).
So, it holds reduction GCy ;(G)=G 1(Or*(G)).



Examples of oriented tripling GC; 1(G)

Below: {2,3}» and {2,3}4 have unique oriented tripling.

spPFAp

2 Dgp, 6 D3y 12 7,



Examples of oriented tripling GC; 1(G)

Below: {2,3}» and {2,3}4 have unique oriented tripling.

P AP

2 D(,h 6 D3d 4 Td

LB

1G, 3 G 9 G, 27 Czp 81 G,

Above: first 4 consecutive oriented triplings of the Trifolium.




VI. Parameterizing

({a, b}, k)-spheres



Example: construction of the ({3,6}, 3)-spheres in Z[w]

’A
%%'@)}\
&\ivm'n
AN AY

In th tral tri |
n e centra rlange

ABC, let A be the origin T_he corre.sponding
triangulation

(NOLSINAN/N/N
VAVAVAVAVAVAVAVAN

VAVAVAVAVASVAVAN

NONOASININING

of the complex plane

All ({3,6},3)-spheres
come this way; two
complex parameters
in Z[w] defined by
the points B and C



Parameterizing ({a, b}, k)-spheres

Thurston, 1998 implies: ({a, b}, k)-spheres have p,-2 parameters
and the number of v-vertex ones is O(v™~1) if m=p,-2 > 2.
Idea: since b-gons are of zero curvature, it suffices to give relative
positions of a-gons having curvature 2k — a(k — 2) > 0.

At most p, — 1 vectors will do, since one position can be taken 0.
But once p, — 1 a-gons are specified, the last one is constrained.
The number of m-parametrized spheres with at most v vertices is
O(v™) by direct integration. The number of such v-vertex spheres
is O(v™ 1) if m > 1, by a Tauberian theorem.



Parameterizing ({a, b}, k)-spheres

Thurston, 1998 implies: ({a, b}, k)-spheres have p,-2 parameters
and the number of v-vertex ones is O(v™~1) if m=p,-2 > 2.
Idea: since b-gons are of zero curvature, it suffices to give relative
positions of a-gons having curvature 2k — a(k — 2) > 0.

At most p, — 1 vectors will do, since one position can be taken 0.
But once p, — 1 a-gons are specified, the last one is constrained.
The number of m-parametrized spheres with at most v vertices is
O(v™) by direct integration. The number of such v-vertex spheres
is O(v™ 1) if m > 1, by a Tauberian theorem.

e Goldberg, 1937: {a,6}, (highest 2 symmetries): 1 parameter
Fowler and al., 1988: {5,6}, (Ds, D¢ or T): 2 parameters.
Griinbaum-Motzkin, 1963: {3,6},: 2 parameters.
Deza-Shtogrin, 2003: {2,4},; 2 parameters.

Thurston, 1998: {5,6},: 10 (again complex) parameters.
Graver, 1999: {5,6},: 20 integer parameters.
Rivin, 1994: parameter desciption by dihedral angles.



Parameterizing (R, k)-spheres without hyperbolic faces

Thurston, 1998 parametrized (dually, as triangulations) such

(R, 3)-spheres, i.e. 19 series of ({3,4,5,6}, 3)-spheres.

In general, such (R, k)-spheres are given by mzZKK% pi — 2
complex parameters zi, ..., Zny.

The number of vertices is expressed as a non-degenerate Hermitian
form g=q(z1,...,zm) of signature (1, m — 1).

Let H™ be the cone of z=(z1, ..., zy) € C™ with g(z) > 0.
Given (R, k)-sphere is described by different parameter sets; let
M=M({ps, ..., pm}, k) be the discrete linear group preserving q.
For k=3, the quotient H™ /(R x M) is of finite covolume
(Thurston, 1998, actually, 1993). Sah, 1994 deduced from it that
the number of corresponding spheres grows as O(v™1).

Dutour partially generalized above for other k and surface maps.



8 families: number of complex parameters by groups

® (5,6}, C1(10), C(6), C3(4), D2(4), D3(3), D5(2), Dg(2),
T(2), {1, 1n}(1)
® {46}, Cy(4), C2\54(3), D2(2), D3(2), {Ds, Den}(1),
{0, Op}(1)
® (3.4}, Cy1(6), C2(4). D2(3), D3(2), Da(2), {0, On}(1)
® (2,3}, Cyi(4), C2(37), C3(37), D2(27), D3(27), T(1),
{Ds, Den}(1)
® (3,6}, D2(2), {T, Ta}(1)
©® (2.4}, D2(2), {D4, Dyp}(1)
® {26}, {D3,D3p}(1)
® (1,3}, {G, Gy, Gn}(1)
Thurston, 1998 implies: ({a, b}, k)-spheres have p,-2 parameters
and the number of v-vertex ones is O(v™ 1) if m=p,-2 > 1.



