Spheric analogs of fullerenes

Michel DEZA and Mathieu DUTOUR SIKIRIC

Ecole Normale Superieure, Paris, and Rudjer Boskovic Institute, Zagreb

September 2011, Fields Institute

Overview

- 1 8 families of standard $(\{a,b\},k)$ -spheres
- 2 Connectedness of $({a, b}, k)$ -spheres
- 3 Listing of $({a, b}, k)$ -spheres with small p_b
- 4 8 standard families: four smallest members
- 5 Symmetry groups of $({a,b},k)$ -spheres
- 6 Goldberg-Coxeter construction
- **7** Parameterizing $({a,b},k)$ -spheres
- 8 Railroads and tight $({a, b}, k)$ -spheres
- 9 Tight pure $(\{a, b\}, k)$ -spheres
- 10 Other analogs of fullerenes: c-disks
- Icosahedrites
- \square Standard ($\{a,b\},k$)-maps on surfaces
- Beyond surfaces

I. 8 families of standard $({a,b},k)$ -spheres

(R, k)-spheres: curvature $C_i=2k-i(k-2)$ of i-gons

- Fix $R \subset \mathbb{N}$, an (R, k)-sphere is a k-regular, $k \geq 3$, map on \mathbb{S}^2 whose faces are i-gons, $i \in R$. Let m=min and M=max $_{i \in R}$.
- Let v, e and $f = \sum_i p_i$ be the numbers of vertices, edges and faces of S, where p_i is the number of i-gonal faces. Clearly, $kv = 2e = \sum_i ip_i$ and the Euler formula v e + f = 2 become $4k = \sum_i p_i C_i$, where $C_i = 2k i(k-2)$ is curvature of i-gons.
- *i*-gon is *elliptic*, *parabolic*, *hyperbolic* if $i < \frac{2k}{k-2}, = \frac{2k}{k-2}, > \frac{2k}{k-2}$, i.e., $C_i > 0$, = 0, < 0, i.e., $\frac{1}{k} + \frac{1}{i} > \frac{1}{2}$, $= \frac{1}{2}$, $< \frac{1}{2}$.
- So, $m < \frac{2k}{k-2}$. For $m \ge 3$, it implies $3 \le m, k \le 5$, i.e. 5 Platonic pairs of parameters (m, k) = (3, 3), (4, 3), (3, 4), (5, 3), (3, 5).
- If $M < \frac{2k}{k-2}$ (min_{$i \in R$} $C_i > 0$), then $M \le 5$, k = 3 or $M \le 3$, $k \in \{4, 5\}$ So, for $m \ge 3$, they are only Octahedron, Icosahedron and 11 ($\{3, 4, 5\}, 3$)-spheres: 8 dual *deltahedra*, Cube and its truncations on 1 or 2 opposite vertices (*Durer octahedron*).

Standard (R, k)-spheres

- An (R, k)-sphere is standard if $M = \frac{2k}{k-2}$, i.e. $\min_{i \in R} C_i = 0$. So, (M, k) = (6, 3), (4, 4), (3, 6) (Euclidean parameter pairs). Exclusion of hyperbolic faces simplifies enumeration, while the number p_M of parabolic faces not being restricted, there is an infinity of such (R, k)-spheres.
- The number of such v-vertex (R, k)-spheres with |R|=2 increases polynomially with v; their set is countable.
 Such spheres admit parametrization and description in terms of rings of (Gaussian if k=4 and Eisenstein if k=3,6) integers.
 All 8 series of such spheres will be considered in detail.
- Remaining (R, k)-spheres (with $M > \frac{2k}{k-2}$) not admit above, in general. The number of such v-vertex ($\{3, 4\}, 5$)-spheres grows at least exponentially with v; their set is a continuum.

8 families of standard $(\{a, b\}, k)$ -spheres

- An $(\{a,b\},k)$ -sphere is an (R,k)-sphere with $R = \{a,b\}$, $1 \le a < b$. It has $v = \frac{1}{k}(ap_a + bp_b)$ vertices.
- Such standard sphere has $b = \frac{2k}{k-2}$; so, (b, k) = (6,3), (4,4), (3,6) and Euler formula become

$$12 = \sum_{i} (6 - i) p_{i} \quad \text{if} \quad k = 3$$

$$8 = \sum_{i} (4 - i) p_{i} \quad \text{if} \quad k = 4$$

$$6 = \sum_{i} (3 - i) p_{i} \quad \text{if} \quad k = 6$$

- Further, $p_a = \frac{2b}{b-a}$ and all possible (a, p_a) are: (5,12), (4,6), (3,4), (2,3) for (b,k)=(6,3); (3,8), (2,4) for (b,k)=(4,4); (2,6), (1,3) for (b,k)=(3,6).
- Those 8 families can be seen as spheric analogs of the regular plane partitions $\{6^3\}$, $\{4^4\}$, $\{3^6\}$ with p_a a-gonal "defects", disclinations added to get the curvature of the sphere \mathbb{S}^2 .

8 families: existence criterions

Grűnbaum-Motzkin, 1963: criterion for $k=3 \le a$; Grűnbaum, 1967: for ($\{3,4\},4$)-spheres; Grűnbaum-Zaks, 1974: for other cases.

k	(a, b)	smallest one	it exists if and only if	p _a	V
3	(5,6)	Dodecahedron	$ ho_6 eq 1$	12	$20 + 2p_6$
3	(4,6)	Cube	$ ho_6 eq 1$	6	$8 + 2p_6$
4	(3,4)	Octahedron	$ ho_4 eq 1$	8	$6 + p_4$
6	(2,3)	$6 \times K_2$	p ₃ is even	6	$2 + \frac{p_3}{2}$
3	(3,6)	Tetrahedron	p ₆ is even	4	$4 + 2p_6$
4	(2,4)	$4 \times K_2$	p ₄ is even	4	$2 + p_4$
3	(2,6)	$3 \times K_2$	$p_6 = (k^2 + kI + l^2) - 1$	3	$2 + 2p_6$
6	(1,3)	Trifolium	$p_3=2(k^2+kI+I^2)-1$	3	$\frac{1+p_3}{2}$
5	(3,4)	Icosahedron	$p_4 eq 1$	$2p_4+20$	2 <i>p</i> ₄ +12

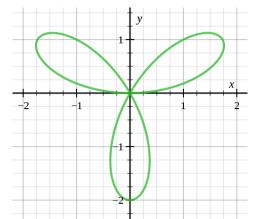
 $(\{3,6\},3)$ - (Grűnbaum-Motzkin, 1963) and $(\{2,4\},4)$ -spheres (Deza-Shtogrin, 2003) admit a simple 2-parametric description.

8 families of standard $({a,b},k)$ -spheres

- Let us denote $(\{a,b\},k)$ -sphere with v vertices by $\{a,b\}_v$.
- $(\{5,6\},3)$ and $(\{4,6\},3)$ -spheres are (geometric) fullerenes and boron nitrides. $\{5,6\}_{60}(I_h)$: a new carbon allotrope C_{60} . $\{5,6\}_{620}(I) = GC_{5,1}(\{5,6\}_{20}) \approx Callaway golf ball \{5,6\}_{660}$.
- ({a, b}, 4)-spheres are minimal projections of alternating links, whose components are their *central circuits* (those going only ahead) and crossings are the verices.
- By smallest member Dodecahedron $\{5,6\}_{20}$, Cube $\{4,6\}_{8}$, Tetrahedron $\{3,6\}_{4}$, Octahedron $\{3,4\}_{6}$ and $3\times K_{2}$ $\{2,6\}_{2}$, $4\times K_{2}$ $\{2,4\}_{2}$, $6\times K_{2}$ $\{2,3\}_{2}$, Trifolium $\{1,3\}_{1}$, we call eight families: dodecahedrites, cubites, tetrahedrites, octahedrites and 3-bundelites, 4-bundelites, 6-bundelites, trifoliumites.
- *b*-icosahedrites (($\{3,b\}$,5)-spheres) are not standard if *b*>3, $p_b>0$ since $p_3=p_b(3b-10)+20$ and *b*-gons are hyperbolic.

Digression on Rose of Three Petals

- The polar equation of the rose (or *rhodonea*) is $r = \cos(n\theta)$. {1,3}₁ models its case n = 3: *quartic* (algebraic of degree 4) plane curve Trifolium $(x^2+y^2)^2 = x(x^2-3y^2)$ shown below.
- It models also sextic $(x^2+y^2)^3=2x(x^2-3y^2)$ or $r^3=2\cos(3\theta)$: Kiepert curve d(x,A)d(x,B)d(x,C)=1 for reg. triangle ABC



Generation of standard $(\{a, b\}, k)$ -spheres

- $(\{2,3\},6)$ -spheres, except $2 \times K_2$ and $2 \times K_3$, are the duals of $(\{3,4,5,6\},3)$ -spheres with six new vertices put on edge(s). Exp: $(\{5,6\},3)$ -spheres with 5-gons organized in six pairs.
- $(\{1,3\},6)$ -spheres, except $\{1,3\}_1$ and $\{1,3\}_3$, are as above but with 3 edges changed into 2-gons enclosing one 1-gon.
- ($\{2,6\}$, 3)-spheres are given by the *Goldberg-Coxeter* construction from Bundle₃ = $3 \times K_2 \{2,6\}_2$.
- $(\{1,3\},6)$ -spheres come by the *Goldberg-Coxeter construction* (extended below on 6-regular spheres) from Trifolium $\{1,3\}_1$.

Computer generation of the families

Main technique: exhaustive search. Sometimes, speedup by proving that a group of faces cannot be completed to the desired graph.

- The program CPF by Brinkmann-Delgado-Dress-Harmuth,
 1997 generates 3-regular plane graphs with specified p-vector.
- ENU by Brinkmann-Harmuth-Heidemeier, 2003 and Heidemeier, 1998 does the same for 4-regular plane graphs.
 Dutour adapted ENU to deal with 2-gonal faces also.
- CGF by Harmuth generates 3-regular orientable maps with specified genus and p-vector.
- Plantri by Brinkmann-McKay deals with general graphs.
- The package CaGe by Brinkmann-Delgado-Dress-Harmuth, 1997 is used for plane graph drawings.
- The package PlanGraph by Dutour, 2002 is used for handling planar graphs in general.

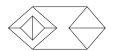
II. Connectedness of $(\{a, b\}, k)$ -spheres

Polyhedra and planar graphs

- A graph is called k-connected if after removing any set of k − 1 vertices it remains connected.
- The skeleton of a polytope P is the graph G(P) formed by its vertices, with two vertices adjacent if they generate a face.
- Steinitz Theorem: a graph is the skeleton of a polyhedron (3-polytope) if and only if it is planar and 3-connected.
- A polyhedron is usually represented by the Schlegel diagram of its skeleton, the program used for this is CaGe.
- The dual graph G^* of a plane graph G is the plane graph formed by the faces of G, with two faces adjacent if they share an edge. The skeletons of dual polyhedra are dual.

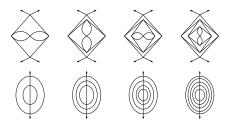
3-connectedness of $(\{a, b\}, 3)$ -spheres

- Any $(\{a,b\},k)$ -sphere is 2-connected. But some infinite series of $(\{1,2,3\},6)$ -spheres with $(p_1,p_2)=(2,2)$ are *not*.
- Any $({a,6},3)$ -sphere is 3-connected if a=4,5 and not if a=2 (one can delete two vertices adjacent to a 2-gon).
- Except the following series, $(\{3,6\},3)$ -spheres (moreover, all $(\{3,4,5,6\},3)$ -spheres) are 3-connected.



$\overline{3}$ -connectedness of $(\{a,b\},6)$ - and $(\{a,b\},4)$ -spheres

- Any $(\{a,b\},6)$ -sphere is 3-connected, except $(\{2,3\},6)$ ones which are duals of only 2-connected $(\{3,6\},3)$ -spheres, with six vertices of degree 2 added on edges.
- Any ({a, b}, 4)-sphere is 3-connected, except the following series of ({2,4},4)-spheres.



