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What are What are ““geometric covering geometric covering 
tourstours””??

nn Ask Google!Ask Google!



Covering ToursCovering Tours

nn Cover a point set SCover a point set S

Just geometric TSP



Covering ToursCovering Tours
nn Cover a set of disksCover a set of disks

TSP with (circular) neighborhoods

•Gather data from sensors
•Cover imprecise points
•School bus route



Covering ToursCovering Tours
nn Cover a set of polygonsCover a set of polygons

TSP with neighborhoods



Covering ToursCovering Tours
nn Cover set of all visibility polygonsCover set of all visibility polygons

Watchman Route Problem

Subject to: stay 
inside polygonal 
domain P



A Brief TaxonomyA Brief Taxonomy

nn Type of networkType of network: path, tour, tree: path, tour, tree

nn What must be covered/visitedWhat must be covered/visited: set S of points, : set S of points, 
regions, visibility polygons, distanceregions, visibility polygons, distance--truncated truncated 
visibility regions, sets of points/regions, etc. visibility regions, sets of points/regions, etc. 

nn Objective functionObjective function: min: min--totaltotal--length (Euclidean, Llength (Euclidean, L11 , , 
geodesic),  bottleneck (mingeodesic),  bottleneck (min--max, maxmax, max--min), number min), number 
of links/Steiner points, total amount of turning, of links/Steiner points, total amount of turning, 
number of reflex vertices (number of reflex vertices (““reflexivityreflexivity””), other ), other 
functions of edge lengths, etcfunctions of edge lengths, etc

nn Other constraintsOther constraints: obstacles, link lengths, order of : obstacles, link lengths, order of 
visitation, convex tours, time windows, separate visitation, convex tours, time windows, separate 
certain pairs of points, vehicle capacities, etc.certain pairs of points, vehicle capacities, etc.

nn Online vs. OfflineOnline vs. Offline

Up to constants in approx, no difference



OutlineOutline

nn Introduction: Geometric Covering ToursIntroduction: Geometric Covering Tours

nn TSP with Neighborhoods TSP with Neighborhoods 

nn Watchman RouteWatchman Route

nn Lawn mowing/millingLawn mowing/milling

nn Data Gathering in Sensor NetworksData Gathering in Sensor Networks

nn Other Covering Tour ProblemsOther Covering Tour Problems



TSPN: TSP with NeighborhoodsTSPN: TSP with Neighborhoods

Find shortest tour to visit a set of 
neighborhoods P1,P2,…,Pn



Background on TSPNBackground on TSPN

Generalizes 2D Euclidean TSP   (thus, NPGeneralizes 2D Euclidean TSP   (thus, NP--hard)hard)

Introduced by Introduced by [Arkin & Hassin, 1994][Arkin & Hassin, 1994]
•• ““obviousobvious”” heuristics do not work:heuristics do not work:

nn TSP approx on centroids (TSP approx on centroids (as representative pointsas representative points))

nn Greedy algorithms   (Greedy algorithms   (PrimPrim-- or Kruskalor Kruskal--likelike) ) 

•• O(1)O(1)--approx, time O(n + k log k), for approx, time O(n + k log k), for ““nicenice”” regions:regions:
nn Parallel unit segmentsParallel unit segments

nn Unit disksUnit disks

nn Translates of a polygon PTranslates of a polygon P

•• Combination LemmaCombination Lemma



TSPN: ApproximationTSPN: Approximation

nn HopeHope:  Since geometric TSP on points is :  Since geometric TSP on points is 
““easyeasy”” to approximate (has O(n log n) to approximate (has O(n log n) 
PTAS), maybe TSPN does too!PTAS), maybe TSPN does too!



General Connected RegionsGeneral Connected Regions

O(log k)O(log k)--approxapprox [Mata & M, SoCG[Mata & M, SoCG’’95]95]

Use guillotine rectangular subdivisions, DPUse guillotine rectangular subdivisions, DP

((nonnon –– disjoint:  regions may overlap)disjoint:  regions may overlap)

nn O(nO(n55) time) time
[Mata & M, SoCG[Mata & M, SoCG’’95]95]

nn O(nO(n22 log n)log n)

[Gudmundsson & Levcopoulos, 1999][Gudmundsson & Levcopoulos, 1999]

k = # regions               n = # vertices of all regions



O(1)O(1)--ApproximationsApproximations

nn Unit disks, parallel unit segments, translates of Unit disks, parallel unit segments, translates of PP

