Linear Complementarity, Unique-Sink Orientations, Oriented Matroids

Jan Foniok

[Komei Fukuda, Bernd Gärtner, Lorenz Klaus, Hans-Jakob Lüthi, Markus Sprecher]

Conference on Discrete Geometry and Optimization 20 September 2011

Outline:

Linear Complementarity, Unique-Sink Orientations, Oriented Matroids

Jan Foniok

[Komei Fukuda, Bernd Gärtner, Lorenz Klaus, Hans-Jakob Lüthi, Markus Sprecher]

Conference on Discrete Geometry and Optimization 20 September 2011

A linear program...

min
$$c^Tx$$

s.t.
$$Ax \ge b$$

$$x \ge 0$$

... and its dual

s.t.
$$A^T y \leq c$$

$$y \ge 0$$

A linear program...

min
$$c^{\mathsf{T}}x$$

s.t.
$$Ax \ge b$$

$$\chi \geq 0$$

... and its dual

s.t.
$$A^T y \leq c$$

$$y \ge 0$$

with slack variables

$$\begin{pmatrix} \mathbf{u} \\ \mathbf{v} \end{pmatrix} - \begin{pmatrix} \mathbf{0} & -\mathbf{A}^{\mathsf{T}} \\ \mathbf{A} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix} = \begin{pmatrix} \mathbf{c} \\ -\mathbf{b} \end{pmatrix},$$

$$\begin{pmatrix} u \\ v \end{pmatrix} \ge 0, \quad \begin{pmatrix} x \\ y \end{pmatrix} \ge 0 \quad \text{and} \quad \begin{pmatrix} u \\ v \end{pmatrix}^T \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

with slack variables

$$\begin{pmatrix} u \\ v \end{pmatrix} - \begin{pmatrix} 0 & -A^{T} \\ A & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} c \\ -b \end{pmatrix},$$

$$\begin{pmatrix} u \\ v \end{pmatrix} \ge 0, \quad \begin{pmatrix} x \\ y \end{pmatrix} \ge 0 \quad \text{and} \quad \begin{pmatrix} u \\ v \end{pmatrix}^{T} \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

can be written as a Linear Complementarity Problem

Find w, z such that

$$w - Mz = q$$

 $w \ge 0$, $z \ge 0$ and $w^Tz = 0$

Linear Complementarity Problem (LCP)

Find w, z such that

$$w - Mz = q$$

 $w \ge 0$, $z \ge 0$ and $w^Tz = 0$

Sources

- linear programming
- quadratic programming
- two player games
- free boundary problems
- optimal stopping
- portfolio optimization

Computational complexity [Chung, 1989]

It is NP-complete to decide whether a solution exists.

Computational complexity [Chung, 1989]

It is NP-complete to decide whether a solution exists.

Proof.

Reduction from the equality-constrained *knapsack problem*: Given a set $A = \{a_1, a_2, ..., a_n\}$ of positive integers and an integer b, decide whether there is a subset of A that sums to b.

The problem is equivalent to the following LCP: $w, z \ge 0$, $w^Tz = 0$,

$$w_i + z_i = a_i$$
 for all $i = 1, ..., n$,

$$w_{n+1} + z_{n+1} = b - \sum_{i=1}^{n} z_i,$$

$$w_{n+2} + z_{n+2} = -b + \sum_{i=1}^{n} z_i$$
.

An important special case:

P-matrix: all principal minors positive

P-LCP: an LCP with a P-matrix

An important special case:

P-matrix: all principal minors positive

P-LCP: an LCP with a P-matrix

Complexity:

- unlikely to be NP-hard
- in the class PPAD; not known to be PPAD-complete
- no polynomial algorithm known

An important special case:

P-matrix: all principal minors positive

P-LCP: an LCP with a P-matrix

Complexity:

- unlikely to be NP-hard
- in the class PPAD; not known to be PPAD-complete
- no polynomial algorithm known

Theorem [Megiddo, 1988]

Consider the following problem:

• Given M and q, either find a solution (w, z) to LCP(M, q), or exhibit a non-positive principal minor of M.

If this problem is NP-hard, then NP = co-NP.

Why are P-matrices interesting?

[Samelson, Thrall, Wesler 1958; Ingleton 1966]

• LCP(M, q) has a unique solution for every vector q

Why are P-matrices interesting?

