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Bandwidth

A graph from the Sparse Matrix Collection (Tim Davis, UFL)
n = 161, 1377 nonzeros
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The same graph (right) after reordering the vertices. The
nonzeros are close to the main diagonal.

Bandwidth left is 79, and right it is 34.

Fields Institute, September - 2011 – p.3/52



Small Bandwidth

Bandwidth of Matrix: largest distance of nonzero entry from
main diagonal

Small bandwidth saves computation time in numerical
linear algebra

Typical Example: g3rmt3m3 (from Sparse Matrix
Collection): n = 5357, nz ≈ 100, 000

Cholesky decomposition:
Matrix (as is) (dense): 7 sec.
Matrix (as is) (sparse format): 0.5 sec.
Matrix (after reorder) (sparse): 0.07 sec.
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Vertex Separators

Given adjacency matrix A of a graph G. Does G have
Sk ⊆ V (G) such that G \ Sk decomposes into k − 1 pieces
S1, . . . , Sk−1 of (roughly) equal size?
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Here k = 5, last block separates the first four.
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Vertex Separators: How they help

In numerical linear algebra, solve linear system







A1 0 A13

0 A2 A23

AT
13 AT

23 A3













x1

x2

x3






=







b1

b2

b3







Solve system on each subblock, then get final solution.

x1 = A−1
1 b1 − A−1

1 A13x3, x2 = A−1
2 b2 − A−1

2 A23x3,

(A3 −
∑

i

AT
i3A

−1
i Ai3)x3 = rhs.

Instead of n3, needs roughly 1
k2 n

3, if separator leaves k

pieces (of roughly equal size).
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Hierarchical versus direct Partition

It may be better to directly look for 2k separator blocks
instead of k recursive simple bisectors. If separation is bad
in initial blocks, this may not be fixed later.

Challenge: How find a good separator to get 2k blocks
directly?
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Complexity

• Bandwidth and Vertex Separator are NP-hard

• Bandwidth NP-complete even for trees with maximal
degree 3
• Bandwidth approximation by Blum, Konjevod, Ravi,
Vempala (2000) using hyperplane rounding

• Approximation for vertex separators by Feige, Hajiaghayi,
Lee (2005)

• O(
√

n) vertex separators in planar graphs Lipton, Tarjan
(1979)

• Eigenvalue model by Helmberg, Mohar, Poljak, R. (1995)

• semidefinite and copositive model by Povh, R. (2007)
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Matrix Reorderings

There is a variety of matrix reordering problems.

• Minimize Bandwidth

• Minimize Cholesky fill-in

• Minimize 1-sum or 2-sum of reordering

• Reorder into k blocks with small interblock connectivity

• Find small separator leaving two roughly equal parts

Matlab has several (fast) heuristics to get good reorderings:
symrcm (Symmetric reverse Cuthill-McKee permutation),
see also symamd, colamd, colperm.
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Quadratic Assignment Model

A adjacency matrix of graph, the matrix B is one of the
following

Permute A, so that it fits into the zero-pattern of Bsep or
Bbdw. This is Quadratic Assignment Problem.
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Quadratic Assignment Model (2)

QAP model:

minimize tr(XT AX)B over permutation matrices X.

There exists a separator of the required size, or a reordering
having the required bandwidth ⇐⇒ opt. value=0.

If minimal value > 0, then we have information on how
many entries of the matrix (=edges of the graph) would
have to be fixed.

Could use weighted version of Bbdw to force permuted
matrix closer to main diagonal.

Instead of A, we use Laplacian L of A: L = diag(Ae) − A,
because diag(B) = 0, so trXT AXB = trXT (−L)XB.
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Quadratic Assignment relaxations

There are several ways to get relaxations:
• XT X = I (orthogonal matrices), Xe = XT e = e (constant
row and column sums):
This leads to projected eigenvalue bound, and uses the
Hoffman-Wielandt theorem

min
XT X=I

tr(AXBXT ) =
∑

i

λi(A)λn+1−i(B),

• use Semidefinite relaxations: Work in the space of n2 × n2

matrices. Computationally expensive!
DeKlerk, Nagy, Sotirov (2011): Apply symmetry reduction to
SDP relaxation of the Quadratic Assignment formulation.
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Indirect Approach through Partition

Some notation:
We consider partitions S = (S1, S2, S3) of N = {1, . . . , n}
(rows/columns of A) for given cardinalities m = (m1,m2,m3)
with

∑

i mi = n and |Si| = mi.