[Arkin & Hassin, 1994][Arkin & Hassin, 1994]

nn Connected regions of comparable sizeConnected regions of comparable size

[Dumitrescu & M, SODA[Dumitrescu & M, SODA’’01]01]

nn Disjoint Disjoint fatfat regions of regions of anyany sizesize [de Berg, Gudmundsson, [de Berg, Gudmundsson, 
Katz, Levcopoulos, Overmars, van der Stappen, ESAKatz, Levcopoulos, Overmars, van der Stappen, ESA’’02]02]

nn Discrete point sets within disjoint, fat, Discrete point sets within disjoint, fat, nonnon--convex regionsconvex regions

[Elbassioni, Fishkin, Mustafa, Sitters, ICALP[Elbassioni, Fishkin, Mustafa, Sitters, ICALP’’05]05]

nn Non Non -- disjoint, convex, fat, comparable sizedisjoint, convex, fat, comparable size

[Elbassioni, Fishkin, Sitters, ISAAC[Elbassioni, Fishkin, Sitters, ISAAC’’06]06]

nn Arbitrary  Arbitrary  (nearly) disjoint connected regions(nearly) disjoint connected regions

[M, SoCG[M, SoCG’’10]10]



(1+(1+εε))--ApproximationsApproximations

nn Disjoint (or nearly disjoint) Disjoint (or nearly disjoint) fatfat regions of comparable size  regions of comparable size  
[Dumitrescu & M, SODA[Dumitrescu & M, SODA’’01]01]

nn Point clusters within disjoint Point clusters within disjoint fatfat regions of comparable regions of comparable 
size in Rsize in Rdd [Feremans, Grigoriev, EWCG[Feremans, Grigoriev, EWCG’’05]05]

nn PTAS:PTAS: Disjoint (or nearly disjoint) Disjoint (or nearly disjoint) fatfat regions of regions of arbitraryarbitrary
sizes.  (sizes.  (DefDef:  P is :  P is fatfat if  area( P ) = if  area( P ) = ΩΩ( diam( diam22(P) )) (P) )) [M, SODA[M, SODA’’07]07]

nn QPTAS: QPTAS: Disjoint, Disjoint, αα--fat, arbitrary sizes in Rfat, arbitrary sizes in Rdd

•• With const probability, (1+With const probability, (1+εε))--approx in time                 approx in time                 
Exp(O(1/Exp(O(1/εε))O(d) O(d) O(O(αα))O(dO(d22)) loglogO(d)O(d) n)                  n)                  [Chan, Elbassioni, [Chan, Elbassioni, ’’08]08]

•• Also, similar for doubling dimension dAlso, similar for doubling dimension d

Weaker notion than usual “fatness”



Related Work: APXRelated Work: APX--hardnesshardness

nn General connected regions (overlapping):General connected regions (overlapping):

•• No cNo c--approx with c<391/390, unless P=NPapprox with c<391/390, unless P=NP

[de Berg, Gudmundsson, Katz, Levcopoulos, [de Berg, Gudmundsson, Katz, Levcopoulos, 

Overmars, van der Stappen, ESAOvermars, van der Stappen, ESA’’02]02]

(from MinVertexCover)(from MinVertexCover)

•• No cNo c--approx with c<2approx with c<2

[Safra, Schwartz, ESA[Safra, Schwartz, ESA’’03]03]
(from Hypergraph VertexCover)(from Hypergraph VertexCover)

nn Line segments, comparable lengthLine segments, comparable length
[Elbassioni, Fishkin, Sitters, ISAAC[Elbassioni, Fishkin, Sitters, ISAAC’’06]06]

nn Pairs of points (disconnected)Pairs of points (disconnected) [Dror, Orlin, 2004][Dror, Orlin, 2004]



Exact PolyExact Poly--Time SolutionsTime Solutions

TSPN for a set of infinite lines in 2D:

Solved in O(n4 log n) time using Watchman 
Route solution [Dror, Efrat, Lubiw, M, STOC’03]

Q: Is this the only 
nontrivial  case of TSPN 
solvable in poly-time?

Q: What about visiting 
planes in 3D?  NP-hard?

Q: Simple, fast (O(n log n)?)
algorithm?