- LCP(M, q) has a unique solution for every vector q [Samelson, Thrall, Wesler 1958; Ingleton 1966]
- "nice" geometric properties
- unresolved complexity status
 - not NP-hard (?), PPAD (?)
 - squeezed between tractable positive definite matrices and NP-hard
 P₀-matrices
 - no polynomial algorithm known...
- actually arise in applications

Algorithms for LCPs

interior point: [Kojima, Megiddo, Mizuno, Noma, Wright, Ye, Yoshise, Zhang, ...]

- relax the condition $w^{T}z = 0$
- minimize $w^{T}z$ instead
- in some cases polynomial (e.g., convex)

Algorithms for LCPs

interior point: [Kojima, Megiddo, Mizuno, Noma, Wright, Ye, Yoshise, Zhang, ...]

- relax the condition $w^{T}z = 0$
- minimize $w^{T}z$ instead
- in some cases polynomial (e.g., convex)

pivoting: [Lemke 1970, & many others since]

- works with complementary or almost complementary bases
- needs a pivot rule
- can be purely combinatorial

The issue of degeneracy

- LCP(M, q) is **degenerate** if q can be expressed as a linear combination of some n-1 columns of (I-M)
- for practical purposes, it may be a problem
- for theory, we always *assume* that our LCP is *non-degenerate*
- non-degeneracy may be achieved by a symbolic perturbation of q

The combinatorics of LCPs

$$q = w - Mz$$
$$w^{\mathsf{T}}z = 0$$

The hard part: determine whether $w_i = 0$ or $z_i = 0$ for each i. The rest is a system of linear equations.

The combinatorics of LCPs

$$q = w - Mz$$
$$w^{\mathsf{T}}z = 0$$

The hard part: determine whether $w_i = 0$ or $z_i = 0$ for each i. The rest is a system of linear equations.

Simple principal pivoting methods

- start with an arbitrary complementary basis
- if not feasible, do a principal pivot:
 - insert a (negative) variable into the basis (*pivot rule!*)
 - remove the complementary variable from the basis
- repeat until solution is reached

Unique-sink orientation — USO

an oriented graph with

- $V = \{0, 1\}^n$
- u ~ ν iff in Hamming distance 1

Unique-sink orientation — USO

an oriented graph with

- $V = \{0, 1\}^n$
- $u \sim v$ iff in Hamming distance 1
- oriented so that every subcube has a unique sink

So the whole cube must have a unique sink

Unique-sink orientation — USO

an oriented graph with

- $V = \{0, 1\}^n$
- $u \sim v$ iff in Hamming distance 1
- oriented so that every subcube has a unique sink

So the whole cube must have a unique sink, but also proper subcubes, like this square.

Unique-sink orientation — USO

an oriented graph with

- $V = \{0, 1\}^n$
- u ~ ν iff in Hamming distance 1
- oriented so that every subcube has a unique sink

So the whole cube must have a unique sink, but also proper subcubes, like this square. And not two sinks.

Unique-sink orientation — USO

an oriented graph with

- $V = \{0, 1\}^n$
- u ~ ν iff in Hamming distance 1
- oriented so that every subcube has a unique sink

So the whole cube must have a unique sink, but also proper subcubes, like this square. And not two sinks. And not none.

Unique-sink orientation — USO

an oriented graph with

- $V = \{0, 1\}^n$
- u ~ ν iff in Hamming distance 1
- oriented so that every subcube has a unique sink

So the whole cube must have a unique sink, but also proper subcubes, like this square. And not two sinks. And not none.

Cycles may occur.

The combinatorics of LCPs

$$q = w - Mz$$
$$w^{\mathsf{T}}z = 0$$

The hard part: determine whether $w_i = 0$ or $z_i = 0$ for each i.