REMARK. $\{2,4\}_{\nu}(D_{2d},D_{2h})$ are *k-inflations* of above. D_4,D_{4h} are $GC_{k,l}(4\times K_2)$. Remaining D_2 : 2 complex or 3 natural parameters.

Hamiltonicity of $({a, b}, k)$ -spheres

- Grűnbaum-Zaks, 1974: all ($\{1,3\}$, 6)- and ($\{2,4\}$, 4)-spheres are Hamiltonian, but ($\{2,6\}$, 3)- with $v \equiv 0 \pmod{4}$ are not
- Goodey, 1977: $({3,6},3)$ and $({4,6},3)$ are Hamiltonian.
- Conjecture: an Hamiltonian circuit exists in all other cases.

To check hamiltonicity of a $(\{a,b\},k)$ -map on the projective plane \mathbb{P}^2 , the following theorem (Thomas-Yu, 1994) could help: every 4-connected graph on \mathbb{P}^2 has a *contractible* (i.e. being a boundary of 2-cell) Hamiltonian circuit.

II'. $(\{a,b\},k)$ -spheres with small p_b : listings

Listing of $(\{a,b\},k)$ -spheres with $p_b \leq 3 \leq a \leq b$

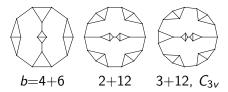
- Remind: (a, k) = (3, 3), (4, 3), (3, 4), (5, 3) or (3, 5) if $a \ge 3$.
- The only $(\{a,b\},k)$ -spheres with $p_b \le 1$ are 5 Platonic (a^k) : Tetrahedron, $Prism_4$, $APrism_3$, snub $Prism_5$, snub $APrism_3$.
- There exists unique 3-connected $(\{a,b\},k)$ -sphere with $p_b=2$ for $(\{4,b\},3)$ -, $(\{3,b\},4)$ -, $(\{5,b\},3)$ -, $(\{3,b\},5)$ -: $Prism_b\ D_{bh}$, $APrism_b\ D_{bd}$, snub $Prism_b$ or snub $APrism_b\ D_{bd}$ each $(2\ b$ -gons separated by $2\ b$ -rings of 5-gons or 3b-rings of 3-gons). Doubled b-gon D_{bh} is such $(\{2,b\},4)$ -sphere.
- Also, for any (a, k) = (3, 3), (3, 4), (4, 3), (3, 5), (5, 3), there is unique only 2-connected such sphere (D_{2h}) iff $b \equiv 0 \pmod{a}$.

Listing of $(\{a,b\},k)$ -spheres with $p_b \le 3 \le a \le b$

- Remind: (a, k) = (3, 3), (4, 3), (3, 4), (5, 3) or (3, 5) if $a \ge 3$.
- The only $(\{a,b\},k)$ -spheres with $p_b \le 1$ are 5 Platonic (a^k) : Tetrahedron, $Prism_4$, $APrism_3$, snub $Prism_5$, snub $APrism_3$.
- There exists unique 3-connected $(\{a,b\},k)$ -sphere with $p_b=2$ for $(\{4,b\},3)$ -, $(\{3,b\},4)$ -, $(\{5,b\},3)$ -, $(\{3,b\},5)$ -: $Prism_b\ D_{bh}$, $APrism_b\ D_{bd}$, snub $Prism_b$ or snub $APrism_b\ D_{bd}$ each $(2\ b$ -gons separated by $2\ b$ -rings of 5-gons or 3b-rings of 3-gons). Doubled b-gon D_{bh} is such $(\{2,b\},4)$ -sphere.
- Also, for any (a, k) = (3, 3), (3, 4), (4, 3), (3, 5), (5, 3), there is unique only 2-connected such sphere (D_{2h}) iff $b \equiv 0 \pmod{a}$.
- $(\{a,b\},k)$ -sphere with $p_b = 3$ exists if and only if $b \equiv 2, a, 2a 2 \pmod{2a}$ and $b \equiv 4, 6 \pmod{10}$ if a=5.
- Such sphere has symmetry $\neq D_{3h}$ iff $b \equiv a \pmod{2a}$. Such sphere is not unique iff $b \equiv a \pmod{2a}$ and $(a, k) \neq (3, 3)$.
- Pictures illustrating all 5 cases with p_b =3 follow; removing central line on them illustrate the cases with p_b =2.

$({3,b},3)$ -spheres with $p_b = 3$

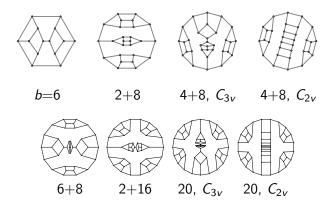
Such sphere exists iff $b \equiv 2, 3, 4 \pmod{6}$. For b=4+6m, 2+6m, 3+6m, it come from $Prism_3$, $3K_2$, Tetrahedron K_4 by adding m K_4-e 's on 3 edges creating symmetry D_{3h} , D_{3h} and resp. C_{3v} . It is 3-connected only for b=4: $Prism_3$.



Removing central line gives ($\{3, b=3m\}, 3$)-spheres with $p_b=2$.

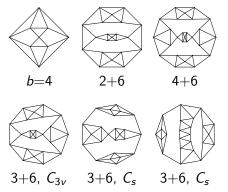
$({4,b},3)$ -spheres with $p_b = 3$

Such sphere exists iff $b \equiv 2,4,6 \pmod{8}$. For b=6+8m, 2+8m, 4+8m, it come from 4-triakon $Prism_3$, $3K_2$, Cube K_2^3 (two) by adding m K_2^3 -e's on 3 edges creating D_{3h} , D_{3h} and resp. C_{3v} , C_{2v} . It is 3-connected only for b=6: 4-triakon $Prism_3$ below.



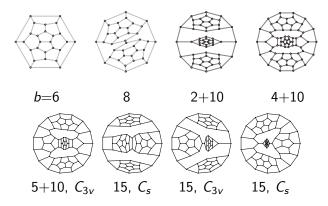
$(\{3,b\},4)$ -spheres with $p_b=3$

Such sphere exists iff $b \equiv 2, 3, 4 \pmod{6}$. For b = 4 + 6m, 2 + 6m, 3 + 6m, it come from 9-vertex ($\{3,b\},4$)-sphere, $3K_2$, Octahedron $K_{2,2,2}$ (three) by adding m vertex-split $K_{2,2,2}$'s on 3 edges creating symmetry D_{3h} , D_{3h} and resp. C_{3v} , C_s , C_s . It is 3-connected iff the symmetry is not C_s .



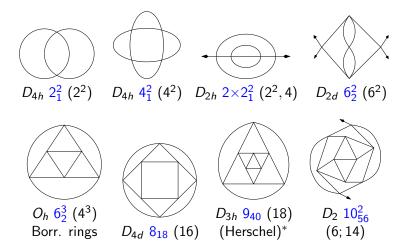
$(\{5,b\},3)$ -spheres with $p_b=3$

Such sphere exists iff $b \equiv 2,4,5,6,8 \pmod{10}$. For b=4+10m, 6+10m, 8+10m, 2+10m, 5+10m, it come from 14,26,38-vertex ($\{5,b\},3\}$ -spheres with b=4,6,8, $3K_2$ and Dodecahedron (five) by adding m (5,3)-polycycles C_1 on 3 edges creating symmetry D_{3h} , D_{3h} , D_{3h} , D_{3h} and resp. two $C_{3\nu}$, three C_s .



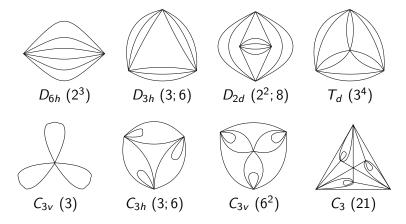
III. 8 standard families:4 smallest members

First four $(\{2,4\},4)$ - and $(\{3,4\},4)$ -spheres



Above links/knots are given in Rolfsen, 1976 and 1990 notation. Herschel graph: the smallest non-Hamiltonian polyhedral graph.

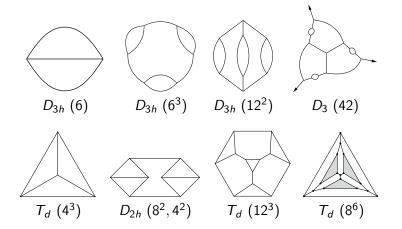
First four $(\{2,3\},6)$ - and $(\{1,3\},6)$ -spheres



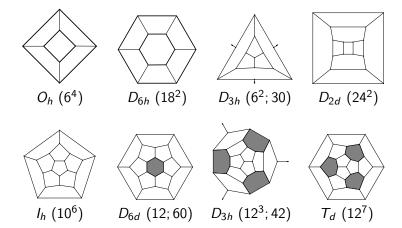
Grűnbaum-Zaks, 1974: $\{1,3\}_{v}$ exists iff $v=k^2+kl+l^2$ for integers $0 \le l \le k$. We show that the number of $\{1,3\}_{v}$'s is the number of such representations of v, i.e. found $GC_{k,l}(\{1,3\}_{1})$.

First four $(\{2,6\},3)$ - and $(\{3,6\},3)$ -spheres

Number of $(\{2,6\}_v)$'s is nr. of representations $v=2(k^2+kl+l^2)$, $0 \le l \le k$ $(GC_{k,l}(\{2,6\}_2))$. It become 2 for $v=7^2=5^2+15+3^2$.



First four $({4,6}, 3)$ - and $({5,6}, 3)$ -spheres



IV. Symmetry groups of $(\{a, b\}, k)$ -spheres

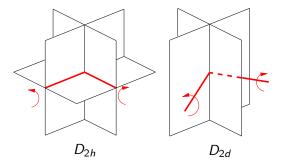
Finite isometry groups

All finite groups of isometries of 3-space \mathbb{E}^3 are classified. In Schoenflies notations, they are:

- C_1 is the trivial group
- \bullet C_s is the group generated by a plane reflexion
- $C_i = \{I_3, -I_3\}$ is the inversion group
- C_m is the group generated by a rotation of order m of axis Δ
- ullet C_{mv} (\simeq dihedral group) is the group generated by C_m and m reflexion containing Δ
- $C_{mh} = C_m \times C_s$ is the group generated by C_m and the symmetry by the plane orthogonal to Δ
- S_{2m} is the group of order 2m generated by an antirotation, i.e. commuting composition of a rotation and a plane symmetry

Finite isometry groups D_m , D_{mh} , D_{md}

- D_m (\simeq dihedral group) is the group generated of C_m and m rotations of order 2 with axis orthogonal to Δ
- ullet D_{mh} is the group generated by D_m and a plane symmetry orthogonal to Δ
- D_{md} is the group generated by D_m and m symmetry planes containing Δ and which does not contain axis of order 2



Remaining 7 finite isometry groups

- $I_h = H_3$ is the group of isometries of Dodecahedron; $I_h \simeq Alt_5 \times C_2$
- $I \simeq Alt_5$ is the group of rotations of Dodecahedron
- $O_h = B_3$ is the group of isometries of Cube
- $O \simeq Sym(4)$ is the group of rotations of Cube
- $T_d = A_3 \simeq Sym(4)$ is the group of isometries of Tetrahedron
- $T \simeq Alt(4)$ is the group of rotations of Tetrahedron
- $T_h = T \cup -T$

While (point group) $Isom(P) \subset Aut(G(P))$ (combinatorial group), Mani, 1971: for any 3-polytope P, there is a map-isomorphic 3-polytope P' (so, with the same skeleton G(P') = G(P)), such that the group Isom(P') of its isometries is isomorphic to Aut(G).