Number of complex parameters

{5,6},
[ Group | #param. ||
C 10
C, 6
Cs3,Dy 4
D3 3
Ds,Dg, T 2
| 1
{4,6},
[ Group | #param. |
C: 4
C, 3
D,. Ds 2
D, O 1

{3,6},- and {2,4},: 2 complex parameters but 3 natural ones will
do: pseudoroad length, number of circumscribing railroads, shift.

{3.4}
[ Group [ #param. |
C, 6
C, 4
D, 3
Ds.D, 2
(0] 1
{2,3},
[ Group | #param. |
G 7
C,,Cs 37
D, D; | 27
D¢, T 1




VIl. Railroads and tight
({a, b}, k)-spheres



ZC-circuits

@ The edges of any plane graph are doubly covered by zigzags
(Petri or left-right paths), i.e., circuits such that any two but
not three consecutive edges bound the same face.

@ The edges of any Eulerian (i.e., even-valent) plane graph are
partitioned by its central circuits (those going straight ahead).

e A ZC-circuit means zigzag or central circuit as needed.

CC- or Z-vector enumerate lengths of above circuits.



ZC-circuits

@ The edges of any plane graph are doubly covered by zigzags
(Petri or left-right paths), i.e., circuits such that any two but
not three consecutive edges bound the same face.

@ The edges of any Eulerian (i.e., even-valent) plane graph are
partitioned by its central circuits (those going straight ahead).

e A ZC-circuit means zigzag or central circuit as needed.

CC- or Z-vector enumerate lengths of above circuits.

@ A railroad in a 3-, 4- or 6-regular plane graph is a circuit of 6-,
4- or 3-gons, each adjacent to neighbors on opposite edges.
Any railroad is bound by two " parallel” ZC-circuits. It (any if
4-, simple if 3- or 6-regular) can be collapsed into 1 ZC-circuit.




Railroad in a 6-regular sphere: examples

APrism3 with 2 base 3-gons doubled is the {2,3}¢ (D34) with
CC-vector (32,43), all five central circuits are simple.

Base 3-gons are separated by a simple railroad R of six 3-gons,
bounded by two parallel central 3-circuits around them. Collapsing
R into one 3-circuit gives the {2,3}3 (Dsp) with CC-vector (3;6).

OIATA

Dsq (32,43) D3y, (3;6)

Above {2,3}4 (T4) has no railroads but it is not strictly tight, i.e.
no any central circut is adjacent to a non-3-gon on each side.



Railroads flower: Trifolium {1,3};

Railroads can be simple or self-intersect, including triply if k = 3.
First such Dutour ({a, b}, k)-spheres for (a, b) = (4,6), (5,6) are:

{4;6}66(D3h) twice {5,6}172(C3\,)

Which plane curves with at most triple self-intersectionss come so?



Number of ZC-circuits in tight ({a, b}, k)-sphere

Call an ({a, b}, k)-sphere tight if it has no railroads.

< 15 for {5,6}, Dutour, 2004

<9 for {4,6}, and {2,3}, Deza-Dutour, 2005 and 2010
< 3for {2,6}, and {1,3}, same

< 6 for {3,4}, Deza-Shtogrin, 2003

Any {3,6}, has > 3 zigzags with equality iff it is tight.
All {3,6}, are tight iff 7 is prime and none iff it is even.

Any {2,4}, has > 2 central circuits with equality iff it is
tight. There is a tight one for any even v.



Number of ZC-circuits in tight ({a, b}, k)-sphere

e Call an ({a, b}, k)-sphere tight if it has no railroads.

® <15 for {5,6}, Dutour, 2004

® <9 for {4,6}, and {2,3}, Deza-Dutour, 2005 and 2010

® <3for{2,6}, and {1,3}, same

® <6 for {3,4}, Deza-Shtogrin, 2003

® Any {3,6}, has > 3 zigzags with equality iff it is tight.
All {3,6}, are tight iff 7 is prime and none iff it is even.

® Any {2,4}, has > 2 central circuits with equality iff it is
tight. There is a tight one for any even v.

First tight ones with max. of ZC-circuits are GCo1({a, b}min):
{5,6}140(1), {4,6}56(0), {2,6}14(D3), {3,4}30(0); {2.3}44(D3p)
and {a, b}mini {3,6}4(Td), {2,4}2(D4h). Besides {2,3}44(D3h),
ZC-circuits are: (28%%),(218), (143), (10°), (43), (22), all simple.



Maximal number M, of central circuits in any {2, 3},

o M,=%+1, 5+2forv=0,2 (mod 4). It is realized by the
series of symmetry D,y with CC- vector 23 ,2vg,, and of
symmetry Dy, with CC-vector 22, v2 23 o2 if v=0,2 (mod 4).

