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A linear program...

min c'x max b'y
s.t. Ax > b s.t. ATy <c
x >0 y >0
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A linear program...

min c'x max b'y
s.t. Ax > b s.t. ATy <c
x >0 y >0

with slack variables

0 5)6)-(5)
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with slack variables

(0 5)6)-(5)

can be written as a Linear Complementarity Problem
Find w, z such that

w— Mz = ¢

w>0, z>0 and w'z=0
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Linear Complementarity Problem (LCP)
Find w, z such that

w— Mz = ¢

w>0, z>0 and w'z=0

v

Sources

@ linear programming

@ quadratic programming
@ two player games

@ free boundary problems
@ optimal stopping

@ portfolio optimization
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Computational complexity [Chung, 1989]

It is NP-complete to decide whether a solution exists.
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Computational complexity [Chung, 1989]
It is NP-complete to decide whether a solution exists.

Reduction from the equality-constrained knapsack problem: Given a set

A ={aj,ay,...,a,}of positive integers and an integer b, decide
whether there is a subset of A that sums to b.

The problem is equivalent to the following LCP: w,z > 0, w'z = 0,

w; +zi =aq;foralli=1,...,n,

n
Wnitl +Zny1 = b — ZZi>

i=1

n
Wni2 +Zni2 = —b + ZZI
1=1
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An important special case:

P-matrix: all principal minors positive
P-LCP: an LCP with a P-matrix
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An important special case:

P-matrix: all principal minors positive
P-LCP: an LCP with a P-matrix

Complexity:
@ unlikely to be NP-hard
@ in the class PPAD; not known to be PPAD-complete
@ no polynomial algorithm known
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An important special case:

P-matrix: all principal minors positive
P-LCP: an LCP with a P-matrix
Complexity:
@ unlikely to be NP-hard

@ in the class PPAD; not known to be PPAD-complete
@ no polynomial algorithm known

Yy
Theorem [Megiddo, 1988]

Consider the following problem:

@ Given M and q, either find a solution (w, z) to LCP(M, q), or exhibit
a non-positive principal minor of M.

If this problem is NP-hard, then NP = co-NP
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Why are P-matrices interesting?

@ LCP(M, q) has a unique solution for every vector ¢
[Samelson, Thrall, Wesler 1958; Ingleton 1966 ]
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Why are P-matrices interesting?

@ LCP(M, q) has a unique solution for every vector ¢
[Samelson, Thrall, Wesler 1958; Ingleton 1966 ]

@ “nice” geometric properties

@ unresolved complexity status

o not NP-hard (?), PPAD (?)

o squeezed between tractable positive definite matrices and NP-hard
Po-matrices

@ no polynomial algorithm known...

@ actually arise in applications
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Algorithms for LCPs

interior point: [Kojima, Megiddo, Mizuno, Noma, Wright, Ye, Yoshise, Zhang, ...]

@ relax the condition w'z = 0
@ minimize w'z instead
@ in some cases polynomial (e.g., convex)
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Algorithms for LCPs

interior point: [Kojima, Megiddo, Mizuno, Noma, Wright, Ye, Yoshise, Zhang, ...]
@ relax the condition w'z = 0
@ minimize w'z instead
@ in some cases polynomial (e.g., convex)

pivoting: [Lemke 1970, & many others since]

@ works with complementary or almost
complementary bases
@ needs a pivot rule

@ can be purely combinatorial
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The issue of degeneracy

@ LCP(M, q) is degenerate if q can be expressed as a linear
combination of some n — 1 columns of (1 -M )

@ for practical purposes, it may be a problem
@ for theory, we always assume that our LCP is non-degenerate
@ non-degeneracy may be achieved by a symbolic perturbation of g
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The combinatorics of LCPs

q=w— Mz

wlz =0

The hard part: determine whether w; = 0 or z; = 0 for each i.
The rest is a system of linear equations.
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The combinatorics of LCPs

q=w— Mz

wlz =0

The hard part: determine whether w; = 0 or z; = 0 for each i.
The rest is a system of linear equations.