8 families: symmetry groups

- 28 for $\{5,6\}_{v}$: C_{1} , C_{s} , C_{i} ; C_{2} , C_{2v} , C_{2h} , S_{4} ; C_{3} , C_{3v} , C_{3h} , S_{6} ; D_{2} , D_{2h} , D_{2d} ; D_{3} , D_{3h} , D_{3d} ; D_{5} , D_{5h} , D_{5d} ; D_{6} , D_{6h} , D_{6d} ; T, T_{d} , T_{h} ; I, I_{h} (Fowler-Manolopoulos, 1995)
- 16 for $\{4,6\}_{v}$: C_1 , C_s , C_i ; C_2 , C_{2v} , C_{2h} ; D_2 , D_{2h} , D_{2d} ; D_3 , D_{3h} , D_{3d} ; D_6 , D_{6h} ; O, O_h (Deza-Dutour, 2005)
- 5 for $\{3,6\}_v$: D_2 , D_{2h} , D_{2d} ; T, T_d (Fowler-Cremona,1997)
- 2 for $\{2,6\}_{v}$: D_3 , D_{3h} (Grünbaum-Zaks, 1974)
- 18 for {3,4}_v: C₁, C_s, C_i; C₂, C_{2v}, C_{2h}, S₄; D₂, D_{2h}, D_{2d}; D₃, D_{3h}, D_{3d}; D₄, D_{4h}, D_{4d}; O, O_h (Deza-Dutour-Shtogrin, 2003)
- 5 for $\{2,4\}_{v}$: D_2 , D_{2h} , D_{2d} ; D_4 , D_{4h} , all in $[D_2,D_{4h}]$ (same)
- 3 for $\{1,3\}_{v}$: C_3 , C_{3v} , C_{3h} (Deza-Dutour, 2010)
- 22 for $\{2,3\}_{v}$: C_1 , C_s , C_i ; C_2 , C_{2v} , C_{2h} , S_4 ; C_3 , C_{3v} , C_{3h} , S_6 ; D_2 , D_{2h} , D_{2d} ; D_3 , D_{3h} , D_{3d} ; D_6 , D_{6h} ; T, T_d , T_h (same)
- **1** 38 for icosahedrites ({3,4},5)- (same, 2011).

8 families: Goldberg-Coxeter construction $GC_{k,l}(.)$

```
With T = \{T, T_d, T_h\}, O = \{O, O_h\}, I = \{I, I_h\}, C_1 = \{C_1, C_s, C_i\}, C_m = \{C_m, C_{mv}, C_{mh}, S_{2m}\}, D_m = \{D_m, D_{mh}, D_{md}\}, we get
```

- for $(\{5,6\},3)$ -: C_1 , C_2 , C_3 , D_2 , D_3 , D_5 , D_6 , T, I
- for $(\{2,3\},6)$ -: C_1 , C_2 , C_3 , D_2 , D_3 , $\{D_6,D_{6h}\}$, T
- for $(\{4,6\},3)$ -: C_1 , $C_2 \setminus S_4$, D_2 , D_3 , $\{D_6,D_{6h}\}$, O
- for $({3,4},{4})$ -: C_1 , C_2 , D_2 , D_3 , D_4 , O
- for $(\{3,6\},3-: \mathbf{D_2}, \{T,T_d\} \{D_3,D_{3h}\}$
- for $(\{2,4\},4)$ -: $\mathbf{D_2}$, $\{D_4,D_{4h}\}$
- for $(\{2,6\},3)$ -: $\{D_3,D_{3h}\}$
- for $(\{1,3\},6)$ -: $C_3 \setminus S_6 = \{C_3, C_{3v}, C_{3h}\}$
- $\bullet \ \, \text{if} \, \, \big(\{3,4\},5 \big) \text{-:} \, \, C_1, \, C_2, \, C_3, \, C_4, \, C_5, \, D_2, \, D_3, \, D_4, \, D_5, \, T, \, O, \, I. \\$

8 families: Goldberg-Coxeter construction $GC_{k,l}(.)$

```
With \mathbf{T} = \{T, T_d, T_h\}, \mathbf{O} = \{O, O_h\}, \mathbf{I} = \{I, I_h\}, \mathbf{C_1} = \{C_1, C_s, C_i\}, \mathbf{C_m} = \{C_m, C_{mv}, C_{mh}, S_{2m}\}, \mathbf{D_m} = \{D_m, D_{mh}, D_{md}\}, we get
```

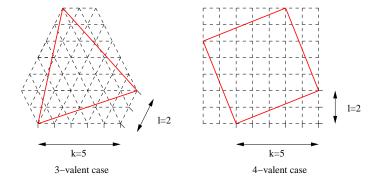
- for $({5,6},3)$ -: C_1 , C_2 , C_3 , D_2 , D_3 , D_5 , D_6 , T, I
- for $(\{2,3\},6)$ -: C_1 , C_2 , C_3 , D_2 , D_3 , $\{D_6,D_{6h}\}$, T
- for $(\{4,6\},3)$ -: C_1 , $C_2 \setminus S_4$, D_2 , D_3 , $\{D_6,D_{6h}\}$, O
- for $({3,4},4)$ -: C_1 , C_2 , D_2 , D_3 , D_4 , O
- for $({3,6}, 3-: D_2, {T, T_d} {D_3, D_{3h}}$
- for $(\{2,4\},4)$ -: D_2 , $\{D_4,D_{4h}\}$
- for $(\{2,6\},3)$ -: $\{D_3,D_{3h}\}$
- for $(\{1,3\},6)$ -: $C_3 \setminus S_6 = \{C_3, C_{3v}, C_{3h}\}$
- $\bullet \ \ \, \text{if} \; \big(\{3,4\},5 \big) \text{-:} \; \; C_1,\; C_2,\; C_3,\; C_4,\; C_5,\; D_2,\; D_3,\; D_4,\; D_5,\; T,\; O,\; I. \\$

Spheres of blue symmetry are $GC_{k,l}$ from 1st such; so, given by one complex (Gaussian for k=4, Eisenstein for k=3,6) parameter. Goldberg, 1937 and Coxeter, 1971: $\{5,6\}_{\nu}(I,I_h)$, $\{4,6\}_{\nu}(O,O_h)$, $\{3,6\}_{\nu}(T,T_d)$. Dutour-Deza, 2004 and 2010: for other cases.

V. Goldberg-Coxeter construction

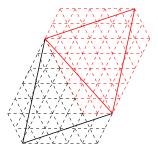
Goldberg-Coxeter construction $GC_{k,l}(.)$

- Take a 3- or 4-regular plane graph G. The faces of dual graph G^* are triangles or squares, respectively.
- Break each face into pieces according to parameter (k, l). Master polygons below have area $\mathcal{A}(k^2+kl+l^2)$ or $\mathcal{A}(k^2+l^2)$, where \mathcal{A} is the area of a small polygon.



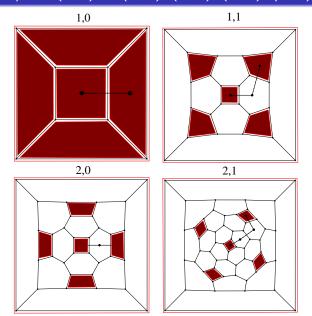
Gluing the pieces together in a coherent way

 Gluing the pieces so that, say, 2 non-triangles, coming from subdivision of neighboring triangles, form a small triangle, we obtain another triangulation or quadrangulation of the plane.

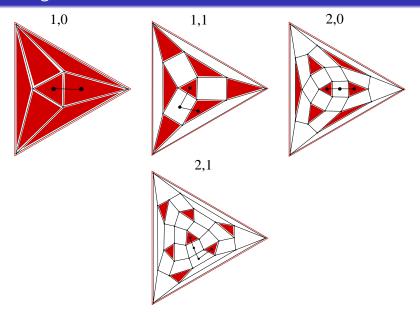


- The dual is a 3- or 4-regular plane graph, denoted $GC_{k,l}(G)$; we call it Goldberg-Coxeter construction.
- It works for any 3- or 4-regular map on oriented surface.

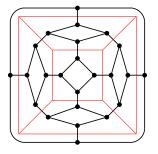
$GC_{k,l}(Cube)$ for (k, l) = (1, 0), (1, 1), (2, 0), (2, 1)



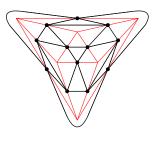
Goldberg-Coxeter construction from Octahedron



The case (k, l) = (1, 1)



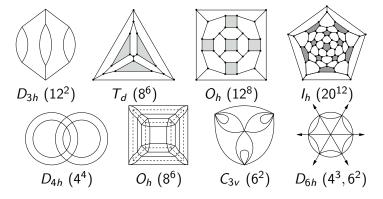
3-regular case $GC_{1,1}$ is called leapfrog $(\frac{1}{3}$ -truncation of the dual) truncated Octahedron



4-regular case $GC_{1,1}$ is called medial $(\frac{1}{2}$ -truncation) Cuboctahedron

The case (k, l) = (k, 0) of $GC_{k,l}(G)$: k-inflation

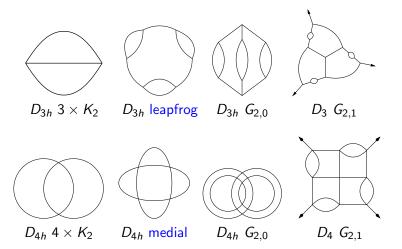
Chamfering (quadrupling) $GC_{2,0}(G)$ of 8 1st $(\{a,b\},k)$ -spheres, (a,b)=(2,6),(3,6),(4,6),(5,6) and (2,4),(3,4),(1,3),(2,3), are:



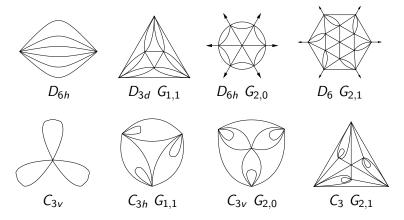
For 4-regular G, $GC_{2k^2,0}(G) = GC_{k,k}(GC_{k,k}(G))$ by $(k+ki)^2 = 2k^2i$.

First four $GC_{k,l}(3 \times K_2)$ and $GC_{k,l}(4 \times K_2)$

All ($\{2,6\}$, 3)-spheres are $G_{k,l}(3 \times K_2)$: D_{3h} , D_{3h} , D_3 if l=0, k, else.



First four $GC_{k,l}(6 \times K_2)$ and $GC_{k,l}(Trifolium)$



All ($\{2,3\}$, 6)-spheres are $G_{k,l}(6 \times K_2)$: C_{3v} , C_{3h} , C_3 if l=0, k, else.

Plane tilings $\{4^4\}$, $\{3^6\}$ and complex rings $\mathbb{Z}[i]$, $\mathbb{Z}[w]$

- The vertices of regular plane tilings $\{4^4\}$ and $\{3^6\}$ form each, convenient algebraic structures: lattice and ring. Path-metrics of those graphs are l_1 4-metric and hexagonal 6-metric.
- {4⁴}: square lattice \mathbb{Z}^2 and ring $\mathbb{Z}[i] = \{z = k + li : k, l \in \mathbb{Z}\}$ of Gaussian integers with norm $N(z) = z\overline{z} = k^2 + l^2 = ||(k, l)||^2$.
- {3⁶}: hexagonal lattice $A^2 = \{x \in \mathbb{Z}^3 : x_0 + x_1 + x_2 = 0\}$ and ring $\mathbb{Z}[w] = \{z = k + lw : k, l \in \mathbb{Z}\}$, where $w = e^{i\frac{\pi}{3}} = \frac{1}{2}(1 + i\sqrt{3})$, of Eisenstein integers with norm $N(z) = z\overline{z} = k^2 + kl + l^2 = \frac{1}{2}||x||^2$ We identify points $x = (x_0, x_1, x_2) \in A^2$ with $x_0 + x_1w \in \mathbb{Z}[w]$.