Forodd v, M, is [ 5| +3if v = 2,4,6 (mod 9) and [ 3] +1,
otherwise. Define t, by “Zf = [¥]. M, is realized by the
series of symmetry Cs, if v =1 (mod 3) and D3, otherwise.
CC-vector is 315, (21§ + )3 vz, i V=2,4,6 (mod 9)

’ 9

and 3151 (2v 4 )0,y 12, otherwise.




Smallest CC-knotted or Z-knotted {2, 3},

@ The minimal number of central circuits or zigzags, 1, have
CC-knotted and Z-knotted {2,3},. They correspond to plane
curves with only triple self-intersection points. For v<16,
there are 1,2,4,7,9,12 Z-knotted if v=3,7,9,11,13,15 and
1,2,2,4,11,9,1,19 CC-knotted if v=4,6,8,10,12, 14,15, 16.

e Conjecture (holds if v<54): any Z-knotted {2,3}, has odd v
and a CC-knotted {2,3}, is Z-knotted if and only if v is odd.

VAAS A

15 G




VIII. Tight pure
({a, b}, k)-spheres



Tight ({a, b}, k)-spheres with only simple ZC-circuits

e Call ({a, b}, k)-sphere pure if any of its ZC-circuits is simple,
i.e. has no self-intersections. Such ZC-circuit can be seen as a
Jordan curve, i.e. a plane curve which is topologically
equivalent to (a homeomorphic image of) the unit circle.

e Any ({3,6},3)- or ({2,4},4)-sphere is pure. They are tight if
and only if have three or, respectively, two ZC-circuits.

@ Any ZC-circuit of {2,6}, or {1,3}, self-intersects.



Tight ({a, b}, k)-spheres with only simple ZC-circuits

e Call ({a, b}, k)-sphere pure if any of its ZC-circuits is simple,
i.e. has no self-intersections. Such ZC-circuit can be seen as a
Jordan curve, i.e. a plane curve which is topologically
equivalent to (a homeomorphic image of) the unit circle.

e Any ({3,6},3)- or ({2,4},4)-sphere is pure. They are tight if
and only if have three or, respectively, two ZC-circuits.

@ Any ZC-circuit of {2,6}, or {1,3}, self-intersects.

The number of tight pure ({a, b}, k)-spheres is:
® 97 for {5,6}, computer-checked for v < 300 by Brinkmann
® 2 for {4,6}, Deza-Dutour, 2005

® 8 for {3,4}, same
® 5 for {2,3}, same, 2010



All tight ({3,4},4

VAN

6 O, 43
Octahedron

20 D,y (85)

)-spheres with only simple central circuits

A L

12 0, (6%) 14 Dy,
GCua( Oct 12 D3y (67) (62, 82)
22 Dyp 30 O (10°) 32 Dy
83 102 GG ( OCt (1047122)




All tight ({4,6}, 3)-spheres with only simple zigzags

There are exactly two such spheres: Cube and its leapfrog
GCi1(Cube), truncated Octahedron.

6 O (6%) 24 0y (10°)



All tight ({4,6}, 3)-spheres with only simple zigzags

There are exactly two such spheres: Cube and its leapfrog
GCi1(Cube), truncated Octahedron.

6 O (6%) 24 0y (10°)

Proof is based on a) The size of intersection of two simple zigzags
in any ({4,6},3)-sphere is 0,2,4 or 6 and
b) Tight ({4,6}, 3)-sphere has at most 9 zigzags.

For ({2, 3}, 6)-spheres, a) holds also, implying a similar result.



Tight ({2, 3}, 6)-spheres with only simple ZC-circuits

S O A

2 D@h 23 4 Td 34 6 D3 no
(12,83%)

AT A B

8 Doy (5%,4) Dep (43,6%) 12 T, (69) 14 Dg no
no (8%) no (129) (149)

All CC-pure, tight: Nrs. 1,2,4,5,6 (Nrs. 3,7 are not CC-pure).
All Z-pure, tight: Nrs. 1,2,3,6,7 (4 is not Z-pure, 5 is not Z-tight).
1st, 3rd are strictly CC-, Z-tight: all ZC-circuits sides touch 2-gons



7 tight ({5, 6}, 3)-spheres with only simple zigzags

oaee

76 D
20 I, (10°) 28 Ty (12) 48 Ds (16°)  (pp 57

88 T (22%2)

The zigzags of 1,2,3,5,7th above and next two form 7 Griinbaum
arrangements of Jordan curves, i.e. any two intersect in 2 points.
The groups of 1,5, 7th and {5,6}60(/,) are zigzag-transitive.