Difficulty in Applying TSP Difficulty in Applying TSP 
Methods to TSPN / MSTNMethods to TSPN / MSTN

Consider a subproblem (rectangle):



Approximation of 2D TSPN: Approximation of 2D TSPN: 
Connected RegionsConnected Regions
Fat Regions                         non-Fat Regions

Comparable
sizes

Arbitrary
size

Disjoint

Non-Disjoint

Disjoint

Non-Disjoint

Disjoint

Non-Disjoint

Disjoint

Non-Disjoint

PTAS

O(1)

O(1)

O(1)
O(1), PTAS?

PTAS

Recent

O(log n)

O(log n)

APX-hard

O(log n)

O(1)

APX-hard

Conjecture:  
PTAS for all

Conjecture:  
O(1) for all

PTAS
Newest

Newest
Newest
O(1)



Recent ResultsRecent Results

nn An O(1)An O(1)--approximation for TSPN for approximation for TSPN for 
disjoint (or sufficiently disjoint) disjoint (or sufficiently disjoint) 
connected regions in the plane.connected regions in the plane.

nn A cA c--approx for TSPN for fat connected approx for TSPN for fat connected 
regions regions impliesimplies an O(c)an O(c)--approx for TSPN approx for TSPN 
for arbitrary connected regions.for arbitrary connected regions.

[SoCG’10]

Previous:  O(log n)-approximation

Thus, enough to get O(1)-approx for fat regions to 
get O(1)-approx for arbitrary connected regions.

Also applies to non-disjoint convex regions



Outline of MethodOutline of Method

nn Replace each (possibly skinny) input Replace each (possibly skinny) input 
region with its four region with its four fatfat ““directional directional 
hullshulls”” (which can overlap)(which can overlap)

(overlapping)

skinny

fat

Blue 
Hull

Red 
Hull

Def:  X is fat if area(X) = Ω( diam2(X) )

Lemma:  Either all 4 blue hulls are fat or 
all 4 red hulls are fat



Outline of MethodOutline of Method

nn Select a disjoint subset, Select a disjoint subset, EE00, of these , of these 
hulls:  Greedily select in order of hulls:  Greedily select in order of 
increasing size.increasing size.



Outline of MethodOutline of Method

nn Compute an approximately optimal tour, Compute an approximately optimal tour, 
TT, of the disjoint fat regions , of the disjoint fat regions EE00



Outline of MethodOutline of Method

nn Convert Convert TT to a polygonal subdivision, to a polygonal subdivision, GG, , 
having histogram faceshaving histogram faces

O(1)-factor



Outline of MethodOutline of Method

nn Any region Any region PP
ii
not visited by not visited by GG must be must be 

close (within distance O(diam(close (within distance O(diam(PP
ii
)) of the )) of the 

boundary of the face, boundary of the face, HH, containing , containing PP
ii



Outline of MethodOutline of Method

nn New problem for New problem for HH: Find a min: Find a min--length length 
forest, forest, FF**, that spans all regions , that spans all regions RR

HH
, so , so 

that that FF** ∪∪ ∂∂HH is connectedis connected

Find min-length 
forest F linking all 
regions in H to ∂H.



Outline of MethodOutline of Method

nn Define stratified grid for Define stratified grid for HH

Convert forest 
problem to special 
form of set cover 
using stratified grid



Outline of MethodOutline of Method

nn Approximation algorithm:Approximation algorithm:
•• Lower boundLower bound: OPT : OPT ≥≥ ΩΩ(total sizes of grid (total sizes of grid 
cells intersecting cells intersecting FF**))

•• AlgorithmAlgorithm: DP to find min: DP to find min--weight covering weight covering 
set of grid cells that intersect all regions set of grid cells that intersect all regions 
within within HH

Related Covering Problem: 
Cover segs with fewest rays
DP solves  [Katz,M,Nir]



Open ProblemsOpen Problems

nn O(1)O(1)--approx for approx for arbitrary connected arbitrary connected regions regions 
in the plane?   in the plane?   
(known for (nearly) disjoint or convex regions)(known for (nearly) disjoint or convex regions)

nn PTAS for PTAS for arbitrary disjoint connected arbitrary disjoint connected 
regions in the plane?  regions in the plane?  (now known for (now known for fatfat regions)regions)

(APX(APX--hardness relies on overlap)hardness relies on overlap)

nn O(1)O(1)--approx for approx for disconnecteddisconnected regions in the regions in the 
plane?     plane?     (group (class) Steiner, 1(group (class) Steiner, 1--ofof--aa--set TSP)set TSP)

(APX(APX--hard for pairs of points)hard for pairs of points)
nn What about obstacles?  (geodesic metric)What about obstacles?  (geodesic metric)
(recent: (recent: ΩΩ(log k)(log k)--hard; O(log k)hard; O(log k)--approx in some cases)approx in some cases)

nn Higher dimensionsHigher dimensions: Lines or planes in 3D?: Lines or planes in 3D?



