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• Yet another long story so ...
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Open pit mine



• The ground is broken up into sections



• Using estimation or simulation techniques from drill hole
data, economic values are produced for each block

• Ore blocks can return a profit when mined
• Waste blocks cost money to remove



• Each block is considered as a node of a graph
• Arcs are added to represent slope requirements



Graph closure

• A graph closure is a subset S of nodes such that no arcs
leave S

• A maximum weight graph closure is known as “the ultimate
pit”



Maximum network flow
• source node s with arcs to each ore node
• sink node t with arcs from each waste node

• Capacities on the arcs are the absolute value of the blocks
• Slope arcs have infinite capacity



Minimum cut

The minimum cut represents the maximum weight graph
closure

• Minimize the waste inside and the ore outside the pit



Pushbacks

• The ultimate pit must be decomposed into a multiperiod
schedule

• Let Pi be the pit dug in period i
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Problems with existing pushback design methods

• The pits have very different sizes and P2 is not connected.
• We may make a limit the number blocks can be mined per

period.
• We may require Pi to be connected
• Either makes the probem NP-hard
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Partially ordered knapsack

• The block limit introduces a knapsack type constraint.
•

max
n∑

i=1

cixi

s.t . xi ≤ xj for all arcs(i , j)
n∑

i=1

wixi ≤ b (1)

xi ∈ {0, 1} ∀i

• Constraint (1) ruins total unimodularity.
• This is the partially ordered knapsack problem and is

NP-hard.
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Directed cut approach

• An alternate approach is to optimize over the polytope of
all directed cuts using cutting planes.

• Not much is known about directed cut polyhedra.



Geometry of cuts and metrics

                 Michel Deza                                                                                                         Monique Laurent

                          and a book ......

about:blank
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How about directed cuts?

• Far less studied - surprising because ...
• ... most people learn about directed cuts first: Max-flow

Min-cut theorem (1956)
• They appear briefly in early NP-completeness literature,

and ...
• ... the work of Goemans-Williamson (1995) on SDP

relaxation.
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Weightable oriented multicut quasimetrics

• Very recent general results by M. Deza, E. Deza, J. Vidali
and others overlap results in today’s talk.

• ”It is easy to see that an oriented multicut quasi-semimetric
is weightable iff it is oriented cut”. (M. Deza)

• See arXiv:1101.0517
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Cut polytope: definition

• Let S ⊆ {1, . . . , n} and ⊕ denote exclusive or.

• Define δ(S) ∈ R(n
2) by

δ(S)ij =

{
1 i ⊕ j ∈ S
0 otherwise

1 ≤ i < j ≤ n

• δ(S) is the edge-incidence vector of the cut [S, V − S] in
Kn.

• The cut cone is

CUTn = Cone{δ(S) : S ⊆ V (Kn)}

• The cut polytope is

CUT �
n = CH{δ(S) : S ⊆ V (Kn)}
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CUT �
3

S x12 x13 x23

∅ or {1, 2, 3} 0 0 0

{1} or {2, 3} 1 1 0

{2} or {1, 3} 1 0 1

{3} or {1, 2} 0 1 1

23

0, 1, 1 

1, 0 ,1 

0 ,0, 0 

1 ,1 ,0

{events}

{A  }1

{A  }3

{A  }2

           0
12 13

x    , x     , x



Simple facets of the cut polyhedra

Triangle Inequalities:

xi,j − xi,k − xk ,j ≤ 0

Perimeter Triangle Inequalities:

xi,j + xj,k + xk ,i ≤ 2



Semimetric polyhedra

• The semimetric cone is

METn = {x ∈ R(n
2) : xi,j − xi,k − xk ,j ≤ 0 ∀i , j , k}

• The semimetric polytope is

MET �
n = {x ∈ R(n

2) : xi,j−xi,k−xk ,j ≤ 0, xi,j+xj,k+xk ,i ≤ 2 ∀i , j , k}

• METn is an LP relaxation of CUTn

• MET �
n is an LP relaxation CUT �

n



Semimetric polyhedra

• The semimetric cone is

METn = {x ∈ R(n
2) : xi,j − xi,k − xk ,j ≤ 0 ∀i , j , k}

• The semimetric polytope is

MET �
n = {x ∈ R(n

2) : xi,j−xi,k−xk ,j ≤ 0, xi,j+xj,k+xk ,i ≤ 2 ∀i , j , k}

• METn is an LP relaxation of CUTn

• MET �
n is an LP relaxation CUT �

n



Semimetric polyhedra

• The semimetric cone is

METn = {x ∈ R(n
2) : xi,j − xi,k − xk ,j ≤ 0 ∀i , j , k}

• The semimetric polytope is

MET �
n = {x ∈ R(n

2) : xi,j−xi,k−xk ,j ≤ 0, xi,j+xj,k+xk ,i ≤ 2 ∀i , j , k}

• METn is an LP relaxation of CUTn

• MET �
n is an LP relaxation CUT �

n



Semimetric polyhedra

• The semimetric cone is

METn = {x ∈ R(n
2) : xi,j − xi,k − xk ,j ≤ 0 ∀i , j , k}

• The semimetric polytope is

MET �
n = {x ∈ R(n

2) : xi,j−xi,k−xk ,j ≤ 0, xi,j+xj,k+xk ,i ≤ 2 ∀i , j , k}

• METn is an LP relaxation of CUTn

• MET �
n is an LP relaxation CUT �

n



Directed cut polytope: definition

• Let S ⊆ {1, . . . , n}.
• Define δ+(S) ∈ Rn(n−1) by

δ+(S)(ij) =

{
1 i ∈ S, j /∈ S
0 otherwise

1 ≤ i 6= j ≤ n

• δ+(S) is the edge-incidence vector of the directed cut
[S, V − S] in the complete directed graph ~Kn.

• The directed cut cone is

DCUTn = Cone{δ+(S) : S ⊆ V (~Kn)}

• The directed cut polytope is

DCUT �
n = CH{δ+(S) : S ⊆ V (~Kn)}
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Directed cut polyhedra

• S = {1, 5}
• Red edges have value 1, black edges have value 0 in

δ+(S).



DCUT �
n

S x12 x13 x23 x21 x31 x32
∅ or {1, 2, 3} 0 0 0 0 0 0

{1} 1 1 0 0 0 0
{2} 0 0 1 1 0 0
{3} 0 0 0 0 1 1
{2, 3} 0 0 0 1 1 0
{1, 3} 1 0 0 0 0 1
{1, 2} 0 1 1 0 0 0

• There are 2n − 1 vertices.
• What do we do next?
• Compute the facets of course!
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Linearities and facets for directed cuts

• 3 point symmetries: xij + xjk + xki = xji + xkj + xik

• Non-negativity: xij ≥ 0
• Triangle inequality: xij − xik − xkj ≤ 0
• Perimeter triangle inequality: xij + xjk + xki ≤ 1
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Directed semimetric polyhedra

• The semimetric cone is
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n
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Dimension of the directed cut polytope

Lemma
The dimension of DCUT�

n (and DMET�
n ) is

(n
2

)
+ n − 1

• Upper bound: the weight on edge ji , j > i , can be
recovered from ij , 1i , 1j , i1, j1 and the 3-point symmetries.

• Lower bound: a set of
(n

2

)
+ n − 1 linearly independent cut

vectors.
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Bijections between the directed and undirected
polyhedra

Define the polytopes P1 and P2 to be:
• P1 = conv{δ+(S) : 1 ∈ S ⊆ V (G)}.
• P2 = conv{δ+(S) : 1 /∈ S ⊆ V (G)}.



Bijection between directed and undirected polyhedra

ξ1 : R(n
2) → R(n

2)+n−1 and ξ2 : R(n
2) → R(n

2)+n−1

The mapping ξ1 between CUT�
n and P1 is defined by,

xi1 = 0 for 2 ≤ i ≤ n
x1i = x1,i for 2 ≤ i ≤ n
xij = 1

2(xi,j + x1,j − x1,i) for 2 ≤ i < j ≤ n.

equivalently,{
x1,i = x1i for 2 ≤ i ≤ n
xi,j = xij + xji = x1i − x1j + 2xij for 2 ≤ i < j ≤ n



Bijection example

The above figure is an example for S = {1, 4}.

ξ1(δ(S)) = ξ1(x1,2, x1,3, x1,4, x2,3, x2,4, x3,4)

= ξ1((1, 1, 0, 0, 1, 1))

= (1, 1, 0, 0, 0, 0, 0, 0)

= (x12, x13, x14, x23, x24, x31, x34, x41) = δ+(S)



We can define a similar mapping between P2 and CUT�
n and

use these bijections to show that.

Theorem
The directed cut polytope is the convex hull of two cut
polytopes that only intersect at the origin.
and...