Two other such ({5,6}, 3)-spheres

60 /, (18%7) 60 Ds (18%0)

This pair was first answer on a question in Griinbaum, 1967, 2003
Convex Polytopes about existence of simple polyhedra with the
same p-vector but different zigzags. The groups of above {5,6}6o
have, acting on zigzags, 1 and 3 orbits, respectively.



|X. Other fullerene analogs:
c-disks ({a, b, c1 }, k)



Other fullerene-like spheres with hyperbolic faces

Related non-standard (R, k)-spheres with k—i—max i
e G-fulleroids (Deza-Delgado, 2000; Jendrol-Trenkler, 2001 and
Kardos, 2007): ({5, b}, 3)-spheres with b>7 and symmetry G.

@ b-lcosahedrites: ({3, b}, 5)-spheres. So, they have

=(3b-10)pp+20 3-gons and v=2(b-3)pp+12 vertices.

@ Haeckel, 1887: ({5, 6, c}, 3)-spheres with ¢ = 7, 8 representing
skeletons of radiolarian zooplankton Aulonia hexagona.

e ({a, b, c}, k)-disk is an ({a, b, c}, k)-sphere with p. = 1; so,
its v=ﬁ(pa—l—i-pb)—ﬁ(kz)(a—i—c—kpb(b—a)) and (setting
b’:kL_’}) pa:gijg-prb, . So, pa_b%‘; if b=b" (8 families).

e Fullerene c-disk is the case (a, b, c; k) = (5,6, c; 3) of above.
So, they have ps = ¢+ 6 and v = 2(pe + ¢ + 5) vertices.

<2 are:




Minimal fullerene (({5,6},3)) c-disks

If c=3,4,5, it is 1-vertex-, 1-edge-truncated, usual Dodecahedron.
Their number is 2, 3,10 and pg=c-3 if ¢=9,10, 11; else, 1 with min
pe(c)=3,2,0,1,3,4,5,6 (tube C;/ () if c=3,4,5,6,7,8,12, > 13.

6 24 Dgy 730 G 834 G 12 44 G,
Conjecture: ({5,6, c1},3) with ¢>13 exists iff v is even > 2¢+22.

13 48 C. 14 50 G, 15 52 C. 16 54 G,



Symmetries of fullerene c-disks ({5,6,¢c1},3), ¢ >3

@ Their groups: Cp,, Cry with m = 0(mod c¢) (since any
symmetry should stabilize unique c-gonal face) and
m € {1,2,3,5,6} since the axis pass by a vertex, edge or face.
@ The minimal such 3-connected 8- and 9-disks are given below.

Seee

834 Gy 836 Cs 838 G4 838 (&

OIS

040 Ca, 040 C. 9 42 (, 952 Ca



X. lcosahedrites:

({3,4},5)-spheres



Icosahedrites, i.e., ({3,4},5)-spheres

@ They have p3 = 2py, + 20 and v = 2pp, + 12 vertices.

@ Their numberis 1,0,1,1,5,12, 63,246, 1395, 7668, 45460
for v =12,14,16,18, 20, 22,24, 26, 28, 30, 32. It grows at
least exponentially with v. So, there is a continuum of
icosahedrites, while 8 standard families are countable.

@ p, is fixed in for standard ({a, b}, k)-spheres permitting
Goldberg-Coxeter construction and parametrization of graphs
which imply the polynomial growth of their number. It does
not happen for icosahedrites; no parametrization for them.

K- 1 —

A-operation keeps symmetries; B-operation: only rotational ones.



Proof for the number of icosahedrites

A weak zigzag ia a left/right, but never extreme, edge-circuit.

If a v-vertex icosahedrite has a simple weak zigzag of length 6, a
(v+6)-vertex one come by inserting a corona (6-ring of three
4-gons alternated by three pairs of adjacent 3-gons) instead of it.
But such spheres exist for v=18, 20, 22; so, for v=0, 2, 4(mod 6).
There are two options of inserting corona; so, the number of
v-vertex icosahedrites grows at least exponentially.

12 I, 18 D3 20 Dag 22 Ds,
wZ=610 62835409 6%20%182; 619505,
7=105 90271 104303,  10% 901520

An usual (strong) zigzag is a left/right, both extreme, edge-circuit.



38 symmetry groups of icosahedrites

o Agregating CIZ{CL G, Ci}v Cm:{Cm7 Cmvs s 52m}| Dn=
{Dm, Dimhy Dma}, T={T, Ty, Tp}, O={0, Op}, I={1, I},
all 38 symmetries of ({3,4},5)-spheres are:
Ci, G, Dy for 2<m<5and T, O, L

@ Any group appear an infinite number of times since one gets
an infinity by applying A-operation iteratively.

@ Group limitations came from k-fold axis only. Is it occurs for
all ({a, b}, k)-spheres with b-faces of negative curvature?

e Examples (minimal whenever v < 32) are given below:

22 22 G 32 G 72 Oy



Minimal ({3, 4}, 5)-spheres of 5-fold symmetry

It exists iff ps = 0(mod5), i.e., v =2ps + 12 = 2 (mod 10).