Simple principal pivoting methods

@ start with an arbitrary complementary basis

@ if not feasible, do a principal pivot:

o insert a (negative) variable into the basis (pivot rule!)
o remove the complementary variable from the basis

@ repeat until solution is reached
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Unique-sink orientations

Unique-sink orientation —

USO
an oriented graph with
o V= {O> 1"

@ u ~ v iff in Hamming
distance 1
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Unique-sink orientations

Unique-sink orientation —

USO
an oriented graph with
o V= {O> 1

@ u ~ v iff in Hamming
distance 1

@ oriented so that every
subcube has a unique sink

y

So the whole cube must have a
unique sink
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Unique-sink orientations

Unique-sink orientation —

USO
an oriented graph with
o V={0,1"
@ u ~ v iff in Hamming
distance 1

@ oriented so that every
subcube has a unique sink

4

So the whole cube must have a
unique sink, but also proper
subcubes, like this square.
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Unique-sink orientations

Unique-sink orientation —

USO
an oriented graph with
o V={0,1"

@ u ~ v iff in Hamming
distance 1

@ oriented so that every
subcube has a unique sink

v

So the whole cube must have a
unique sink, but also proper
subcubes, like this square. And
not two sinks.
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Unique-sink orientations

Unique-sink orientation —

USO
an oriented graph with
o V={0,1"

@ u ~ v iff in Hamming
distance 1

@ oriented so that every
subcube has a unique sink

v

So the whole cube must have a
unique sink, but also proper
subcubes, like this square. And
not two sinks. And not none.
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Unique-sink orientations

Unique-sink orientation —

USO
an oriented graph with
o V={0,1"

@ u ~ v iff in Hamming
distance 1

@ oriented so that every
subcube has a unique sink

v

So the whole cube must have a
unique sink, but also proper
subcubes, like this square. And
not two sinks. And not none.
Cycles may occur.
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The combinatorics of LCPs

q=w— Mz

wlz =0

The hard part: determine whether w; = 0 or z; = 0 for each 1.

Inducing a USO

@ a choice of w; = 0 or z; = 0 corresponds to a 0-1-vector

@ 0-1-vectors are vertices of a hypercube

@ solve equations: negative values - outgoing edges
@ for a P-matrix, this is a USO [Stickney, Watson, 1978]

@ find the sink = found the LCP solution
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Goal: Find the sink

Input representation: by the vertex enumeration oracle: ask for the
orientation of edges incident with a given vertex

Algorithm efficiency: number of oracle calls as function of dimension

Naive algorithm: check all vertices (2™ queries)

Path-following algorithms: simple principal pivoting

“Random access” algorithms: seesaw
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Best general algorithms known to date

deterministic randomized
1.609™ 1.438™
general USOs , , 3
[Szabo, Welzl] [Szab6, Welzl, Rote]
: 2
acyclic USOs <P (, vy )
[Matousek, Sharir, Welzl, Gartner]

Jan Foniok (Queen’s University) LCPs, USOs, OMs 20/09/11 19 /38




Some matrix classes

P-matrix: all principal minors positive

K-matrix: P-matrix and all off-diagonal elements < 0

and

Some USO classes

P-USO: coming from a P-matrix LCP
K-USO: coming from a K-matrix LCP
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Some matrix classes

P-matrix: all principal minors positive

K-matrix: P-matrix and all off-diagonal elements < 0

and

Some USO classes

P-USO: coming from a P-matrix LCP
K-USO: coming from a K-matrix LCP

Theorem [E, Fukuda, Girtner, Liithi, 2009]

Any path-following algorithm with any starting vertex finds the sink of
any K-USO after at most 2n + 1 oracle queries.
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Theorem [E, Fukuda, Girtner, Liithi, 2009]

Any path-following algorithm with any starting vertex finds the sink of
any K-USO after at most 2n + 1 oracle queries.