Theorem
If aT x ≤ 0 is a facet of the undirected cut cone then:

∑
2≤i<j≤n

2ai,jxij +
n∑

i=2

ci1xi1 +
n∑

i=2

b1ix1i ≤ 0

is a facet of the directed cut cone. Where,{
b1i = 0 for 2 ≤ i ≤ n
bi1 = a1,i +

∑i−1
k=2 ak ,i −

∑n
j=i+1 ai,j for 2 ≤ i ≤ n

and {
c1i = a1,i −

∑i−1
k=2 ak ,i +

∑n
j=i+1 ai,j for 2 ≤ i ≤ n

ci1 = 0 for 2 ≤ i ≤ n.



The proof uses the following lemma:

Lemma (YB, Lemma 26.5.2)
Let vT x ≤ 0 be facet inducing for CUTn and let R(v) denote its
set of roots. Let F be a subset of En.
If vF̄ 6= 0, then rank(R(v)F ) = |F |.



Proof of theorem

• The k = 1, ...,
(n

2

)
− 1 roots δ(Sj) of vT x ≤ 0 extend to

roots δ+(Sj) of the cut polytope.
• We may assume 1 ∈ Sj for all j .
• Let F = {1i : 2 ≤ i ≤ n}. From lemma there are δ(Ti)

(1 ≤ i ≤ n − 1) linearly independent roots of vT x ≤ 0
whose projections on F are linearly independent.

• We may assume 1 /∈ Ti for all i .
• δ+(Ti) ∪ δ+(Sj) form

(n
2

)
+ n − 2 linearly independent roots

for the new inequality.
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Corollary

• The triangle inequalities are facet defining for DCUTn.
• Let b1, · · · , bn be an integers that sum to one. The

inequality: ∑
1≤i<j≤n

bibjxi,j ≤ 0

is known as a hypermetric inequality.
• Hypermetric facets of the cut cone give facets of the dicut

cone:

∑
2≤i<j≤n

bibjxij +
n∑

i=1

(b1 −
i−1∑
k=2

bk +
n∑

j=i+1

bj)bix1i

+
n∑

i=1

(b1 +
i−1∑
k=2

bk −
n∑

j=i+1

bj)bixi1 ≤ 0
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• ... but I will spare you the details
• Using these results we can classify facets of DCUT�
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DCUT�
4

• 31 vertices and 40 facets
• 12 non-negativity constraints
• 16 triangle inequalities
• Six new homogeneous inequalities

x13 + x24 ≤ x12 + x34 + x14 + x23

• Six new non-homogeneous inequalities

x31 + x12 + x24 ≤ 1 + x21
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Relaxations for CUT(G) and CUT�(G)

• Let G be an undirected graph.
• We can optimize over MET(G) and MET�(G) in

polynomial time by setting cij = 0 when ij /∈ E(G).

max
∑
(i,j)

cijxij

s.t . x ∈ DMET �
n

• Is there a compact linear description for MET(G)?
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Projecting the triangle inequalities

Theorem (Barahona, Mahjoub, 1986)
Given an arbitrary graph G, the projection of METn onto the
edge set of G is:

MET (G) = {x ∈ RE(G)
+ : xe − x(C \ {e}) ≤ 0

for each chordless cycle C of G, e ∈ C}



Integer hull

• Theorem (Seymour 1981, Barahona, Mahjoub, 1986)
CUT (G) = MET (G) or, equivalently, CUT �(G) = MET �(G)

if and only if

G has no K5-minor.
• Do these results generalize to directed graphs?
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Projecting the triangle and cycle inequalities

The projection of DMETn onto an arbitrary digraph G is more
complex:

DMET (G) = {x ∈ RA(G) : xe ≥ 0, ...?



Triangular elimination

• Triangular elimination is a method of zero lifting and
Fourier-Motzkin elimination using triangle inequalities
[Avis, Imai, Ito, Sasaki ’05]

• Can prove large families of inequalities are facet inducing
by directed version triangular elimination.



Forbidden graph minors

For a graph G not containing a K5 minor [Seymour ’81]:

MET (G) = CUT (G)

and MET �(G) = CUT �(G) was proved using switching
[Barahona, Mahjoub ’86]



Forbidden graph minors (directed case)
If G contains any of the following 6 graphs as a “directed minor”
then:

DMET (G) 6= DCUT (G) and DMET �(G) 6= DCUT �(G)



Open problems

• Find compact descriptions for DMET (G) and DMET �(G)

• Generalize Seymour’s Theorem to directed graphs
• Solve the open pit mining problem with geometric

constraints
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