Inducing a USO

- a choice of $w_i = 0$ or $z_i = 0$ corresponds to a 0-1-vector
- 0-1-vectors are vertices of a hypercube
- solve equations: negative values → outgoing edges
- for a P-matrix, this is a USO [Stickney, Watson, 1978]
- find the sink → found the LCP solution

Goal: Find the sink

Input representation: by the vertex enumeration oracle: ask for the orientation of edges incident with a given vertex

Algorithm efficiency: number of oracle calls as function of dimension

Algorithms

Naive algorithm: check all vertices (2ⁿ queries)

Path-following algorithms: simple principal pivoting

"Random access" algorithms: seesaw

Best general algorithms known to date

deterministic

randomized

general USOs

acyclic USOs

1.609ⁿ

[Szabó, Welzl]

1.438ⁿ

[Szabó, Welzl, Rote]

 $\exp(2\sqrt{n})$

[Matoušek, Sharir, Welzl, Gärtner]

Some matrix classes

P-matrix: all principal minors positive

K-matrix: P-matrix and all off-diagonal elements ≤ 0

and

Some USO classes

P-USO: coming from a P-matrix LCP

K-USO: coming from a K-matrix LCP

Some matrix classes

P-matrix: all principal minors positive

K-matrix: P-matrix and all off-diagonal elements ≤ 0

and

Some USO classes

P-USO: coming from a P-matrix LCP

K-USO: coming from a K-matrix LCP

Theorem [F., Fukuda, Gärtner, Lüthi, 2009]

Any path-following algorithm with any starting vertex finds the sink of any K-USO after at most 2n + 1 oracle queries.

Theorem [F., Fukuda, Gärtner, Lüthi, 2009]

Any path-following algorithm with any starting vertex finds the sink of any K-USO after at most 2n + 1 oracle queries.

The proof uses a K-matrix characterization of [Fiedler, Pták, 1962] but can also be done purely combinatorially (coming in a minute).

Does the "Lemma" characterize K-USOs?

No. Because:

There are at least $2^{2^{n/poly(n)}}$ n-dimensional USOs satisfying the "Lemma", but at most $2^{O(n^3)}$ P-USOs.

Does the "Lemma" characterize K-USOs?

No. Because:

There are at least $2^{2^{n/poly(n)}}$ n-dimensional USOs satisfying the "Lemma", but at most $2^{O(n^3)}$ P-USOs.

Proof of the upper bound [F., Gärtner, Klaus, Sprecher, 2010+].

The orientation is determined by the signs of $2^n \cdot n$ values of polynomials in the entries of M and q. Each of the polynomials has degree at most n.

Theorem [Warren, 1968]

The number of distinct (nowhere-zero) sign patterns of s real polynomials in k variables, each of degree at most d, is at most $(4eds/k)^k$.

Counting USOs

class

all USOs [Matoušek]

acyclic USOs [Matoušek]

satisfying "Lemma"

Holt-Klee USOs [Develin]

P-USOs

K-USOs

lower bound

$$n^{\Omega(2^n)}$$

$$2^{2^{n-1}}$$

$$2^{2^n/\sqrt{n}}$$

 $2^{2^n}/\operatorname{poly}(n)$

$$2^{\Omega(n^3)}$$

$$2^{\Omega(n^3)}$$

upper bound

$$n^{O(2^n)}$$

$$(n+1)^{2^n}$$

$$2^{O(n^3)}$$

[F., Gärtner, Klaus, Sprecher, 2010+]

Counting USOs

class

all USOs [Matoušek]

acyclic USOs [Matoušek]

satisfying "Lemma"

Holt-Klee USOs [Develin]

P-USOs

K-USOs

lower bound

 $n^{\Omega(2^n)}$

 $2^{2^{n-1}}$

 $2^{2^n/\sqrt{n}}$

 $2^{2^n}/\operatorname{poly}(n)$

 $2^{\Omega(n^3)}$

 $2\Omega(n^3)$

upper bound

 $n^{O(2^n)}$

 $(n+1)^{2^n}$

 $2^{O(n^3)}$

[F., Gärtner, Klaus, Sprecher, 2010+]

Holt-Klee USOs

In every subcube of dimension d there are d vertex-disjoint directed paths from the (unique) source to the (unique) sink.

Every P-USO is Holt-Klee. [Gärtner, Morris, Rüst, 2008]

Counting USOs

class

satisfying "Lemma"

lower bound upper bound

$$2^{\binom{n-1}{\lfloor (n-1)/2\rfloor}}$$

Lemma

In any K-USO:

 \Longrightarrow

Many K-USOs

The K-matrix:

$$M(\beta) = \begin{pmatrix} 1 & -1 - \beta_{1,2} & -1 - \beta_{1,3} & \dots & -1 - \beta_{1,n} \\ 0 & 1 & -1 - \beta_{2,3} & \dots & -1 - \beta_{2,n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & -1 - \beta_{n-1,n} \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

The right-hand side:

$$q = (-1, 1, -1, ..., (-1)^n)^T$$

There are $2^{\Omega(n^3)}$ choices for $\beta_{i,j}$, each resulting in a different USO.