Lemma

In any K-USO:
01

11

00 10 00 10

The proof uses a K-matrix characterization of [Fiedler, Ptak, 1962] but can
also be done purely combinatorially (coming in a minute).
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Does the “Lemma” characterize K-USQOs?

No. Because:

There are at least 22" '™ n-dimensional USOs satisfying the

“Lemma”, but at most 2°(™*) P-USOs.
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Does the “Lemma” characterize K-USQOs?
No. Because:

There are at least 22" '™ n-dimensional USOs satisfying the

“Lemma”, but at most 2°(™*) P-USOs.

Proof of the upper bound [k, Girtner, Klaus, Sprecher, 2010+].

The orientation is determined by the signs of 2™ - n values of
polynomials in the entries of M and q. Each of the polynomials has
degree at most n.

Theorem [warren, 1968]

The number of distinct (nowhere-zero) sign patterns of s real
polynomials in k variables, each of degree at most d, is at most
(4eds/k)k.
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Counting USOs

class
all USOs [MatousSek]

acyclic USOs [Matousek]
satistying “Lemma”
Holt-Klee USOs [Develin]
P-USOs

K-USOs

lower bound
L0

22
22 /v/n
22"/ poly(n)
zﬂ(ng)
2Q(n3)

upper bound
elbiy

(n+ 1)%"
20(113)

[E, Gartnery, Klaus, Sprecher, 2010+]
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Counting USOs
class lower bound upper bound
all USOs [Matousek] n (2" nO2")
acyclic USOs [Matougek] 22" (m4+ 172"
satisfying “Lemma” 22" /v
Holt-Klee USOs [Develin] 22"/ Poly(n)
P-USOs 2Q(n°) 70(n3)
R-USOs ZQ(ng) [E, Gartner, Klaus, Sprecher, 2010+]

Holt-Klee USOs

In every subcube of dimension d there are d vertex-disjoint directed
paths from the (unique) source to the (unique) sink.

Every P-USO is Holt-Klee. [Girtner, Morris, Riist, 2008]
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Counting USOs

class lower bound upper bound

n—1
satistying “Lemma” 2l /2))

Lemma

In any K-USO:
0T

11

00 10 00 10

Jan Foniok (Queen’s University) LCPs, USOs, OMs 20/09/11 24 /38




Many K-USOs

The K-matrix:

(1 —1—=F12 —1—Bi3 —1—PBin \
0 1 —1 =23 —1 —P2n
N
0 0 0 —1 —Bn_1n
\0o o0 0 )
The right-hand side:

q= (_])],_])”.’(_1)n)T

There are 22(™) choices for By i, each resulting in a different USO.
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Deterministic vs. randomized pivot rules

@ There tends to be a “bad example” - a slow P-USO - for any
studied deterministic pivot rule.

@ Therefore examine randomized pivot rules,
analyze expected running time.
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Deterministic vs. randomized pivot rules

@ There tends to be a “bad example” - a slow P-USO - for any
studied deterministic pivot rule.

@ Therefore examine randomized pivot rules,
analyze expected running time.

.

Some randomized pivot rules

RANDOM EDGE chooses the outgoing edge uniformly at random.
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Deterministic vs. randomized pivot rules

@ There tends to be a “bad example” - a slow P-USO - for any
studied deterministic pivot rule.

@ Therefore examine randomized pivot rules,
analyze expected running time.

.

Some randomized pivot rules

RANDOM EDGE chooses the outgoing edge uniformly at random.