Plane tilings $\{4^4\}$, $\{3^6\}$ and complex rings $\mathbb{Z}[i]$, $\mathbb{Z}[w]$

- The vertices of regular plane tilings {4⁴} and {3⁶} form each, convenient algebraic structures: lattice and ring. Path-metrics of those graphs are *l*₁- 4-metric and hexagonal 6-metric.
- {4⁴}: square lattice \mathbb{Z}^2 and ring $\mathbb{Z}[i] = \{z = k + li : k, l \in \mathbb{Z}\}$ of Gaussian integers with norm $N(z) = z\overline{z} = k^2 + l^2 = ||(k, l)||^2$.
- {3⁶}: hexagonal lattice $A^2 = \{x \in \mathbb{Z}^3 : x_0 + x_1 + x_2 = 0\}$ and ring $\mathbb{Z}[w] = \{z = k + lw : k, l \in \mathbb{Z}\}$, where $w = e^{i\frac{\pi}{3}} = \frac{1}{2}(1 + i\sqrt{3})$, of Eisenstein integers with norm $N(z) = z\overline{z} = k^2 + kl + l^2 = \frac{1}{2}||x||^2$ We identify points $x = (x_0, x_1, x_2) \in A^2$ with $x_0 + x_1w \in \mathbb{Z}[w]$.
- A natural number $n = \prod_i p_i^{\alpha_i}$ is of form $n = k^2 + l^2$ if and only if any α_i is even, whenever $p_i \equiv 3 \pmod{4}$ (Fermat Theorem). It is of form $n = k^2 + kl + l^2$ if and only if $p_i \equiv 2 \pmod{3}$.
- The first cases of non-unicity with $gcd(k, l) = gcd(k_1, l_1) = 1$ are $91 = 9^2 + 9 + 1^2 = 6^2 + 30 + 5^2$ and $65 = 8^2 + 1^2 = 7^2 + 4^2$. The first cases with l = 0 are $7^2 = 5^2 + 15 + 3^2$ and $5^2 = 4^2 + 3^2$.

The bilattice of vertices of hexagonal plane tiling $\{6^3\}$

- We identify the hexagonal lattice A^2 (or equilateral triangular lattice of the vertices of the regular plane tiling $\{3^6\}$) with Eisenstein ring (of Eisenstein integers) $\mathbb{Z}[w]$.
- The hexagon centers of $\{6^3\}$ form $\{3^6\}$. Also, with vertices of $\{6^3\}$, they form $\{3^6\}$, rotated by 90° and scaled by $\frac{1}{3}\sqrt{3}$.
- The complex coordinates of vertices of $\{6^3\}$ are given by vectors v_1 =1 and v_2 =w. The lattice L= $\mathbb{Z}v_1$ + $\mathbb{Z}v_2$ is $\mathbb{Z}[w]$.
- The vertices of $\{6^3\}$ form bilattice $L_1 \cup L_2$, where the bipartite complements, $L_1 = (1+w)L$ and $L_2 = 1+(1+w)L$, are stable under multiplication. Using this,

 $GC_{k,l}(G)$ for 6-regular graph G can be defined similarly to 3- and 4-regular case, but only for $k + lw \in L_2$, i.e. $k \equiv l \pm 1 \pmod{3}$.

Ring formalism

 $\mathbb{Z}[i]$ (Gaussian integers) and $\mathbb{Z}[\omega]$ (Eisenstein integers) are unique factorization rings

Dictionary

	3-regular <i>G</i>	4-regular <i>G</i>	6-regular <i>G</i>
the ring	Eisenstein $\mathbb{Z}[\omega]$	Gaussian $\mathbb{Z}[i]$	Eisenstein $\mathbb{Z}[\omega]$
Euler formula	$\sum_{i}(6-i)p_{i}=12$	$\sum_{i}(4-i)p_{i}=8$	$\sum_{i}(3-i)p_{i}=6$
curvature 0	hexagons	squares	triangles
ZC-circuits	zigzags	central circuits	both
$GC_{11}(G)$	leapfrog graph	medial graph	or. tripling

Goldberg-Coxeter operation in ring terms

- Associate z=k+lw (Eisenstein) or z=k+li (Gaussian integer) to the pair (k,l) in 3-,6- or 4-regular case. Operation $GC_z(G)$ correspond to scalar multiplication by z=k+lw or k+li.
- Writing $GC_z(G)$, instead of $GC_{k,l}(G)$, one has:

$$GC_z(GC_{z'}(G)) = GC_{zz'}(G)$$

• If G has v vertices, then $GC_{k,l}(G)$ has vN(z) vertices, i.e., $v(k^2+l^2)$ in 4-regular and $v(k^2+kl+l^2)$ in 3- or 6-reg. case.

Goldberg-Coxeter operation in ring terms

- Associate z=k+lw (Eisenstein) or z=k+li (Gaussian integer) to the pair (k,l) in 3-,6- or 4-regular case. Operation $GC_z(G)$ correspond to scalar multiplication by z=k+lw or k+li.
- Writing $GC_z(G)$, instead of $GC_{k,l}(G)$, one has:

$$GC_z(GC_{z'}(G)) = GC_{zz'}(G)$$

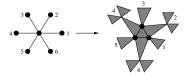
- If G has v vertices, then $GC_{k,l}(G)$ has vN(z) vertices, i.e., $v(k^2+l^2)$ in 4-regular and $v(k^2+kl+l^2)$ in 3- or 6-reg. case.
- $GC_z(G)$ has all rotational symmetries of G in 3- and 4-regular case, and all symmetries if I=0, k in general case.
- $GC_z(G) = GC_{\overline{z}}(\overline{G})$ where \overline{G} differs by a plane symmetry only from G. So, if G has a symmetry plane, we reduce to $0 \le l \le k$; otherwise, graphs $GC_{k,l}(G)$ and $GC_{l,k}(G)$ are not isomorphic.

$GC_{k,l}(G)$ for 6-regular plane graph G and any k,l

- Bipartition of G^* gives vertex 2-coloring, say, red/blue of G.
- Truncation Tr(G) of $\{1,2,3\}_v$ is a 3-regular $\{2,4,6\}_{6v}$.
- Coloring white vertices of G gives face 3-coloring of Tr(G). White faces in Tr(G) correspond to such in $GC_{k,l}(Tr(G))$.
- For $k \equiv l \pm 1 \pmod{3}$, i.e. $k + lw \in L_2$, define $GC_{k,l}(G)$ as $GC_{k,l}(Tr(G))$ with all white faces shrinked.
- If $k \equiv I((mod 3)$, faces of Tr(G) are white in $GC_{k,l}(Tr(G))$. Among 3 faces around each vertex, one is white. Coloring other red gives unique 3-coloring of $GC_{k,l}(Tr(G))$. Define $GC_{k,l}(G)$ as pair G_1, G_2 with $Tr(G_1) = Tr(G_2) = GC_{k,l}(Tr(G))$ obtained from it by shrinking all red or blue faces.
- $GC_{1,0}(G) = G$ and $GC_{1,1}(G)$ is oriented tripling.

Oriented tripling $GC_{1,1}(G)$ of 6-regular plane graph G

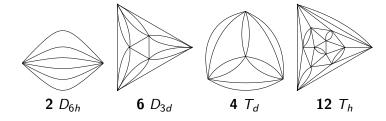
- Let C_1 , C_2 be bipartite classes of G^* . For each C_i , oriented tripling $GC_{1,1}(G)$ is 6-regular plane graph $Or_{C_i}(G)$ coming by each vertex of $G \to 3$ vertices and 4 3-gonal faces of $Or_{C_i}(G)$. Symmetries of $Or_{C_i}(G)$ are symmetries of G preserving C_i .
- Orient edges of C_i clockwise. Select 3 of 6 neighbors of each vertex v: $\{2,4,6\}$ are those with directed edge going to v; for $\{1,5,5\}$, edges go to them.



• Any $z=k+lw\neq 0$ with $k\equiv l\pmod 3$ can be written as $(1+w)^s(k'+l'w)w$, where $s\geq 0$ and $k'\equiv l'\pm 1\pmod 3$. So, it holds reduction $GC_{k,l}(G)=G_{k',l'}(Or^s(G))$.

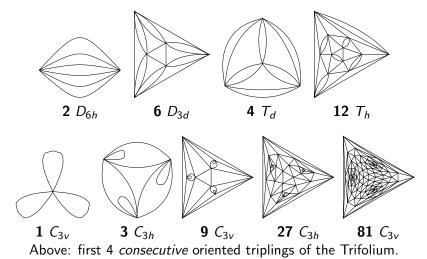
Examples of oriented tripling $GC_{1,1}(G)$

Below: $\{2,3\}_2$ and $\{2,3\}_4$ have *unique* oriented tripling.



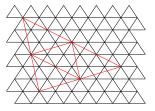
Examples of oriented tripling $GC_{1,1}(G)$

Below: $\{2,3\}_2$ and $\{2,3\}_4$ have *unique* oriented tripling.

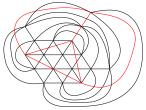


VI. Parameterizing $(\{a,b\},k)$ -spheres

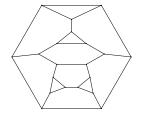
Example: construction of the $(\{3,6\},3)$ -spheres in $Z[\omega]$



In the central triangle ABC, let A be the origin of the complex plane



The corresponding triangulation



All $(\{3,6\},3)$ -spheres come this way; two complex parameters in $Z[\omega]$ defined by the points B and C

Parameterizing $(\{a, b\}, k)$ -spheres

Thurston, 1998 implies: $(\{a,b\},k)$ -spheres have p_a -2 parameters and the number of v-vertex ones is $O(v^{m-1})$ if $m=p_a$ -2 > 2.

Idea: since *b*-gons are of zero curvature, it suffices to give relative positions of *a*-gons having curvature 2k - a(k-2) > 0.

At most $p_a - 1$ vectors will do, since one position can be taken 0.

But once $p_a - 1$ a-gons are specified, the last one is constrained. The number of *m*-parametrized spheres with at most ν vertices is

 $O(v^m)$ by direct integration. The number of such v-vertex spheres is $O(v^{m-1})$ if m > 1, by a *Tauberian* theorem.

Parameterizing $(\{a, b\}, k)$ -spheres

Thurston, 1998 implies: $(\{a,b\},k)$ -spheres have p_a -2 parameters and the number of v-vertex ones is $O(v^{m-1})$ if $m=p_a$ -2 > 2.

Idea: since *b*-gons are of zero curvature, it suffices to give relative positions of *a*-gons having curvature 2k - a(k-2) > 0.

At most $p_a - 1$ vectors will do, since one position can be taken 0. But once $p_a - 1$ a-gons are specified, the last one is constrained.

The number of m-parametrized spheres with at most v vertices is $O(v^m)$ by direct integration. The number of such v-vertex spheres is $O(v^{m-1})$ if m > 1, by a *Tauberian* theorem.

- Goldberg, 1937: $\{a, 6\}_{\nu}$ (highest 2 symmetries): 1 parameter
- Fowler and al., 1988: $\{5,6\}_{\nu}$ (D_5 , D_6 or T): 2 parameters.
- Grűnbaum-Motzkin, 1963: $\{3,6\}_{\nu}$: 2 parameters.
- Deza-Shtogrin, 2003: $\{2,4\}_{\nu}$; 2 parameters.
- Thurston, 1998: $\{5,6\}_{\nu}$: 10 (again complex) parameters. Graver, 1999: $\{5,6\}_{\nu}$: 20 integer parameters.
- Rivin, 1994: parameter description by dihedral angles.