Deterministic vs. randomized pivot rules

- There tends to be a "bad example" a slow P-USO for any studied deterministic pivot rule.
- Therefore examine randomized pivot rules, analyze expected running time.

Deterministic vs. randomized pivot rules

- There tends to be a "bad example" a slow P-USO for any studied deterministic pivot rule.
- Therefore examine randomized pivot rules, analyze expected running time.

Some randomized pivot rules

RANDOM EDGE chooses the outgoing edge uniformly at random.

Deterministic vs. randomized pivot rules

- There tends to be a "bad example" a slow P-USO for any studied deterministic pivot rule.
- Therefore examine randomized pivot rules, analyze expected running time.

Some randomized pivot rules

RANDOM EDGE chooses the outgoing edge uniformly at random.

RANDOMIZED MURTY chooses a permutation of the indices uniformly at random at the beginning, then in every pivot step chooses the outgoing edge with the minimum index with respect to this permutation.

Morris's slow example for RANDOM EDGE

Consider the LCP(M, q) with n odd,

$$M = \begin{pmatrix} 1 & 2 & 0 & \dots & 0 & 0 & 0 \\ 0 & 1 & 2 & \dots & 0 & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 & 1 & 2 \\ 2 & 0 & 0 & \dots & 0 & 0 & 1 \end{pmatrix}, \qquad q = \begin{pmatrix} -1 \\ -1 \\ \vdots \\ -1 \\ -1 \end{pmatrix}. \qquad (*)$$

Morris's slow example for RANDOM EDGE

Consider the LCP(M, q) with n odd,

$$M = \begin{pmatrix} 1 & 2 & 0 & \dots & 0 & 0 & 0 \\ 0 & 1 & 2 & \dots & 0 & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 & 1 & 2 \\ 2 & 0 & 0 & \dots & 0 & 0 & 1 \end{pmatrix}, \qquad q = \begin{pmatrix} -1 \\ -1 \\ \vdots \\ -1 \\ -1 \end{pmatrix}. \tag{*}$$

Theorem [Morris, 2002]

RANDOM EDGE takes at least ((n-1)/2)! iterations in expectation to solve (*).

Morris's slow example for RANDOM EDGE

Consider the LCP(M, q) with n odd,

$$M = \begin{pmatrix} 1 & 2 & 0 & \dots & 0 & 0 & 0 \\ 0 & 1 & 2 & \dots & 0 & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 & 1 & 2 \\ 2 & 0 & 0 & \dots & 0 & 0 & 1 \end{pmatrix}, \qquad q = \begin{pmatrix} -1 \\ -1 \\ \vdots \\ -1 \\ -1 \end{pmatrix}. \tag{*}$$

Theorem [Morris, 2002]

RANDOM EDGE takes at least ((n-1)/2)! iterations in expectation to solve (*).

Theorem [F., Fukuda, Gärtner, Lüthi, 2009]

Randomized Murty starting in *any* vertex of the cube takes at most $2n^2 - (5n - 3)/2$ steps to solve (*).

Oriented matroids

$$w-Mz = q$$

$$[I -M -q]x = 0$$

$$w,z \ge 0 \longleftrightarrow x_i \ge 0 \quad \forall i \in [2n]$$

$$x_{2n+1} > 0$$

$$x_{i} \cdot x_{i+n} = 0 \quad \forall i \in [n]$$

Oriented matroids

- $\hat{\mathcal{V}} = \{ \operatorname{sgn} x : \begin{bmatrix} I & -M & -q \end{bmatrix} x = 0 \}$
- $\operatorname{sgn} x$ is a vector in $\{-,0,+\}^{2n+1}$ defined as $(\operatorname{sgn} x)_i := \operatorname{sgn} x_i$
- The collection \hat{V} of sign vectors is the set of vectors of an oriented matroid on 2n + 1 elements.

What is an oriented matroid M?