Minimal ({3, 4}, 5)-spheres of 4-fold symmetry

It exists iff ps =2 (mod 4), i.e., v=2ps + 12 = 0(mod8).

16 D4y 40 Dyp 24 O

40 G4y 32 Gyp 32 Sg



Minimal ({3, 4}, 5)-spheres of 3-fold symmetry

It exists iff ps = 0(mod 3), i.e., v =2ps + 12 = 0(mod 6).

‘\
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Minimal ({3, 4}, 5)-spheres of 2-fold symmetry

20 D, 20 Doy 24 Dy,

20 G 22 Gy 28 Cop 28 54



Xl. Standard ({a, b}, k)-maps

on surfaces



Standard ({a, b}, k)-maps on surfaces

Standard (R, k)-maps

e Given R C N and a surface F2, an (R, k)-F? is a k-regular
map M on surface F? whose faces have gonalities i € R.

e Euler characteristic x(M) is v — e + f, where v, e and
f =Y, pi are the numbers of vertices, edges and faces of M.

@ Since kv=2e=) . ip;, Euler formula x = v — e 4 f becomes
Gauss-Bonnet-like one 2x(M)k = > . pi(2k — i(k — 2)).

@ Again, let our maps be standard e, miner(:+ 1) =1.
So, M=max{i € R}=:=5 and (M, k)=(6,3), (4,4), (3,6).

@ There are infnity of standard maps (R, k)-F2, since the
number py, of parabolic faces is not restricted.

@ Also, x > 0 with x =0 if and only if R = {m}.
So, F? is S?, T?, P?, K? with y = 2,0, 1,0, respectively.

o Such ({a, b}, k)-F? map has b=72%, p,= bx—ba v=1~(apa+bps)
So, (a=b, k)=(6,3), (3,6), (4,4) if F? is T? or K°.

e But X:m%p“ for icosahedrite maps ({3,4},5) (non-standard)
So, x<0 is possible and x=0 (i.e., F?=T? K?) iff p3=2p4.



Standard ({a, b}, k)-maps on surfaces

Digression on interesting non-standard ({5, 6, c}, 3)-maps

Such maps, generalizing fullerenes, have ¢ > 7. Examples are:

e G-fulleroids (Deza-Delgado, 2000; Jendrol-Trenkler, 2001 and
Kardos, 2007): ({5, b}, 3)-spheres with b>7 and symmetry G

@ Haeckel, 1887: ({5, 6, c}, 3)-spheres with ¢ = 7, 8 representing
skeletons of radiolarian zooplankton Aulonia hexagona.

e Azulenoids: ({5,6,7},3)-tori;sog=1,ps =p=17.

e Schwarzits: ({5, 6, c},3)-maps on minimal surfaces of
constant negative curvature (g > 2) with ¢ =7, 8.
Knor-Potocnik-Siran-Skrekovski, 2010: such ({6, c}, 3)-maps
exist for any g > 2,ps > 0and ¢ =7,8,9,10,12. Forc =7,8
such polyhedral maps exist.



Standard ({a, b}, k)-maps on surfaces

The ({a, b}, k)-maps on torus and Klein bottle

The connected closed (compact and without boundary) irreducible
surfaces are: sphere S2, torus T? (two orientable), real projective
plane P? and Klein bottle K? with y = 2,0, 1,0, respectively.

The maps ({a, b}, k)-T? and ({a, b}, k)-K? have a = b = %; so,
(a = b, k) should be (6,3),(3,6) or (4,4).

We consider only polyhedral maps, i.e. no loops or multiple edges
(1- or 2-gons), and any two faces intersect in edge, point or () only.
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The ({a, b}, k)-maps on torus and Klein bottle

The connected closed (compact and without boundary) irreducible
surfaces are: sphere S2, torus T? (two orientable), real projective
plane P? and Klein bottle K? with y = 2,0, 1,0, respectively.

The maps ({a, b}, k)-T? and ({a, b}, k)-K? have a = b = %; so,
(a = b, k) should be (6,3),(3,6) or (4,4).

We consider only polyhedral maps, i.e. no loops or multiple edges
(1- or 2-gons), and any two faces intersect in edge, point or () only.

Smallest T? and K2-embeddings for (a=b, k)=(6, 3), (3,6), (4, 4):
as 6-regular triangulations: K7 and K333 (p3 = 14, 18);

as 3-regular polyhexes: Heawood graph (dual K7) and dual K333 3;
as 4-regular quadrangulations: Ks and Kz22 (ps = 5,6).

Ks and Ka o are also smallest ({3,4},4)-P? and ({3, 4},4)-S?,
while Ky is the smallest ({4,6},3)-P? and ({3,6},3)-S°.