RANDOMIZED MURTY chooses a permutation of the indices uniformly
at random at the beginning, then in every pivot step

chooses the outgoing edge with the minimum index with
respect to this permutation.
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Morris’s slow example for RANDOM EDGE
P

Consider the LCP(M, q) with n odd,
1 2 0 0 0 0\ —1
0 1 2 0 0 0 —1
M= | oo o q= (%)
0 0 0 0 1 2 1
2 0 0 0 0 1/ 1)
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Morris’s slow example for RANDOM EDGE
P

Consider the LCP(M, q) with n odd,
1 2 0 0 0 0\ —1\
01 2 0 0 0 —
M= | e, . g= (%)
0 0 0 0 1 2 1
2 0 0 0 0 1/ 1)

Yy
Theorem [Morris, 2002]

RANDOM EDGE takes at least ((n — 1)/2)! iterations in expectation to
solve ().
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Morris’s slow example for RANDOM EDGE

Consider the LCP(M, q) with n odd,
1 2 0 0 0 0\ —1
0 1 2 0 0 0 —1
M= | oo o q= (%)
0 0 0 0 1 2 1
2 0 0 0 0 1) 1)

Yy
Theorem [Morris, 2002]

RANDOM EDGE takes at least ((n — 1)/2)! iterations in expectation to
solve ().

Theorem [E, Fukuda, Girtner, Liithi, 2009]

RANDOMIZED MURTY starting in any vertex of the cube takes at most
2n? — (5n — 3)/2 steps to solve (x).

v
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Oriented matroids

w— Mz =( [I —M —q]x:O
w,z>0 x; >0 WVie[2n]
Xon41 > 0
wlz =0 Xi Xign =0 Vi€ [n]

Oriented matroids

YV ={sgnx: I —M —q|x=0}
@ sgnx is a vector in {—, 0, +}*™*! defined as (sgnx); := sgnx;

o The collection V of sign vectors is the set of vectors of an oriented
matroid on 2n + 1 elements.
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What is an oriented matroid M?

@ a set E of elements

@ V, a set of vectors; V C {—, 0, +)F
(V1) 0 e V.
(V2) If X € V, then —X € V.
(V3) IfX,Y € V, then Xo Y € V.
(V4) If X, Y € Vand e € XT N Y, then there exists Z € V with
/T CXTUYT,Z CX UY, Z.=0,and
(XAYJUNX\NX)UXTNYT)U(XTUYT) C Z

@ C, the set of circuits; these are vectors with minimal support

@ a basis is a set of elements that contains the support of no vector
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Complementarity in oriented matroids

@ the set E of elements has complementary pairs (wj, zi)
@ matroid and its one-element extension:
o V={sgnx:|I —M]|x=0}
o V={sgnx:[I —M —q]x=0}

o the oriented matroid complementarity problem is to find in V a

vector like this:

0

0

_|_

_|_

_I_

_|_

0
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Let V ={sgnx: [I —M|x =0} where M is a P-matrix.

Lemma (1) [Todd, 1984]

For every sign vector X € V there is a an index 1i such that X,,. - X,, = +.

1
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Let V ={sgnx: [I —M|x =0} where M is a P-matrix.

Lemma (1) [Todd, 1984]

For every sign vector X € V there is a an index 1i such that X,,. - X,, = +.

1

Let V ={sgnx:|I —M]x = 0}where M is a K-matrix.

Lemma

For every sign vector X € V, we have

(1) Lemma (1) holds and
(i) If Xz > 0, then whenever X,,, = +, then also X,, = +

—Jo[+]+ —[+[o]+
+]ofo]+ +]o]o]—

Jan Foniok (Queen’s University) LCPs, USOs, OMs 20/09/11 31 /38




A theorem of Fiedler-Ptak f
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A theorem of Fiedler-Ptak f

HexocioBauxuii MareMa ru4ecKuii xKypuana 1. 12 (87) 1962, Ilpara

ON MATRICES WITH NON-POSITIVE OFF-DIAGONAL ELEMENTS
AND POSITIVE PRINCIPAL MINORS

MirosLAV FIEDLER and VLASTIMIL PTAK, Praha

(Received July 28, 1960)

The authors study a class of matrices which occur frequently in applica-

tions to convergence properties of iteration processes in linear algebra and
spectral theory of matrices.
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(4,3) Theorem. Let A€ Z. Then the following conditions are equivalent to each
other:

1° There exists a vector x = 0 such that Ax > 0;

2° there exists a vector x > 0 such that Ax > 0;

3° there exists a diagonal matrix D with positive diagonal elements such that
ADe > 0 (here e is the vector whose all coordinates are l);

4° there exists a diagonal matrix D with positive diagonal elements such that the
matrix W = AD is a matrix with dominant positive principal diagonal;

5° for each diagonal matrix R such that R = A the inverse R~ exists and
o(R™'(P — A)) < 1, where P is the diagonal of A;

6° if Be Z and B = A, then B~ ! exists;

7° each real proper value of A is positive;

8% all principal minors of A are positive;

9° there exists a strictly increasing sequence 0 + MicM,c...cM,=N
such that the principal minors det A(M) are positive;

10° there exists a permutation matrix P such that PAP™' may be written in the
form RS where R is a lower triangular matrix with positive diagonal elements
such that R € Z and S is an upper triangular matrix with positive diagonal elements
such that S e Z;

11° the inverse A~ exists and A~' = 0;

12° the real part of each proper value of A is positive;

13° for each vector x =+ 0 there exists an index k such that x,y, > 0 for y = Ax.



Theorem (The combinatorial Fiedler-Ptak theorem [k, Fukuda, Klaus, '11])

Let every sign vector X € V satisfy:
(i) If Xz > O, then whenever X,,, = +, then also X, =

Then the following statements are equivalent:

(a) VX €V thereis an index i such that X,,, - X,. = +.
(b) IXeV:Xz>0and Xy >0

(c) IXeV:X>0

(d) VXeV: Xw>0 = Xz>0

(a*) VY € V* there is an index i such that Y, - Y, = —.
(b*) Y e V*: Yy <0and Yz > 0
(c) AYeV :Yw<0and Yz >0
d”) VW eV :Yz7>20 = Yy <0
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SIMPLEPRINCIPALPIVOTING algorithm

COHG({h y IZ}) COHG({I1 y _MZD COHQ({—M1 y _MZ}) COHG({—M1 y IZ})

I, 5 L b

/ I /\Mh /\7\:1 /< ---~I
T, M v, M2 M, VB v, —M
w1 w2 ¢ w1 w2 (¢ w1 w2 (¢ w1 w2 ¢
— + 0|+ 00|+ O+ |+
00 0|+ + +10
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Pivoting on P-matroids [Todd, 1984]

In every pivot step i, we have:

1010 |— 1|+ . O|D|? |+
1 — 1+1
X T To X Tolo

Note that Xt, Xt ey = {sgnx: [I —M —q} x = O
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Pivoting on K-matroids [E, Fukuda, Klaus, 2011]

SIMPLEPRINCIPALPIVOT behaves as follows:

Tol+Tol+ 02121+
1 — — 3 k
X350 = X e

We find an upper bound on the number of pivot steps on each
complementary pair (wy, z;).
The worst case scenario is:

0 B — 0 0
— 0 0 B D

SIMPLEPRINCIPALPIVOT needs at most two pivot steps for each
complementary pair.
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@ LCPs hard in general

@ LCPs with P-matrices: much studied, but embarrassingly open
complexity status

@ unique-sink orientations as tools to study pivoting algorithms

@ oriented matroids capture the combinatorial structure
(no numbers)

@ purely combinatorial proofs possible

@ interplay of several areas of mathematics

o linear algebra & (continuous) geometry
o discrete geometry

o algebraic geometry

o combinatorics & order theory
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Some open problems

@ complexity: Are P-matrix LCPs PPAD-complete?

@ a subexponential algorithm for general USOs?

@ the Holt-Klee condition on USOs: find sink in polynomially many
steps?

@ better lower bounds for solving USOs
@ identify new matrix classes with polynomial LCPs
@ strongly polynomial algorithm for linear programming ?!? \
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