- a set E of elements
- V, a set of vectors; $V \subseteq \{-, 0, +\}^E$ (V1) $0 \in V$.
 - (V2) If $X \in \mathcal{V}$, then $-X \in \mathcal{V}$.
 - (V3) If $X, Y \in \mathcal{V}$, then $X \circ Y \in \mathcal{V}$.
 - (V4) If $X, Y \in \mathcal{V}$ and $e \in X^+ \cap Y^-$, then there exists $Z \in \mathcal{V}$ with $Z^+ \subseteq X^+ \cup Y^+$, $Z^- \subseteq X^- \cup Y^-$, $Z_e = 0$, and $(\underline{X} \setminus \underline{Y}) \cup (\underline{Y} \setminus \underline{X}) \cup (X^+ \cap Y^+) \cup (X^- \cup Y^-) \subseteq \underline{Z}$.
- \circ \mathcal{C} , the set of circuits; these are vectors with minimal support
- a basis is a set of elements that contains the support of no vector

Complementarity in oriented matroids

- the set E of elements has complementary pairs (w_i, z_i)
- matroid and its one-element extension:
 - $V = \{\operatorname{sgn} x : [I -M] x = 0\}$
 - $\hat{\mathcal{V}} = \{\operatorname{sgn} x : \begin{bmatrix} I & -M & -q \end{bmatrix} x = 0\}$
- the oriented matroid complementarity problem is to find in \hat{V} a vector like this:

0	0	+	+
+	+	0	

Let $V = \{ \operatorname{sgn} x : [I - M] x = 0 \}$ where M is a P-matrix.

Lemma (†) [Todd, 1984]

For every sign vector $X \in V$ there is a an index i such that $X_{w_i} \cdot X_{z_i} = +$.

Let $V = \{ \operatorname{sgn} x : [I - M] x = 0 \}$ where M is a P-matrix.

Lemma (†) [Todd, 1984]

For every sign vector $X \in V$ there is a an index i such that $X_{w_i} \cdot X_{z_i} = +$.

Let $V = \{ \operatorname{sgn} x : [I - M] x = 0 \}$ where M is a K-matrix.

Lemma

For every sign vector $X \in V$, we have

- (i) Lemma (†) holds and
- (ii) If $X_Z \ge 0$, then whenever $X_{w_i} = +$, then also $X_{z_i} = +$

	0	+	+
+	0	0	+

	+	0	+
\Box	0	0	

Чехословацкий математический журнал т. 12 (87) 1962, Прага

ON MATRICES WITH NON-POSITIVE OFF-DIAGONAL ELEMENTS AND POSITIVE PRINCIPAL MINORS

MIROSLAV FIEDLER and VLASTIMIL PTÁK, Praha (Received July 28, 1960)

The authors study a class of matrices which occur frequently in applications to convergence properties of iteration processes in linear algebra and spectral theory of matrices.

32/38

- **(4,3) Theorem.** Let $A \in \mathbb{Z}$. Then the following conditions are equivalent to each other:
 - 1° There exists a vector $x \ge 0$ such that Ax > 0;
 - 2° there exists a vector x > 0 such that Ax > 0;
- 3° there exists a diagonal matrix D with positive diagonal elements such that ADe > 0 (here e is the vector whose all coordinates are 1);
- 4° there exists a diagonal matrix D with positive diagonal elements such that the matrix W = AD is a matrix with dominant positive principal diagonal;
- 5° for each diagonal matrix R such that $R \ge A$ the inverse R^{-1} exists and $\sigma(R^{-1}(P-A)) < 1$, where P is the diagonal of A;
 - 6° if $B \in \mathbb{Z}$ and $B \geq A$, then B^{-1} exists;
 - 7° each real proper value of A is positive;
 - 8° all principal minors of A are positive;
- 9° there exists a strictly increasing sequence $0 \neq M_1 \subset M_2 \subset ... \subset M_n = N$ such that the principal minors det $A(M_i)$ are positive;
- 10° there exists a permutation matrix P such that PAP^{-1} may be written in the form RS where R is a lower triangular matrix with positive diagonal elements such that $R \in \mathbb{Z}$ and S is an upper triangular matrix with positive diagonal elements such that $S \in \mathbb{Z}$;
 - 11° the inverse A^{-1} exists and $A^{-1} \ge 0$;
 - 12° the real part of each proper value of A is positive;
 - 13° for each vector $x \neq 0$ there exists an index k such that $x_k y_k > 0$ for y = Ax.