Convex Covering ToursConvex Covering Tours
nn Input: Set S of geometric objects in 2DInput: Set S of geometric objects in 2D

2929

Goal: Determine if there exists a convex transversal (stabber)

Arik Tamir (3/13/87); parallel segs by DP, [Goodrich-Snoeyink]

Related: Allow objects interior to tour [Rappaport, et al]



Convex Covering ToursConvex Covering Tours
nn Settle the open problem in 2D:Settle the open problem in 2D:

•• Deciding existence of a convex transversal Deciding existence of a convex transversal 
is NPis NP--complete, in generalcomplete, in general

•• If objects S are disjoint, or form set of If objects S are disjoint, or form set of 
pseudodisks, then polypseudodisks, then poly--time algorithm to time algorithm to 
decide, and to max # objects stabbeddecide, and to max # objects stabbed

nn 3D: NP3D: NP--complete, even for disjoint diskscomplete, even for disjoint disks

nn Used to compute Used to compute ““convexityconvexity”” measuremeasure
3030

Hard even for terrain stabbers!

Assumes candidate set P of corners 
of stabber is given.

[ADKMPSS’11]



Ordered Covering Tours/PathsOrdered Covering Tours/Paths

nn Order given   Order given   [DELM][DELM]

Convex: polyConvex: poly--timetime

NonNon--convex, overlapping: NPconvex, overlapping: NP--hardhard

nn Related to 3D shortest Related to 3D shortest 
pathspaths

Q: Shortest simple
tour, even for points?

1
2

3

4

5

6

Q: Disjoint non-convex?





Safari ProblemSafari Problem



Zookeeper ProblemZookeeper Problem



Watchman Route ProblemWatchman Route Problem
nn Find a shortest tour for a guard to be Find a shortest tour for a guard to be 
able to see all of the domainable to see all of the domain



nn Closely related to TSPN: visit VP(p), Closely related to TSPN: visit VP(p), 
for all p in Pfor all p in P

nn PolyPoly--time in simple polygons   time in simple polygons   [CN,DELM][CN,DELM]

Best time bound: O(nBest time bound: O(n33 log n) log n) [DELM][DELM]

nn NPNP--hard in polygons with holeshard in polygons with holes
•• No approx algorithm known in generalNo approx algorithm known in general

•• Rectilinear visibility: O(log n)Rectilinear visibility: O(log n)--approx   approx   
[MM[MM’’95]95]

•• ProgressProgress: : 
nn PTAS for some fat obstacle casesPTAS for some fat obstacle cases

nn ΩΩ(log n)(log n)--lower bound, in generallower bound, in general

nn O(log n)O(log n)--approx with a approx with a ““bounded perimeter bounded perimeter 
assumptionassumption””

nn 3D: Depends on 3D TSPN   3D: Depends on 3D TSPN   [ADDFM][ADDFM]

Watchman Route ProblemsWatchman Route Problems

Q: Approx for planar
domain, standard visibility?

Q: Approx for guard on 
a terrain surface?New: general case



Special CaseSpecial Case

nn Watchman on an arrangement of linesWatchman on an arrangement of lines
•• Exact polytime algorithm (DP to search for CH)Exact polytime algorithm (DP to search for CH)

•• Simpler 2Simpler 2--approx  [Dumitrescuapprox  [Dumitrescu--ZylinskiZylinski’’11]11]



Special CaseSpecial Case

nn Thin polygons: PSLGThin polygons: PSLG’’ss

•• polylogpolylog--approx using oneapprox using one--ofof--aa--set TSP on sets of set TSP on sets of 
collinear vertices along straight pathscollinear vertices along straight paths

•• O(1)O(1)--approx if no straight corridors (collinear approx if no straight corridors (collinear 
adjacent edges)adjacent edges)

“Frank’s Problem”

Connected vertex cover, [AHH]

NP-hard

O(log2 n loglog n log k)-approx    [CCGG, GKR]
1.5c-approx if straight corridors have < c vertices   [Slavik]