Parameterizing (R, k)-spheres without hyperbolic faces

Thurston, 1998 parametrized (dually, as triangulations) such (R, 3)-spheres, i.e. 19 series of $(\{3, 4, 5, 6\}, 3)$ -spheres. In general, such (R, k)-spheres are given by $m = \sum_{3 < i < \frac{2k}{k-2}} p_i - 2$ complex parameters z_1, \ldots, z_m . The number of vertices is expressed as a non-degenerate Hermitian form $q=q(z_1,\ldots,z_m)$ of signature (1,m-1). Let H^m be the cone of $z=(z_1,\ldots,z_m)\in\mathbb{C}^m$ with q(z)>0. Given (R, k)-sphere is described by different parameter sets; let $M=M(\{p_3,\ldots,p_m\},k)$ be the discrete linear group preserving q. For k=3, the quotient $H^m/(\mathbb{R}_{>0}\times M)$ is of finite covolume (Thurston, 1998, actually, 1993). Sah, 1994 deduced from it that the number of corresponding spheres grows as $O(v^{m-1})$. Dutour partially generalized above for other k and surface maps.

8 families: number of complex parameters by groups

- $\{5,6\}_{V}$ $C_1(10)$, $C_2(6)$, $C_3(4)$, $D_2(4)$, $D_3(3)$, $D_5(2)$, $D_6(2)$, T(2), $\{I,I_h\}(1)$
- $\{4,6\}_{v}$ $C_{1}(4)$, $C_{2}\setminus S_{4}(3)$, $D_{2}(2)$, $D_{3}(2)$, $\{D_{6},D_{6h}\}(1)$, $\{O,O_{h}\}(1)$
- $\{3,4\}_{\nu}$ $C_1(6)$, $C_2(4)$, $D_2(3)$, $D_3(2)$, $D_4(2)$, $\{O,O_h\}(1)$
- $\{2,3\}_{v}$ C₁(4), C₂(3?), C₃(3?), D₂(2?), D₃(2?), T(1), $\{D_6, D_{6h}\}(1)$
- $\{3,6\}_{V}$ **D**₂(2), $\{T,T_d\}(1)$
- \bullet {2,4}_v $D_2(2)$, { D_4 , D_{4h} }(1)

Thurston, 1998 implies: $(\{a,b\},k)$ -spheres have p_a -2 parameters and the number of v-vertex ones is $O(v^{m-1})$ if $m=p_a$ -2 > 1.

Number of complex parameters

$\{5,6\}_{\nu}$			
Group	#param.		
C ₁	10		
C ₂	6		
C_3, D_2	4		
D_3	3		
D_5, D_6, T	2		
l I	1		
$\{4,6\}_{v}$			

(-)) v			
Group	#param.		
C_1	6		
C ₂	4		
D_2	3		
D_3, D_4	2		
0	1		
10 3J			

 $\{3,4\}_{v}$

Group	#param.
C_1	4
C_2	3
D_2, D_3	2
D ₆ , O	1

(/) *			
Group	#param.		
C_1	4		
C_2, C_3	3?		
D_2, D_3	2?		
D_6, T	1		

 $\{3,\vec{6}\}_{v}$ - and $\{2,4\}_{v}$: 2 complex parameters but 3 natural ones will do: pseudoroad length, number of circumscribing railroads, shift.

VII. Railroads and tight $({a,b},k)$ -spheres

ZC-circuits

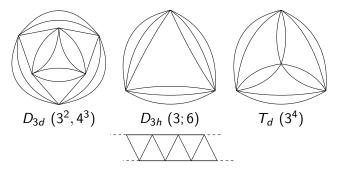
- The edges of any plane graph are doubly covered by zigzags (Petri or left-right paths), i.e., circuits such that any two but not three consecutive edges bound the same face.
- The edges of any Eulerian (i.e., even-valent) plane graph are partitioned by its central circuits (those going straight ahead).
- A ZC-circuit means zigzag or central circuit as needed.
 CC- or Z-vector enumerate lengths of above circuits.

ZC-circuits

- The edges of any plane graph are doubly covered by zigzags (Petri or left-right paths), i.e., circuits such that any two but not three consecutive edges bound the same face.
- The edges of any Eulerian (i.e., even-valent) plane graph are partitioned by its central circuits (those going straight ahead).
- A ZC-circuit means zigzag or central circuit as needed.
 CC- or Z-vector enumerate lengths of above circuits.
- A railroad in a 3-, 4- or 6-regular plane graph is a circuit of 6-, 4- or 3-gons, each adjacent to neighbors on opposite edges.
 Any railroad is bound by two "parallel" ZC-circuits. It (any if 4-, simple if 3- or 6-regular) can be collapsed into 1 ZC-circuit.

Railroad in a 6-regular sphere: examples

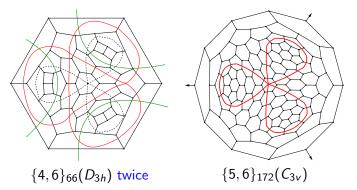
 $APrism_3$ with 2 base 3-gons doubled is the $\{2,3\}_6$ (D_{3d}) with CC-vector $(3^2,4^3)$, all five central circuits are simple. Base 3-gons are separated by a simple railroad R of six 3-gons, bounded by two parallel central 3-circuits around them. Collapsing R into one 3-circuit gives the $\{2,3\}_3$ (D_{3h}) with CC-vector (3;6).



Above $\{2,3\}_4$ (T_d) has no railroads but it is not strictly tight, i.e. no any central circut is adjacent to a non-3-gon *on each side*.

Railroads flower: Trifolium $\{1,3\}_1$

Railroads can be simple or self-intersect, including triply if k = 3. First such Dutour $(\{a, b\}, k)$ -spheres for (a, b) = (4, 6), (5, 6) are:



Which plane curves with at most triple self-intersectionss come so?

Number of ZC-circuits in tight $({a, b}, k)$ -sphere

- Call an $({a,b}, k)$ -sphere tight if it has no railroads.
- ≤ 15 for $\{5,6\}_{V}$ Dutour, 2004
- \bullet \leq 9 for $\{4,6\}_{v}$ and $\{2,3\}_{v}$ Deza-Dutour, 2005 and 2010
- ≤ 3 for $\{2,6\}_{v}$ and $\{1,3\}_{v}$ same
- $\bullet \le 6$ for $\{3,4\}_{\nu}$ Deza-Shtogrin, 2003
- Any $\{3,6\}_{\nu}$ has ≥ 3 zigzags with equality iff it is tight. All $\{3,6\}_{\nu}$ are tight iff $\frac{\nu}{4}$ is prime and none iff it is even.
- Any $\{2,4\}_{v}$ has ≥ 2 central circuits with equality iff it is tight. There is a tight one for any even v.

Number of ZC-circuits in tight $({a, b}, k)$ -sphere

- Call an $({a, b}, k)$ -sphere tight if it has no railroads.
- ≤ 15 for $\{5, 6\}_{V}$ Dutour, 2004
- $\bullet \le 9$ for $\{4,6\}_{v}$ and $\{2,3\}_{v}$ Deza-Dutour, 2005 and 2010
- ≤ 3 for $\{2,6\}_{v}$ and $\{1,3\}_{v}$ same
- $\bullet \le 6$ for $\{3,4\}_{\nu}$ Deza-Shtogrin, 2003
- Any $\{3,6\}_{\nu}$ has ≥ 3 zigzags with equality iff it is tight. All $\{3,6\}_{\nu}$ are tight iff $\frac{\nu}{4}$ is prime and none iff it is even.
- Any $\{2,4\}_{v}$ has ≥ 2 central circuits with equality iff it is tight. There is a tight one for any even v.

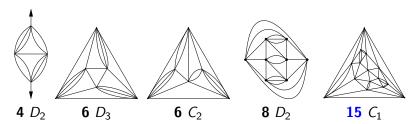
First tight ones with max. of ZC-circuits are $GC_{21}(\{a,b\}_{min})$: $\{5,6\}_{140}(I)$, $\{4,6\}_{56}(O)$, $\{2,6\}_{14}(D_3)$, $\{3,4\}_{30}(0)$; $\{2,3\}_{44}(D_{3h})$ and $\{a,b\}_{min}$: $\{3,6\}_{4}(T_d)$, $\{2,4\}_{2}(D_{4h})$. Besides $\{2,3\}_{44}(D_{3h})$, ZC-circuits are: (28^{15}) , (21^8) , (14^3) , (10^6) , (4^3) , (2^2) , all simple.

Maximal number M_{ν} of central circuits in any $\{2,3\}_{\nu}$

- $M_v = \frac{v}{2} + 1$, $\frac{v}{2} + 2$ for $v \equiv 0, 2 \pmod{4}$. It is realized by the series of symmetry D_{2d} with CC-vector $2^{\frac{v}{2}}, 2v_{0,v}$ and of symmetry D_{2h} with CC-vector $2^{\frac{v}{2}}, v_{0,\frac{v-2}{4}}^2$ if $v \equiv 0, 2 \pmod{4}$.
- For odd v, M_v is $\lfloor \frac{v}{3} \rfloor + 3$ if $v \equiv 2, 4, 6 \pmod{9}$ and $\lfloor \frac{v}{3} \rfloor + 1$, otherwise. Define t_v by $\frac{v-t_v}{3} = \lfloor \frac{v}{3} \rfloor$. M_v is realized by the series of symmetry C_{3v} if $v \equiv 1 \pmod{3}$ and D_{3h} , otherwise. CC-vector is $3^{\lfloor \frac{v}{3} \rfloor}$, $(2\lfloor \frac{v}{3} \rfloor + t_v)_{0,\lfloor \frac{v-2t_v}{9} \rfloor}^3$ if $v \equiv 2, 4, 6 \pmod{9}$ and $3^{\lfloor \frac{v}{3} \rfloor}$, $(2v + t_v)_{0,v+2t_v}$, otherwise.

Smallest CC-knotted or Z-knotted $\{2,3\}_{\nu}$

- The minimal number of central circuits or zigzags, 1, have CC-knotted and Z-knotted $\{2,3\}_{\nu}$. They correspond to plane curves with only triple self-intersection points. For $\nu \leq 16$, there are 1,2,4,7,9,12 Z-knotted if $\nu = 3,7,9,11,13,15$ and 1,2,2,4,11,9,1,19 CC-knotted if $\nu = 4,6,8,10,12,14,15,16$.
- Conjecture (holds if $v \le 54$): any Z-knotted $\{2,3\}_v$ has odd v and a CC-knotted $\{2,3\}_v$ is Z-knotted if and only if v is odd.



VIII. Tight pure $(\{a,b\},k)$ -spheres

Tight $({a, b}, k)$ -spheres with only simple ZC-circuits

- Call ({a, b}, k)-sphere pure if any of its ZC-circuits is simple, i.e. has no self-intersections. Such ZC-circuit can be seen as a Jordan curve, i.e. a plane curve which is topologically equivalent to (a homeomorphic image of) the unit circle.
- Any $(\{3,6\},3)$ or $(\{2,4\},4)$ -sphere is pure. They are tight if and only if have three or, respectively, two ZC-circuits.
- Any ZC-circuit of $\{2,6\}_{\nu}$ or $\{1,3\}_{\nu}$ self-intersects.

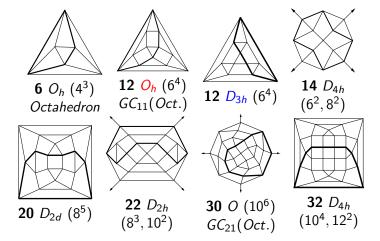
Tight $(\{a, b\}, k)$ -spheres with only simple ZC-circuits

- Call $(\{a,b\},k)$ -sphere pure if any of its ZC-circuits is *simple*, i.e. has no self-intersections. Such ZC-circuit can be seen as a Jordan curve, i.e. a plane curve which is topologically equivalent to (a homeomorphic image of) the unit circle.
- Any $(\{3,6\},3)$ or $(\{2,4\},4)$ -sphere is pure. They are tight if and only if have three or, respectively, two ZC-circuits.
- Any ZC-circuit of $\{2,6\}_{\nu}$ or $\{1,3\}_{\nu}$ self-intersects.