Standard ({a, b}, k)-maps on surfaces

Smallest 3-regular maps on T? and K?: duals K7, K333




Standard ({a, b}, k)-maps on surfaces

Smallest 3-regular maps on T? and K?: duals K7, K333

3-regular polyhexes on T?, cylinder, Mdbius surface, K? are {63}'s
quotients by fixed-point-free group of isometries, generated by: two
translations, a transl., a glide reflection, transl. and glide reflection.



Standard ({a, b}, k)-maps on surfaces

8 families: symmetry groups with inversion

The point symmetry groups with inversion operation are: Tj, Op,
I, Chy Dmp with even m and D,,g, So,m with odd m. So, they are

9 for {5,6}\,2 C,', Cgh, Dgh, D3d, D6hy 56: Th, D5d, Ih
7 for {2,3},: Gi, Gop, Dan, D3y, Den, Se, Th

6 fOI’ {4,6}‘,: C,', Cgh, Dgh, D3d, D6hy Oh

6 for {3,4}V: C,', Cgh, Dgh, D3d, D4h, Oh

2 for {2,4},: Dop, Dap

1 for {3,6},: Dyp

0 for {2,6}, and {1, 3},

Cf. 12 for icosahedrites (({3,4}, 5)-spheres):

Ci, Con, Can, Dan, Dan, D3g, Dsqg, S, S10, Th, On, In

(R, k)-maps on the projective plane are the antipodal quotients of
centrosymmetric (R, k)-spheres; so, halving their p-vector and v.



Standard ({a, b}, k)-maps on surfaces

Smallest ({a, b}, k)-maps on the projective plane

@ The smallest ones for (a, b) = (4,6),(3,4),(3,6),(5,6) are:
K, (smallest P2-quadrangulation), Ks, 2-truncated Kj, dual
Ks (Petersen graph), i.e., the antipodal quotients of Cube
{4, 6}8, {3, 4}10(D4h), {3, 6}16(D2h), Dodecahedron {5, 6}20.

@ The smallest ones for (a, b) = (2,4),(2,3) are points with 2,
3 loops; smallest without loops are 4x Ky, 6x Ko but on P2,

1
1
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Standard ({a, b}, k)-maps on surfaces

Smallest ({5,6},3)-P? and ({3, 4},5)-P?

The Petersen graph (in positive role) is the smallest P2-fullerene.
lts P2-dual, K, is the smallest P2-icosahedrite (half-lcosahedron).
Ks is also the smallest (with 10 triangles) triangulation of P?2.

BB A
B 4 &




Standard ({a, b}, k)-maps on surfaces

6 families on projective plane: parameterizing

® {56},: G, Gop, Do, S6, D3d, Depn, Th, Dsq, I
® {2,3},: G, G, Dap, S, D3d, Dep, Th

® {4,6},: G, Gp, Dap, D3g, Dep, Op

® {3,4},: G, Gp, Dap, D3g, Dap, Op

® (2.4}, Dyp, Dup

® {3.6},: Dy



Standard ({a, b}, k)-maps on surfaces

6 families on projective plane: parameterizing

® {56},: G, Gop, Do, S6, D3d, Depn, Th, Dsq, I
® {2,3},: G, G, Dap, S, D3d, Dep, Th

® {4,6},: G, Gp, Dap, D3g, Dep, Op

® {3,4},: G, Gp, Dap, D3g, Dap, Op

® (2.4}, Dyp, Dup

® {3.6},: Dy

({2,3},6)-spheres T}, and Dgp, are GCy (2 x Tetrahedron) and, for
k=1,2 (mod 3), GCx (6 x K>), respectively. Other spheres of
blue symmetry are GCy ; with / = 0, k from the first such sphere.
So, each of 7 blue-symmetric families is described by one natural
parameter k and contains O(y/v) spheres with at most v vertices.



Standard ({a, b}, k)-maps on surfaces

({a, b}, k)-maps on Euclidean plane and 3-space

o An ({a, b}, k)-E? is a k-regular tiling of E2 by a- and b-gons.

o ({a, b}, k)-E2 have p, < z2- and p, = co. It follows from
Alexandrov, 1958: any metric on E? of non-negative curvature
can be realized as a metric of convex surface on E3. In fact,
consider plane metric such that all faces became regular in it.
Its curvature is 0 on all interior points (faces, edges) and > 0
on vertices. A convex surface is at most half-S2.

o There are co of ({a, b}, k)-E? if 2<p,< 32 and 1 if p,=0, 1.

@ The plane fullerenes (or nanocones) ({5, 6}, k)-E? are
classified by Klein and Balaban, 2007: the number of
equivalence (isomorphism up to a finite induced subgraph)
classes is 2,2,2,1 for ps = 2,3,4,5, respectively.