Hardness of Approximation: Hardness of Approximation: 
Watchman Route ProblemWatchman Route Problem

nn ΩΩ(log n): From Set(log n): From Set--Cover:  Sets SCover:  Sets S11 , S, S22 , , 
……, S, SMM , and elements U={x, and elements U={x11, x, x22,,……, x, xN N }}



xi

Sj

L

elements

sets

Tiny triangular 
hole

Can cover with k sets iff 
there is a watchman tour 
of length at most (2k+C)L, 
where L is very large

~L



O(log n)O(log n)--Approx AlgorithmApprox Algorithm

nn InputInput: Multiply connected polygonal : Multiply connected polygonal 
domain P, having n vertices, satisfying domain P, having n vertices, satisfying 
the the bounded perimeter assumption bounded perimeter assumption 
(BPA): perim(VP(p)) = O( diam(VP(p)), (BPA): perim(VP(p)) = O( diam(VP(p)), 
for every p in Pfor every p in P

nn Compute the visibility polygons, QCompute the visibility polygons, Qii = = 
VP(vVP(vii ), of each vertex v), of each vertex vii

e.g., bounded degree 
corridor domains



O(log n)O(log n)--Approx AlgorithmApprox Algorithm

nn Consider the (simple, starConsider the (simple, star--shaped) shaped) 
polygons Qpolygons Qi i in order, from smallest in order, from smallest 
diameter to largest, and build a greedy, diameter to largest, and build a greedy, 
““well separated sequencewell separated sequence””, S, of such , S, of such 
polygonspolygons

nn Compute an approximately optimal tour, Compute an approximately optimal tour, 
TTSS, of the (disjoint) polygons S within P:  , of the (disjoint) polygons S within P:  
TSPN with obstacles (P).  TSPN with obstacles (P).  



Visiting the Rest of the Visiting the Rest of the 
Regions, VP(p)Regions, VP(p)

nn So far, we have an approx tree, TSo far, we have an approx tree, TSS, that , that 
visits the subset, S, of wellvisits the subset, S, of well--separated separated 
disjoint regionsdisjoint regions

nn Remaining regions have special Remaining regions have special 
structure:  structure:  Any point p that is not seen  Any point p that is not seen  
by Tby TSS has VP(p) within geodesic distance has VP(p) within geodesic distance 
diam(VP(p)) of Tdiam(VP(p)) of TSS

nn Generalize the Generalize the ““stratified stratified 

gridgrid”” to geodesic metric to geodesic metric 

within Pwithin P



Special Case: Single Convex Special Case: Single Convex 
ObstacleObstacle



SailorSailor--inin--thethe--Fog ProblemFog Problem

[Chan, Golynski, Lopez-Ortiz, Quimper, 2003]

Solution:
Length = 6.3972 

[image:  Zalgaller, 2005 ]



Watchman Outside a DiskWatchman Outside a Disk

nn 2D paths: Depending if (a) neither, (b) 2D paths: Depending if (a) neither, (b) 
both, or (c) exactly one endpoint of both, or (c) exactly one endpoint of 
path must lie on the surface of the disk: path must lie on the surface of the disk: 



External Watchman External Watchman PathPath for a for a 
SphereSphere

nn Short Short PathPath

[SoCG’03 video]

Two segments and a spiral:
Fatten spiral 
near middle

By computer search

Length 11.08



External Watchman External Watchman PathPath for a for a 
SphereSphere

“ ”

nn Short Short PathPath
Length 10.726



External Watchman External Watchman CycleCycle for for 
a Spherea Sphere

Shortest Cycle ?

“baseball stitch curve”

108 double stitches

[discussions: Jin-ichi Itoh, Joe 
O’Rourke, Anton Petrunin, Y. Tanoue, 
Costin Vilcu]

“Shortest Inspection 
Curves for the Sphere”
V. A. Zalgaller



Special Case: Single Convex Special Case: Single Convex 
ObstacleObstacle

nn Watchman on the surface of a Watchman on the surface of a convex convex 
polytopepolytope in 3D:in 3D:
•• Require to stay on the surface  (Require to stay on the surface  (““bugbug””))

•• Allow to fly over the surface (but not Allow to fly over the surface (but not 
through the obstacle) through the obstacle) –– ““space shipspace ship””