The number of tight pure $({a,b},k)$ -spheres is:

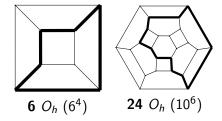
- 9? for $\{5,6\}_v$ computer-checked for $v \leq 300$ by Brinkmann
- 2 for $\{4,6\}_{\nu}$ Deza-Dutour, 2005
- 8 for $\{3,4\}_{v}$ same
- 5 for $\{2,3\}_{V}$ same, 2010

All tight $({3,4},4)$ -spheres with only simple central circuits



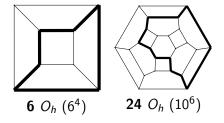
All tight $(\{4,6\},3)$ -spheres with only simple zigzags

There are exactly two such spheres: Cube and its leapfrog $GC_{11}(Cube)$, truncated Octahedron.



All tight $(\{4,6\},3)$ -spheres with only simple zigzags

There are exactly two such spheres: Cube and its leapfrog $GC_{11}(Cube)$, truncated Octahedron.

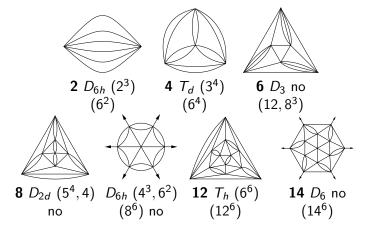


Proof is based on a) The size of intersection of two simple zigzags in any ($\{4,6\},3$)-sphere is 0,2,4 or 6 and

b) Tight $({4,6},3)$ -sphere has at most 9 zigzags.

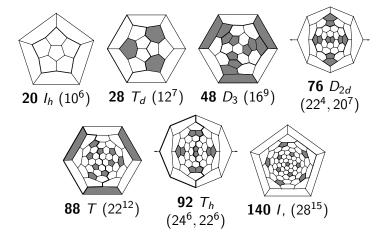
For $({2,3},6)$ -spheres, a) holds also, implying a similar result.

Tight $(\{2,3\},6)$ -spheres with only simple ZC-circuits



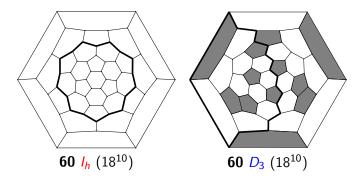
All CC-pure, tight: Nrs. 1,2,4,5,6 (Nrs. 3,7 are not CC-pure). All Z-pure, tight: Nrs. 1,2,3,6,7 (4 is not Z-pure, 5 is not Z-tight). 1st, 3rd are strictly CC-, Z-tight: all ZC-circuits sides touch 2-gons

7 tight $(\{5,6\},3)$ -spheres with only simple zigzags



The zigzags of 1, 2, 3, 5, 7th above and next two form 7 Grűnbaum arrangements of Jordan curves, i.e. any two intersect in 2 points. The groups of 1, 5, 7th and $\{5, 6\}_{60}(I_h)$ are zigzag-transitive.

Two other such $(\{5,6\},3)$ -spheres



This pair was first answer on a question in Grűnbaum, 1967, 2003 Convex Polytopes about existence of simple polyhedra with the same p-vector but different zigzags. The groups of above $\{5,6\}_{60}$ have, acting on zigzags, 1 and 3 orbits, respectively.

IX. Other fullerene analogs: c-disks $(\{a, b, c_1\}, k)$

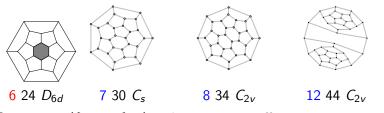
Other fullerene-like spheres with hyperbolic faces

Related non-standard (R, k)-spheres with $\frac{1}{k} + \frac{1}{\max_{i \in R} i} < \frac{1}{2}$ are:

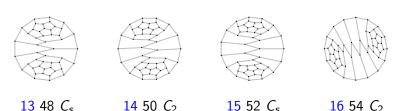
- G-fulleroids (Deza-Delgado, 2000; Jendrol-Trenkler, 2001 and Kardos, 2007): ($\{5,b\}$, 3)-spheres with $b \ge 7$ and symmetry G.
- *b*-lcosahedrites: $(\{3,b\},5)$ -spheres. So, they have $p_3=(3b-10)p_b+20$ 3-gons and $v=2(b-3)p_b+12$ vertices.
- Haeckel, 1887: ($\{5,6,c\}$, 3)-spheres with c=7,8 representing skeletons of radiolarian zooplankton Aulonia hexagona.
- $(\{a,b,c\},k)$ -disk is an $(\{a,b,c\},k)$ -sphere with $p_c=1$; so, its $v=\frac{2}{k-2}(p_a-1+p_b)=\frac{2}{2k-a(k-2)}(a+c+p_b(b-a))$ and (setting $b'=\frac{2k}{k-2})$ $p_a=\frac{b'+c}{b'-a}+p_b\frac{b-b'}{b'-a}$. So, $p_a=\frac{b+c}{b-a}$ if b=b' (8 families).
- Fullerene c-disk is the case (a, b, c; k) = (5, 6, c; 3) of above. So, they have $p_5 = c + 6$ and $v = 2(p_6 + c + 5)$ vertices.

Minimal fullerene $((\{5,6\},3))$ *c*-disks

If c=3, 4, 5, it is 1-vertex-, 1-edge-truncated, usual Dodecahedron. Their number is 2, 3, 10 and p_6 =c-3 if c=9, 10, 11; else, 1 with min $p_6(c)$ =3, 2, 0, 1, 3, 4, 5, 6 (tube C_s/C_2) if c=3, 4, 5, 6, 7, 8, 12, \geq 13.

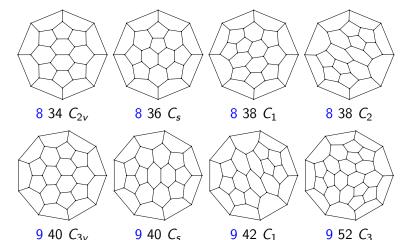


Conjecture: $({5,6,c_1},3)$ with $c \ge 13$ exists iff v is even $\ge 2c+22$.



Symmetries of fullerene c-disks ($\{5,6,c_1\},3$), $c \geq 3$

- Their groups: C_m , C_{mv} with $m \equiv 0 \pmod{c}$ (since any symmetry should stabilize unique c-gonal face) and $m \in \{1, 2, 3, 5, 6\}$ since the axis pass by a vertex, edge or face.
- The minimal such 3-connected 8- and 9-disks are given below.



X. Icosahedrites:

 $({3,4},5)$ -spheres

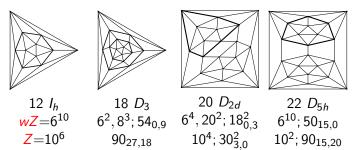
Icosahedrites, i.e., $(\{3,4\},5)$ -spheres

- They have $p_3 = 2p_b + 20$ and $v = 2p_b + 12$ vertices.
- Their number is 1,0,1,1,5,12,63,246,1395,7668,45460 for v=12,14,16,18,20,22,24,26,28,30,32. It grows at least exponentially with v. So, there is a continuum of icosahedrites, while 8 standard families are countable.
- p_a is fixed in for standard $(\{a,b\},k)$ -spheres permitting Goldberg-Coxeter construction and parametrization of graphs which imply the polynomial growth of their number. It does not happen for icosahedrites; no parametrization for them.

A-operation keeps symmetries; B-operation: only rotational ones.

Proof for the number of icosahedrites

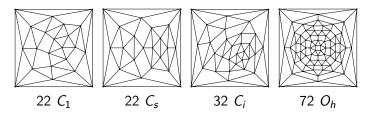
A weak zigzag ia a left/right, but never extreme, edge-circuit. If a v-vertex icosahedrite has a simple weak zigzag of length 6, a (v+6)-vertex one come by inserting a corona (6-ring of three 4-gons alternated by three pairs of adjacent 3-gons) instead of it. But such spheres exist for v=18, 20, 22; so, for $v\equiv0,2,4(mod~6)$. There are two options of inserting corona; so, the number of v-vertex icosahedrites grows at least exponentially.



An usual (strong) zigzag is a left/right, both extreme, edge-circuit.

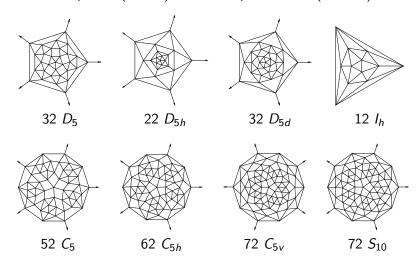
38 symmetry groups of icosahedrites

- Agregating $C_1 = \{C_1, C_s, C_i\}$, $C_m = \{C_m, C_{mv}, C_{mh}, S_{2m}\}$, $D_m = \{D_m, D_{mh}, D_{md}\}$, $T = \{T, T_d, T_h\}$, $O = \{O, O_h\}$, $I = \{I, I_h\}$, all 38 symmetries of $(\{3, 4\}, 5)$ -spheres are: C_1 , C_m , D_m for $2 \le m \le 5$ and T, O, I.
- Any group appear an infinite number of times since one gets an infinity by applying A-operation iteratively.
- Group limitations came from k-fold axis only. Is it occurs for all $(\{a,b\},k)$ -spheres with b-faces of negative curvature?
- Examples (minimal whenever $v \le 32$) are given below:



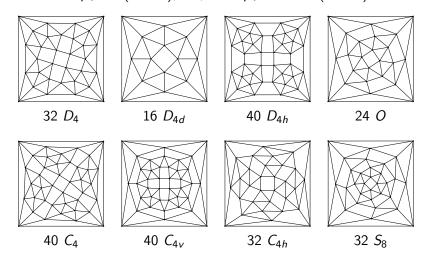
Minimal $({3,4},5)$ -spheres of 5-fold symmetry

It exists iff $p_4 \equiv 0 \pmod{5}$, i.e., $v = 2p_4 + 12 \equiv 2 \pmod{10}$.



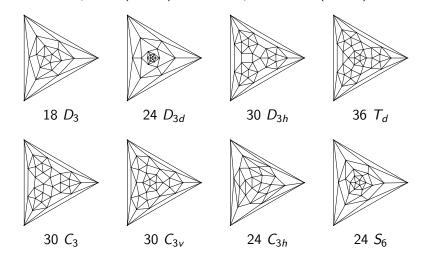
Minimal $({3,4},5)$ -spheres of 4-fold symmetry

It exists iff $p_4 \equiv 2 \pmod{4}$, i.e., $v = 2p_4 + 12 \equiv 0 \pmod{8}$.

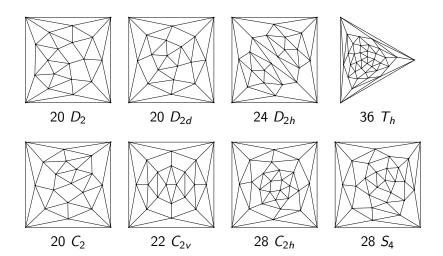


Minimal $({3,4},5)$ -spheres of 3-fold symmetry

It exists iff $p_4 \equiv 0 \, (mod \, 3)$, i.e., $v = 2p_4 + 12 \equiv 0 \, (mod \, 6)$.