Standard ({a, b}, k)-maps on surfaces

({a, b}, k)-maps on Euclidean plane and 3-space

o An ({a, b}, k)-E? is a k-regular tiling of E2 by a- and b-gons.

o ({a, b}, k)-E2 have p, < z2- and p, = co. It follows from
Alexandrov, 1958: any metric on E? of non-negative curvature
can be realized as a metric of convex surface on E3. In fact,
consider plane metric such that all faces became regular in it.
Its curvature is 0 on all interior points (faces, edges) and > 0
on vertices. A convex surface is at most half-S2.

o There are co of ({a, b}, k)-E? if 2<p,< 32 and 1 if p,=0, 1.

@ The plane fullerenes (or nanocones) ({5, 6}, k)-E? are
classified by Klein and Balaban, 2007: the number of
equivalence (isomorphism up to a finite induced subgraph)
classes is 2,2,2,1 for ps = 2,3,4,5, respectively.

o An ({a, b}, k)-E? is a 3-periodic k’-regular face-to-face tiling
of the Euclidean 3-space E3 by ({a, b}, k)-spheres.

@ Next, we will mention such tilings by 4 special fullerenes,
which are important in Chemistry and Crystallography. Then
we consider extension of ({a. b}, k)-maps on manifolds.




XIl. Beyond surfaces



Frank-Kasper ({a, b}, k)-spheres and tilings

e A ({a, b}, k)-sphere is Frank-Kasper if no b-gons are adjacent.
@ All cases are: smallest ones in 8 families, 3 ({5, 6}, 3)-spheres
(24-, 26-, 28-vertex fullerenes), ({4, 6}, 3)-sphere Prisme,
3 ({3,4},4)-spheres (APrismg, APrism3, Cuboctahedron),
({2,4}, 4)-sphere doubled square and two ({2, 3}, 6)-spheres
(tripled triangle and doubled Tetrahedron).

e

20, Iy, 24 Dgy 26, D3p 28, T4



FK space fullerenes

A FK space fullerene is a 3-periodic 4-regular face-to-face tiling of
3-space E3 by four Frank-Kasper fullerenes {5,6},.

They appear in crystallography of alloys, clathrate hydrates,
zeolites and bubble structures. The most important, Ajs, is below.

Weaire-Phelan, 1994: best known solution of weak Kelvin problem



Other E3-tilings by ({a, b}, k)-spheres

e An ({a, b}, k)-E? is a 3-periodic k’-regular face-to-face
E3-tiling by ({a, b}, k)-spheres. Some examples follow.

@ Deza-Shtogrin, 1999: first known non-FK space fullerene
({5,6},3)-E3: 4-regular E3-tiling by {5,6}20, {5,6}24 and its
elongation ~ {5,6}36 (Dgp) in proportion 7:2:1.



Other E3-tilings by ({a, b}, k)-spheres

e An ({a, b}, k)-E? is a 3-periodic k’-regular face-to-face
E3-tiling by ({a, b}, k)-spheres. Some examples follow.

@ Deza-Shtogrin, 1999: first known non-FK space fullerene
({5,6},3)-E3: 4-regular E3-tiling by {5,6}20, {5,6}24 and its
elongation ~ {5,6}36 (Dep) in proportion 7:2:1.

e space cubite ({4,6},3)-E3: tiling by Prismg, Prismg with
bipyramidal star. Examples: 5- and 6-regular E3-tilings by
Prismg and by Cube (Voronoi tilings of lattices Ay xZ and Z3
with stars Prism} and 33 = Prismy}), respectively.



Other E3-tilings by ({a, b}, k)-spheres

e An ({a, b}, k)-E? is a 3-periodic k’-regular face-to-face
E3-tiling by ({a, b}, k)-spheres. Some examples follow.

@ Deza-Shtogrin, 1999: first known non-FK space fullerene
({5,6},3)-E3: 4-regular E3-tiling by {5,6}20, {5,6}24 and its
elongation ~ {5,6}36 (Dep) in proportion 7:2:1.

e space cubite ({4,6},3)-E3: tiling by Prismg, Prismg with
bipyramidal star. Examples: 5- and 6-regular E3-tilings by
Prismg and by Cube (Voronoi tilings of lattices Ay xZ and Z3
with stars Prism} and 33 = Prismy}), respectively.

@ space octahedrite ({3,4},4)-E3: 6-regular (star-Octahedron)
tiling by Octahedron, Cuboctahedron in proportion 1:1. It is
uniform (vertex-transitive and with Archimedean tiles) and
Delaunay tiling of J-complex (mineral perovskite structure).

o Cf. H3-tilings: 6-regular {5,3,4} by {5,6}20, (Lobell, 1931)
by {5,6}24 and 12-reg. {5,3,5} by {5,6}20, {4,3,5} by Cube.