•• Require to stay within a given altitudeRequire to stay within a given altitude

nn Exact solutions for special cases (e.g., Exact solutions for special cases (e.g., 
Platonic solids)  Platonic solids)  [Itoh, M, O[Itoh, M, O’’Rourke]Rourke]

nn PTAS in general:  TSPN for a set of PTAS in general:  TSPN for a set of 
planes in 3D  planes in 3D  [Arkin, Demaine, Demaine, M][Arkin, Demaine, Demaine, M]



Many Obstacles Special Case: Many Obstacles Special Case: 
Watchman PTASWatchman PTAS

nn Watchman with Watchman with 
•• Fat obstaclesFat obstacles

•• Limited view distance, RLimited view distance, R

•• Robot of radius r, with R/r constantRobot of radius r, with R/r constant

nn Method: mMethod: m--guillotineguillotine

“Realistic domains”



Watchman PTASWatchman PTAS
or “How to see the forest for the trees”

Forest

Trees

NP-hard



Either: (1) limited view distanceEither: (1) limited view distance

p

Require robot to get within distance R of a point p in order to see it

Forest Assumptions Forest Assumptions 



Or: (2) forest is dense enough (e.g., Or: (2) forest is dense enough (e.g., 
saturated/maximal saturated/maximal packingpacking) so that the ) so that the 
visibility region from a point deep inside visibility region from a point deep inside 
the forest is a the forest is a fatfat (star(star--shaped) region.shaped) region.

Forest Assumptions Forest Assumptions 

p

Radius R

Related to Polya’s Orchard Problem Olber’s paradox [1826]

r

Dark if tree radius > 1/r

Recently proved!: R < const
[Dumitrescu and Jiang]

Time:  O(nO(R))

Dark Forest Conjecture:
For R < const, there exists 
a dark point p

R < 2*10108

Highest ever polynomial time 
bound?? (for a 2D problem)



Lawnmower/Milling ProblemLawnmower/Milling Problem

Best method of 
mowing the lawn?

TSPN: Visit the disk 
centered at each blade 
of grass



Lawnmowing/Milling ResultsLawnmowing/Milling Results

nn NPNP--hard, in generalhard, in general

nn 2.52.5--approx for milling (stay inside P) approx for milling (stay inside P) [AFM][AFM]

nn (3+(3+εε))--approx for lawnmowing approx for lawnmowing [AFM][AFM]

•• Recent: PTASRecent: PTAS

nn 6/56/5--approx for dapprox for d--sweeper    sweeper    [AFM][AFM]

nn 3.753.75--approx for minapprox for min--turn milling in integral turn milling in integral 
rectilinear polygon   rectilinear polygon   [ABDMS][ABDMS]

nn PTAS to min PTAS to min (tour length)+C*(# turns)(tour length)+C*(# turns)

nn PTAS to min PTAS to min (tour length)+C*(# scans) (tour length)+C*(# scans) ““discrete discrete 
vision costvision cost”” model  [FMS]model  [FMS]

Q: Mill a simple polygon
in poly-time?

Q: PTAS for milling
a polygonal domain?



Sensor Network Application: Sensor Network Application: 
Cover Tour ProblemCover Tour Problem

Alt, Arkin, Bronnimann, Erickson, Fekete, 
Knauer, Lenchner, M,Whittlesey, SoCG’06

Min: Tour length + 
C * (sum of radii)

Result: PTAS

Q: Min Tour length + 
C * (sum of radii2)?

C > 4 ; else OPT is 
a single disk



Point Pair SeparationPoint Pair Separation

nn Colored: n red, blue pointsColored: n red, blue points
•• Find a shortest separatorFind a shortest separator

•• PTASPTAS

•• Covering tour:Covering tour:

•• Visit/Visit/crosscross every edge of complete bipartite every edge of complete bipartite 
graphgraph

nn Uncolored:  n point pairs (uncolored) Uncolored:  n point pairs (uncolored) [Jie Gao][Jie Gao]

•• Find shortest cycle separating each pairFind shortest cycle separating each pair

Q: Good approx?



OrienteeringOrienteering

nn Given a length bound on tour, visit as Given a length bound on tour, visit as 
many sites as possiblemany sites as possible

nn O(1)O(1)--approx     approx     [AMN, SoCG[AMN, SoCG’’98]98]

nn PTAS, for rooted case, based on PTAS, for rooted case, based on 
improved analysis of mimproved analysis of m--guillotine guillotine 
method for kmethod for k--TSP   TSP   [CH, SoCG[CH, SoCG’’06]06]

Q: O(n log n)?