Minimal $({3,4},5)$ -spheres of 2-fold symmetry



XI. Standard $(\{a, b\}, k)$ -maps on surfaces

Standard (R, k)-maps

- Given $R \subset \mathbb{N}$ and a surface \mathbb{F}^2 , an (R, k)- \mathbb{F}^2 is a k-regular map M on surface \mathbb{F}^2 whose faces have gonalities $i \in R$.
- Euler characteristic $\chi(M)$ is v e + f, where v, e and $f = \sum_i p_i$ are the numbers of vertices, edges and faces of M.
- Since $kv=2e=\sum_i ip_i$, Euler formula $\chi=v-e+f$ becomes Gauss-Bonnet-like one $2\chi(M)k=\sum_i p_i(2k-i(k-2))$.
- Again, let our maps be standard, i.e., $\min_{i \in R} (\frac{1}{k} + \frac{1}{i}) = \frac{1}{2}$. So, $M = \max\{i \in R\} = \frac{2k}{k-2}$ and (M, k) = (6, 3), (4, 4), (3, 6).
- There are infinity of standard maps (R, k)- \mathbb{F}^2 , since the number p_M of parabolic faces is not restricted.
- Also, $\chi \ge 0$ with $\chi = 0$ if and only if $R = \{m\}$. So, \mathbb{F}^2 is \mathbb{S}^2 , \mathbb{T}^2 , \mathbb{F}^2 , \mathbb{K}^2 with $\chi = 2, 0, 1, 0$, respectively.
- Such $(\{a,b\},k)$ - \mathbb{F}^2 map has $b=\frac{2k}{k-2}$, $p_a=\frac{\chi b}{b-a}$, $v=\frac{1}{k}(ap_a+bp_b)$ So, (a=b,k)=(6,3),(3,6),(4,4) if \mathbb{F}^2 is \mathbb{T}^2 or \mathbb{K}^2 .
- But $\chi = \frac{p_3 2p_4}{10}$ for icosahedrite maps ({3, 4}, 5) (non-standard) So, $\chi < 0$ is possible and $\chi = 0$ (i.e., $\mathbb{F}^2 = \mathbb{T}^2$, \mathbb{K}^2) iff $p_3 = 2p_4$.

Digression on interesting non-standard ($\{5,6,c\},3$)-maps

Such maps, generalizing fullerenes, have $c \ge 7$. Examples are:

- G-fulleroids (Deza-Delgado, 2000; Jendrol-Trenkler, 2001 and Kardos, 2007): ($\{5,b\}$, 3)-spheres with $b \ge 7$ and symmetry G
- Haeckel, 1887: ($\{5,6,c\}$, 3)-spheres with c=7,8 representing skeletons of radiolarian zooplankton Aulonia hexagona.
- Azulenoids: $(\{5,6,7\},3)$ -tori; so $g=1, p_5=p=7$.
- Schwarzits: $(\{5,6,c\},3)$ -maps on minimal surfaces of constant negative curvature $(g \ge 2)$ with c = 7,8. Knor-Potocnik-Siran-Skrekovski, 2010: such $(\{6,c\},3)$ -maps exist for any $g \ge 2$, $p_6 \ge 0$ and c = 7,8,9,10,12. For c = 7,8 such polyhedral maps exist.

The $(\{a,b\},k)$ -maps on torus and Klein bottle

The connected *closed* (compact and without boundary) irreducible surfaces are: sphere \mathbb{S}^2 , torus \mathbb{T}^2 (two orientable), real projective plane \mathbb{P}^2 and Klein bottle \mathbb{K}^2 with $\chi=2,0,1,0$, respectively.

The maps $(\{a,b\},k)$ - \mathbb{T}^2 and $(\{a,b\},k)$ - \mathbb{K}^2 have $a=b=\frac{2k}{k-2}$; so, (a=b,k) should be (6,3),(3,6) or (4,4).

We consider only polyhedral maps, i.e. no loops or multiple edges (1- or 2-gons), and any two faces intersect in edge, point or \emptyset only.

The $(\{a,b\},k)$ -maps on torus and Klein bottle

The connected *closed* (compact and without boundary) irreducible surfaces are: sphere \mathbb{S}^2 , torus \mathbb{T}^2 (two orientable), real projective plane \mathbb{P}^2 and Klein bottle \mathbb{K}^2 with $\chi=2,0,1,0$, respectively.

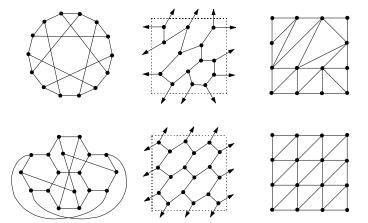
The maps $(\{a,b\},k)$ - \mathbb{T}^2 and $(\{a,b\},k)$ - \mathbb{K}^2 have $a=b=\frac{2k}{k-2}$; so, (a=b,k) should be (6,3),(3,6) or (4,4).

We consider only polyhedral maps, i.e. no loops or multiple edges (1- or 2-gons), and any two faces intersect in edge, point or \emptyset only.

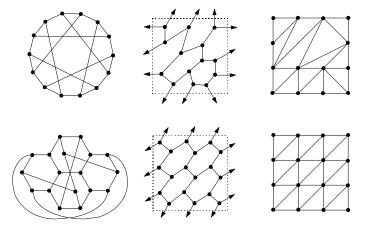
Smallest \mathbb{T}^2 and \mathbb{K}^2 -embeddings for (a=b,k)=(6,3),(3,6),(4,4): as 6-regular triangulations: K_7 and $K_{3,3,3}$ $(p_3=14,18)$; as 3-regular polyhexes: Heawood graph (dual K_7) and dual $K_{3,3,3}$; as 4-regular quadrangulations: K_5 and $K_{2,2,2}$ $(p_4=5,6)$.

 $\begin{array}{l} \textit{K}_{5} \text{ and } \textit{K}_{2,2,2} \text{ are also smallest } (\{3,4\},4) - \mathbb{P}^{2} \text{ and } (\{3,4\},4) - \mathbb{S}^{2}, \\ \text{while } \textit{K}_{4} \text{ is the smallest } (\{4,6\},3) - \mathbb{P}^{2} \text{ and } (\{3,6\},3) - \mathbb{S}^{2}. \end{array}$

Smallest 3-regular maps on \mathbb{T}^2 and \mathbb{K}^2 : duals K_7 , $K_{3,3,3}$



Smallest 3-regular maps on \mathbb{T}^2 and \mathbb{K}^2 : duals K_7 , $K_{3,3,3}$



3-regular polyhexes on \mathbb{T}^2 , cylinder, Möbius surface, \mathbb{K}^2 are $\{6^3\}$'s quotients by fixed-point-free group of isometries, generated by: two translations, a transl., a glide reflection, transl. *and* glide reflection.

8 families: symmetry groups with inversion

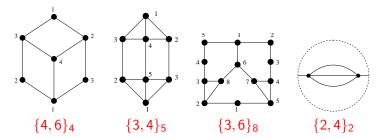
The point symmetry groups with inversion operation are: T_h , O_h , I_h , C_{mh} , D_{mh} with even m and D_{md} , S_{2m} with odd m. So, they are

- 9 for $\{5,6\}_{v}$: C_{i} , C_{2h} , D_{2h} , D_{3d} , D_{6h} , S_{6} , T_{h} , D_{5d} , I_{h}
- 7 for $\{2,3\}_{v}$: C_{i} , C_{2h} , D_{2h} , D_{3d} , D_{6h} , S_{6} , T_{h}
- 6 for $\{4,6\}_{v}$: C_{i} , C_{2h} , D_{2h} , D_{3d} , D_{6h} , O_{h}
- 6 for $\{3,4\}_{v}$: C_{i} , C_{2h} , D_{2h} , D_{3d} , D_{4h} , O_{h}
- 2 for $\{2,4\}_{v}$: D_{2h} , D_{4h}
- 1 for $\{3,6\}_v$: D_{2h}
- 0 for $\{2,6\}_{v}$ and $\{1,3\}_{v}$
- Cf. 12 for icosahedrites (($\{3,4\},5$)-spheres): C_i , C_{2h} , C_{4h} , D_{2h} , D_{4h} , D_{3d} , D_{5d} , S_6 , S_{10} , T_h , O_h , I_h

(R, k)-maps on the projective plane are the antipodal quotients of centrosymmetric (R, k)-spheres; so, halving their p-vector and v.

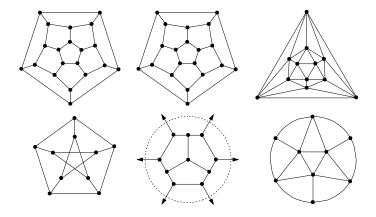
Smallest $(\{a, b\}, k)$ -maps on the projective plane

- The smallest ones for (a, b) = (4, 6), (3, 4), (3, 6), (5, 6) are: K_4 (smallest \mathbb{P}^2 -quadrangulation), K_5 , 2-truncated K_4 , dual K_6 (Petersen graph), i.e., the antipodal quotients of Cube $\{4,6\}_8$, $\{3,4\}_{10}(D_{4h})$, $\{3,6\}_{16}(D_{2h})$, Dodecahedron $\{5,6\}_{20}$.
- The smallest ones for (a, b) = (2, 4), (2, 3) are points with 2, 3 loops; smallest without loops are $4 \times K_2$, $6 \times K_2$ but on \mathbb{P}^2 .



Smallest $(\{5,6\},3)$ - \mathbb{P}^2 and $(\{3,4\},5)$ - \mathbb{P}^2

The Petersen graph (in positive role) is the smallest \mathbb{P}^2 -fullerene. Its \mathbb{P}^2 -dual, K_6 , is the smallest \mathbb{P}^2 -icosahedrite (half-lcosahedron). K_6 is also the smallest (with 10 triangles) triangulation of \mathbb{P}^2 .



6 families on projective plane: parameterizing

- $\{5,6\}_{v}$: C_{i} , C_{2h} , D_{2h} , S_{6} , D_{3d} , D_{6h} , T_{h} , D_{5d} , I_{h}
- \bullet {2,3}_v: C_i , C_{2h} , D_{2h} , S_6 , D_{3d} , D_{6h} , T_h
- \bullet {4,6}_v: C_i , C_{2h} , D_{2h} , D_{3d} , D_{6h} , O_h
- \bullet {2,4}_v: D_{2h} , D_{4h}
- $\{3,6\}_{v}$: D_{2h}

6 families on projective plane: parameterizing

```
\{5,6\}_{v}: C_{i}, C_{2h}, D_{2h}, S_{6}, D_{3d}, D_{6h}, T_{h}, D_{5d}, I_{h}
```

- $\{2,3\}_{v}$: C_{i} , C_{2h} , D_{2h} , S_{6} , D_{3d} , D_{6h} , T_{h}
- \bullet {4,6}_v: C_i , C_{2h} , D_{2h} , D_{3d} , D_{6h} , O_h
- \bullet {3,4}_v: C_i , C_{2h} , D_{2h} , D_{3d} , D_{4h} , O_h
- \bullet {2,4}_v: D_{2h} , D_{4h}
- \bullet {3,6}_v: D_{2h}

({2,3},6)-spheres T_h and D_{6h} are $GC_{k,k}(2 \times Tetrahedron)$ and, for $k \equiv 1,2 \pmod{3}$, $GC_{k,0}(6 \times K_2)$, respectively. Other spheres of blue symmetry are $GC_{k,l}$ with l=0,k from the first such sphere.

So, each of 7 blue-symmetric families is described by one natural parameter k and contains $O(\sqrt{v})$ spheres with at most v vertices.

$({a,b},k)$ -maps on Euclidean plane and 3-space

- An $(\{a,b\},k)$ - \mathbb{E}^2 is a k-regular tiling of \mathbb{E}^2 by a- and b-gons.
- $(\{a,b\},k)$ - \mathbb{E}^2 have $p_a \leq \frac{b}{b-a}$ and $p_b = \infty$. It follows from Alexandrov, 1958: any metric on \mathbb{E}^2 of non-negative curvature can be realized as a metric of convex surface on \mathbb{E}^3 . In fact, consider plane metric such that all faces became regular in it. Its curvature is 0 on all interior points (faces, edges) and ≥ 0 on vertices. A convex surface is at most half- \mathbb{S}^2 .
- There are ∞ of $(\{a,b\},k)$ - \mathbb{E}^2 if $2 \le p_a \le \frac{b}{b-a}$ and 1 if $p_a = 0,1$.
- The plane fullerenes (or nanocones) $(\{5,6\},k)$ - \mathbb{E}^2 are classified by Klein and Balaban, 2007: the number of equivalence (isomorphism up to a finite induced subgraph) classes is 2,2,2,1 for $p_5=2,3,4,5$, respectively.