Theorem (The combinatorial Fiedler-Pták theorem [F., Fukuda, Klaus, '11])

Let every sign vector $X \in V$ *satisfy:*

(ii) If $X_Z \ge 0$, then whenever $X_{w_i} = +$, then also $X_{z_i} = +$

Then the following statements are equivalent:

- (a) $\forall X \in V$ there is an index i such that $X_{w_i} \cdot X_{z_i} = +$.
- (b) $\exists X \in \mathcal{V} : X_Z \geq 0$ and $X_W > 0$
- (c) $\exists X \in \mathcal{V} : X > 0$
- (d) $\forall X \in \mathcal{V} : X_W \geq 0 \implies X_Z \geq 0$
- (a*) $\forall Y \in \mathcal{V}^*$ there is an index i such that $Y_{w_i} \cdot Y_{z_i} = -$.
- (b*) $\exists Y \in V^* : Y_W \le 0 \text{ and } Y_Z > 0$
- $(c^*) \exists Y \in \mathcal{V}^* : Y_W < 0 \text{ and } Y_Z > 0$
- $(d^*) \forall Y \in \mathcal{V}^* : Y_Z \ge 0 \implies Y_W \le 0$

SIMPLEPRINCIPALPIVOTING algorithm

 $cone(\{I_1,I_2\})$

 $cone(\{I_1, -M_2\})$ $cone(\{-M_1, -M_2\})$ $cone(\{-M_1, I_2\})$

Pivoting on P-matroids [Todd, 1984]

In every pivot step i, we have:

Note that $X^i, X^{i+1} \in \hat{\mathcal{V}} = \{\operatorname{sgn} x : \begin{bmatrix} I & -M & -q \end{bmatrix} x = 0 \}.$

Pivoting on K-matroids [F., Fukuda, Klaus, 2011]

SIMPLEPRINCIPALPIVOT behaves as follows:

We find an upper bound on the number of pivot steps on each complementary pair (w_i, z_i) .

The worst case scenario is:

$$\cdots \longrightarrow \begin{bmatrix} 0 \\ - \end{bmatrix} \longrightarrow \begin{bmatrix} \oplus \\ 0 \end{bmatrix} \longrightarrow \cdots \longrightarrow \begin{bmatrix} - \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 \\ \oplus \end{bmatrix} \longrightarrow \begin{bmatrix} 0 \\ - \end{bmatrix} \longrightarrow \begin{bmatrix} 0 \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 \\ - \end{bmatrix} \longrightarrow \begin{bmatrix} 0 \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 \\ - \end{bmatrix} \longrightarrow \begin{bmatrix} 0 \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 \\ - \end{bmatrix} \longrightarrow \begin{bmatrix} 0 \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 \\ - \end{bmatrix} \longrightarrow \begin{bmatrix} 0 \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 \\ - \end{bmatrix} \longrightarrow \begin{bmatrix} 0 \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 \\ - \end{bmatrix} \longrightarrow \begin{bmatrix} 0 \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 \\ - \end{bmatrix} \longrightarrow \begin{bmatrix} 0 \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 \\ - \end{bmatrix} \longrightarrow \begin{bmatrix} 0 \\ - \end{bmatrix} \longrightarrow \begin{bmatrix} 0 \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 \\ - \end{bmatrix} \longrightarrow \begin{bmatrix} 0 \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 \\ - \end{bmatrix} \longrightarrow \begin{bmatrix} 0 \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 \\ - \end{bmatrix} \longrightarrow \begin{bmatrix} 0 \\ -$$

SIMPLEPRINCIPALPIVOT needs at most two pivot steps for each complementary pair.

Summary

- LCPs hard in general
- LCPs with P-matrices: much studied, but embarrassingly open complexity status
- unique-sink orientations as tools to study pivoting algorithms
- oriented matroids capture the combinatorial structure (no numbers)
- purely combinatorial proofs possible
- interplay of several areas of mathematics
 - linear algebra & (continuous) geometry
 - discrete geometry
 - algebraic geometry
 - combinatorics & order theory

Some open problems

- **complexity:** Are P-matrix LCPs PPAD-complete?
- a subexponential algorithm for general USOs?
- the Holt-Klee condition on USOs: find sink in polynomially many steps?
- better lower bounds for solving USOs
- identify new matrix classes with polynomial LCPs
- strongly polynomial algorithm for linear programming ?!? \(\)\