Fullerene manifolds

e Given 3 < a< b <6, {a,b}-manifold is a (d—1)-dimensional
d-valent compact connected manifold (locally homeomorphic
to R91) whose 2-faces are only a- or b-gonal.

@ So, any j-face, 3 < i < d, is a polytopal i-{a, b}-manifold.

@ Most interesting case is (a, b) = (5,6) (fullerene manifold),
when d = 2,3,4,5 only since (Kalai, 1990) any 5-polytope
has a 3- or 4-gonal 2-face.



Fullerene manifolds

e Given 3 < a< b <6, {a,b}-manifold is a (d—1)-dimensional
d-valent compact connected manifold (locally homeomorphic
to R91) whose 2-faces are only a- or b-gonal.

@ So, any j-face, 3 < i < d, is a polytopal i-{a, b}-manifold.

@ Most interesting case is (a, b) = (5,6) (fullerene manifold),
when d = 2,3,4,5 only since (Kalai, 1990) any 5-polytope
has a 3- or 4-gonal 2-face.

@ The smallest polyhex is 6-gon on T?. The “greatest”: {633},
the convex hull of vertices of {63}, realized on a horosphere.

o Prominent 4-fullerene (600-vertex on S3) is 120-cell ({533}).
The "greatest” polypent: {5333}, tiling of H* by 120-cells.



Projection of 120-cell in 3-space (G.Hart)

{533}: 600 vertices, 120 dodecahedral facets, |Aut| = 14400



4- and 5-fullerenes

@ All known finite 4-fullerenes are "mutations” of 120-cell by
interfering in one of ways to construct it: tubes of 120-cells,
coronas, inflation-decoration method, etc.

Some putative facets: ~ {5,6},(G) with (v, G)=(20,/5),
(24,Dsp), (26,D3), (28,T4), (30,Ds4), (32,D34), (36,Dsp).

o ({5,6},3)-E3: example of interesting infinite 4-fullerenes.



4- and 5-fullerenes

@ All known finite 4-fullerenes are "mutations” of 120-cell by
interfering in one of ways to construct it: tubes of 120-cells,
coronas, inflation-decoration method, etc.

Some putative facets: ~ {5,6},(G) with (v, G)=(20,/5),
(24,Dsp), (26,D3), (28,T4), (30,Ds4), (32,D34), (36,Dsp).

o ({5,6},3)-E3: example of interesting infinite 4-fullerenes.

@ All known 5-fullerenes come from {5333}'s by following ways.
With 6-gons also: glue two {5333}'s on some 120-cells and
delete their interiors. If it is done on only one 120-cell, it is
R x S3 (so, simply-connected).

Finite compact ones: the quotients of {5333} by its symmetry
group (partitioned into 120-cells) and gluings of them.



Quotient d-fullerenes

@ Selberg, 1960, Borel, 1963: if a discrete group of motions of a
symmetric space has a compact fundamental domain, then it
has a torsion-free normal subgroup of finite index.

@ So, the quotient of a d-fullerene by such symmetry group (its
points are group orbits) is a finite d-fullerene.
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@ Selberg, 1960, Borel, 1963: if a discrete group of motions of a
symmetric space has a compact fundamental domain, then it
has a torsion-free normal subgroup of finite index.

@ So, the quotient of a d-fullerene by such symmetry group (its
points are group orbits) is a finite d-fullerene.

@ Exp. 1: Polyhexes on T?, cylinder, Mdbius surface and K? are
the quotients of {63} by discontinuous fixed-point-free group
of isometries, generated by: 2 translations, a translation, a
glide reflection, translation and glide reflection, respectively.



Quotient d-fullerenes

@ Selberg, 1960, Borel, 1963: if a discrete group of motions of a
symmetric space has a compact fundamental domain, then it
has a torsion-free normal subgroup of finite index.

@ So, the quotient of a d-fullerene by such symmetry group (its
points are group orbits) is a finite d-fullerene.

@ Exp. 1: Polyhexes on T?, cylinder, Mdbius surface and K? are
the quotients of {63} by discontinuous fixed-point-free group
of isometries, generated by: 2 translations, a translation, a
glide reflection, translation and glide reflection, respectively.

@ Exp 2: Poincaré dodecahedral space: the quotient of 120-cell
by I ; so, its f-vector is (5,10,6,1) = ﬁlof(IQO—cell).

o Cf. 6-, 12-regular H3-tilings {5,3,4}, {5,3,5} by {5,6}20 and
6-regular H3-tiling by (right-angled) {5,6}24.
Seifert-Weber, 1933 and Lobell, 1931 spaces are quotients of
last 2 with f-vectors (1,6, ps=6,1), (24,72,48+8=ps+ps, 8).
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