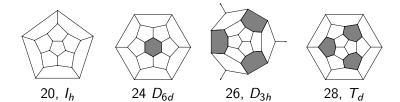
$(\{a,b\},k)$ -maps on Euclidean plane and 3-space

- An $(\{a,b\},k)$ - \mathbb{E}^2 is a k-regular tiling of \mathbb{E}^2 by a- and b-gons.
- $(\{a,b\},k)$ - \mathbb{E}^2 have $p_a \leq \frac{b}{b-a}$ and $p_b = \infty$. It follows from Alexandrov, 1958: any metric on \mathbb{E}^2 of non-negative curvature can be realized as a metric of convex surface on \mathbb{E}^3 . In fact, consider plane metric such that all faces became regular in it. Its curvature is 0 on all interior points (faces, edges) and ≥ 0 on vertices. A convex surface is at most half- \mathbb{S}^2 .
- There are ∞ of $(\{a,b\},k)$ - \mathbb{E}^2 if $2 \le p_a \le \frac{b}{b-a}$ and 1 if $p_a = 0, 1$.
- The plane fullerenes (or nanocones) $(\{5,6\},k)$ - \mathbb{E}^2 are classified by Klein and Balaban, 2007: the number of equivalence (isomorphism up to a finite induced subgraph) classes is 2,2,2,1 for $p_5 = 2,3,4,5$, respectively.
- An $(\{a,b\},k)$ - \mathbb{E}^3 is a 3-periodic k'-regular face-to-face tiling of the Euclidean 3-space \mathbb{E}^3 by $(\{a,b\},k)$ -spheres.
- Next, we will mention such tilings by 4 special fullerenes, which are important in Chemistry and Crystallography. Then we consider extension of $(\{a,b\},k)$ -maps on manifolds.

XII. Beyond surfaces

Frank-Kasper $(\{a, b\}, k)$ -spheres and tilings

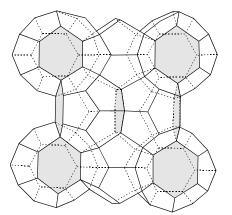
- A $(\{a,b\},k)$ -sphere is Frank-Kasper if no *b*-gons are adjacent.
- All cases are: smallest ones in 8 families, 3 ($\{5,6\}$, 3)-spheres (24-, 26-, 28-vertex fullerenes), ($\{4,6\}$, 3)-sphere $Prism_6$, 3 ($\{3,4\}$, 4)-spheres ($APrism_4$, $APrism_3^2$, Cuboctahedron), ($\{2,4\}$, 4)-sphere doubled square and two ($\{2,3\}$, 6)-spheres (tripled triangle and doubled Tetrahedron).



FK space fullerenes

A FK space fullerene is a 3-periodic 4-regular face-to-face tiling of 3-space \mathbb{E}^3 by four Frank-Kasper fullerenes $\{5,6\}_{\nu}$.

They appear in crystallography of alloys, clathrate hydrates, zeolites and bubble structures. The most important, A_{15} , is below.



Weaire-Phelan, 1994: best known solution of weak Kelvin problem

Other \mathbb{E}^3 -tilings by $(\{a,b\},k)$ -spheres

- An $(\{a,b\},k)$ - \mathbb{E}^3 is a 3-periodic k'-regular face-to-face \mathbb{E}^3 -tiling by $(\{a,b\},k)$ -spheres. Some examples follow.
- Deza-Shtogrin, 1999: first known non-FK space fullerene $(\{5,6\},3)$ - \mathbb{E}^3 : 4-regular \mathbb{E}^3 -tiling by $\{5,6\}_{20}$, $\{5,6\}_{24}$ and its elongation $\simeq \{5,6\}_{36}$ (D_{6h}) in proportion 7:2:1.

Other \mathbb{E}^3 -tilings by $(\{a,b\},k)$ -spheres

- An $(\{a,b\},k)$ - \mathbb{E}^3 is a 3-periodic k'-regular face-to-face \mathbb{E}^3 -tiling by $(\{a,b\},k)$ -spheres. Some examples follow.
- Deza-Shtogrin, 1999: first known non-FK space fullerene $(\{5,6\},3)$ - \mathbb{E}^3 : 4-regular \mathbb{E}^3 -tiling by $\{5,6\}_{20}$, $\{5,6\}_{24}$ and its elongation $\simeq \{5,6\}_{36}$ (D_{6h}) in proportion 7:2:1.
- space cubite $(\{4,6\},3)$ - \mathbb{E}^3 : tiling by $Prism_4$, $Prism_6$ with bipyramidal star. Examples: 5- and 6-regular \mathbb{E}^3 -tilings by $Prism_6$ and by Cube (Voronoi tilings of lattices $A_2 \times \mathbb{Z}$ and \mathbb{Z}^3 with stars $Prism_3^*$ and $\beta_3 = Prism_4^*$), respectively.

Other \mathbb{E}^3 -tilings by $(\{a,b\},k)$ -spheres

- An $(\{a,b\},k)$ - \mathbb{E}^3 is a 3-periodic k'-regular face-to-face \mathbb{E}^3 -tiling by $(\{a,b\},k)$ -spheres. Some examples follow.
- Deza-Shtogrin, 1999: first known non-FK space fullerene $(\{5,6\},3)$ - \mathbb{E}^3 : 4-regular \mathbb{E}^3 -tiling by $\{5,6\}_{20}$, $\{5,6\}_{24}$ and its elongation $\simeq \{5,6\}_{36}$ (D_{6h}) in proportion 7:2:1.
- space cubite $(\{4,6\},3)$ - \mathbb{E}^3 : tiling by $Prism_4$, $Prism_6$ with bipyramidal star. Examples: 5- and 6-regular \mathbb{E}^3 -tilings by $Prism_6$ and by Cube (Voronoi tilings of lattices $A_2 \times \mathbb{Z}$ and \mathbb{Z}^3 with stars $Prism_3^*$ and $\beta_3 = Prism_4^*$), respectively.
- space octahedrite ($\{3,4\},4$)- \mathbb{E}^3 : 6-regular (star-Octahedron) tiling by Octahedron, Cuboctahedron in proportion 1:1. It is uniform (vertex-transitive and with Archimedean tiles) and Delaunay tiling of *J*-complex (mineral **perovskite** structure).
- Cf. \mathbb{H}^3 -tilings: 6-regular $\{5,3,4\}$ by $\{5,6\}_{20}$, (Löbell, 1931) by $\{5,6\}_{24}$ and 12-reg. $\{5,3,5\}$ by $\{5,6\}_{20}$, $\{4,3,5\}$ by Cube.

Fullerene manifolds

- Given $3 \le a < b \le 6$, $\{a,b\}$ -manifold is a (d-1)-dimensional d-valent compact connected manifold (locally homeomorphic to \mathbb{R}^{d-1}) whose 2-faces are only a- or b-gonal.
- So, any *i*-face, $3 \le i \le d$, is a polytopal i- $\{a, b\}$ -manifold.
- Most interesting case is (a, b) = (5, 6) (fullerene manifold), when d = 2, 3, 4, 5 only since (Kalai, 1990) any 5-polytope has a 3- or 4-gonal 2-face.

Fullerene manifolds

- Given $3 \le a < b \le 6$, $\{a,b\}$ -manifold is a (d-1)-dimensional d-valent compact connected manifold (locally homeomorphic to \mathbb{R}^{d-1}) whose 2-faces are only a- or b-gonal.
- So, any *i*-face, $3 \le i \le d$, is a polytopal i- $\{a, b\}$ -manifold.
- Most interesting case is (a, b) = (5, 6) (fullerene manifold), when d = 2, 3, 4, 5 only since (Kalai, 1990) any 5-polytope has a 3- or 4-gonal 2-face.
- The smallest polyhex is 6-gon on \mathbb{T}^2 . The "greatest": $\{633\}$, the convex hull of vertices of $\{63\}$, realized on a horosphere.
- Prominent 4-fullerene (600-vertex on \mathbb{S}^3) is 120-cell ({533}). The "greatest" polypent: {5333}, tiling of \mathbb{H}^4 by 120-cells.

Projection of 120-cell in 3-space (G.Hart)

 $\{533\}$: 600 vertices, 120 dodecahedral facets, |Aut| = 14400

4- and 5-fullerenes

- All known finite 4-fullerenes are "mutations" of 120-cell by interfering in one of ways to construct it: tubes of 120-cells, coronas, inflation-decoration method, etc. Some putative facets: $\simeq \{5,6\}_{v}(G)$ with $(v,G)=(20,I_h)$, $(24,D_{6h})$, $(26,D_3)$, $(28,T_d)$, $(30,D_{5h})$, $(32,D_{3h})$, $(36,D_{6h})$.
- $(\{5,6\},3)$ - \mathbb{E}^3 : example of interesting infinite 4-fullerenes.

4- and 5-fullerenes

- All known finite 4-fullerenes are "mutations" of 120-cell by interfering in one of ways to construct it: tubes of 120-cells, coronas, inflation-decoration method, etc. Some putative facets: $\simeq \{5,6\}_{\nu}(G)$ with $(\nu,G)=(20,I_h)$,
- $(24,D_{6h}), (26,D_3), (28,T_d), (30,D_{5h}), (32,D_{3h}), (36,D_{6h}).$
- $(\{5,6\},3)$ - \mathbb{E}^3 : example of interesting infinite 4-fullerenes.
- All known 5-fullerenes come from $\{5333\}$'s by following ways. With 6-gons also: glue two $\{5333\}$'s on some 120-cells and delete their interiors. If it is done on only one 120-cell, it is $\mathbb{R} \times \mathbb{S}^3$ (so, simply-connected).

Finite compact ones: the quotients of {5333} by its symmetry group (partitioned into 120-cells) and gluings of them.

Quotient *d*-fullerenes

- Selberg, 1960, Borel, 1963: if a discrete group of motions of a symmetric space has a compact fundamental domain, then it has a torsion-free normal subgroup of finite index.
- So, the *quotient* of a *d*-fullerene by such symmetry group (its points are group orbits) is a finite *d*-fullerene.

Quotient *d*-fullerenes

- Selberg, 1960, Borel, 1963: if a discrete group of motions of a symmetric space has a compact fundamental domain, then it has a torsion-free normal subgroup of finite index.
- So, the *quotient* of a *d*-fullerene by such symmetry group (its points are group orbits) is a finite *d*-fullerene.
- Exp. 1: Polyhexes on \mathbb{T}^2 , cylinder, Möbius surface and \mathbb{K}^2 are the quotients of $\{6^3\}$ by discontinuous fixed-point-free group of isometries, generated by: 2 translations, a translation, a glide reflection, translation and glide reflection, respectively.

Quotient *d*-fullerenes

- Selberg, 1960, Borel, 1963: if a discrete group of motions of a symmetric space has a compact fundamental domain, then it has a torsion-free normal subgroup of finite index.
- So, the *quotient* of a *d*-fullerene by such symmetry group (its points are group orbits) is a finite *d*-fullerene.
- Exp. 1: Polyhexes on \mathbb{T}^2 , cylinder, Möbius surface and \mathbb{K}^2 are the quotients of $\{6^3\}$ by discontinuous fixed-point-free group of isometries, generated by: 2 translations, a translation, a glide reflection, translation and glide reflection, respectively.
- Exp 2: Poincaré dodecahedral space: the quotient of 120-cell by I_h ; so, its f-vector is $(5, 10, 6, 1) = \frac{1}{120} f(120\text{-cell})$.
- Cf. 6-, 12-regular \mathbb{H}^3 -tilings $\{5,3,4\}$, $\{5,3,5\}$ by $\{5,6\}_{20}$ and 6-regular \mathbb{H}^3 -tiling by (right-angled) $\{5,6\}_{24}$. Seifert-Weber, 1933 and Löbell, 1931 spaces are quotients of last 2 with f-vectors $(1,6,p_5=6,1)$, $(24,72,48+8=p_5+p_6,8)$.