Auxiliary Problem: For given m, find partition S such that
δ(S1, S2), the number of edges between S1 and S2 is
minimized.
Denote the minimal value over all S = (S1, S2, S3) by cut(m).
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Bounding Bandwidth

• If cut(m) > 0 then bandwidth is at least m3 + 1, because
removal of any set of m3 vertices leaves edges between the
remaining two parts.

In any ordering of the vertices, there is an edge between S1

and S2, passing over S3, hence bandwidth≥ |S3| + 1.
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Bounding Separators

Simple observation:
• If cut(m) = 0 then there exists separator with cardinalities
given in m

• If cut(m) > 0 then no such separator exists.

Idea: We replace cut(m) by lower bound, and check
whether it is > 0.
In this case we know that cut(m) > 0.

This gives lower bound on size of separator.

If lower bound > 0, then cut(m) > 0 and we have bound on
bandwidth.
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Partition Model

We model the k-partitions as n × k 0-1 matrices
X = (x1, . . . , xk) such that Xe = e,XT e = m, where
mT = (m1, . . . ,mk) and

∑

i mi = n.

Pm := {X : Xe = e, XT e = m, xij ∈ 0, 1, X . . . n × k}.

Optimizing over the following superset Fm of Pm is tractable,
see Helmberg, Mohar, Poljak, R. (1995).
We set M = diag(m).

Fm := {X : Xe = e, XT e = m, XT X = M}.
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Partition model (2)

Lemma (HMPR (1995)):

X ∈ Fm ⇐⇒ X =
1

n
emT + V ZWM̃, ZT Z = Ik−1

where V orthonormal basis to e⊥, m̃ = (
√

m1, . . . ,
√

mk)
T

and W is orthogonal basis to m̃⊥, M̃ = diag(m̃).

Easy fact: X ∈ Pm ⇐⇒ X ∈ Fm, X ≥ 0.
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Modeling δ(S1, S2)

Let m = (m1,m2,m3) and B =







0 1 0

1 0 0

0 0 0






.

For X = (x1, x2, x3) ∈ Pm we get

XBXT = x1x
T
2 + x2x

T
1 .

Hence, for X ∈ Pm the matrix XBXT is the adjacency
matrix of the edge set δ(S1, S2) corresponding to partition
X, (Matrix Bsep from before!)
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Cost function

trA(XBXT ) gives twice the number of edges in δ(S1, S2).

Since diag(XT BX) = 0 and Laplacian L of A has L = −A

outside main diagonal, we get trAXBXT = tr(−L)XBXT .
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Cost function

trA(XBXT ) gives twice the number of edges in δ(S1, S2).

Since diag(XT BX) = 0 and Laplacian L of A has L = −A

outside main diagonal, we get trAXBXT = tr(−L)XBXT .

Now substitute X = 1
n
emT + V ZWM̃, ZT Z = Ik−1 from

lemma to get

trLXBXT = tr(V T LV )Z(WM̃BM̃W T )ZT

Minimizing over Fm asks for ZT Z = Ik−1 in view of previous
lemma.
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Orthogonal relaxation

2cut(m) := min
X∈Pm

tr(−L)XBXT ≥ min
X∈Fm

tr(−L)XBXT

= min
ZT Z=Ik−1

tr − (V T LV )Z(WM̃BM̃W T )ZT := 2f(m).
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Orthogonal relaxation

2cut(m) := min
X∈Pm

tr(−L)XBXT ≥ min
X∈Fm

tr(−L)XBXT

= min
ZT Z=Ik−1

tr − (V T LV )Z(WM̃BM̃W T )ZT := 2f(m).

Explicit solution using the Hoffman-Wielandt theorem:

min{〈A,XBXT 〉 : XT X = Ik} =

= min{
∑

i

λi(B)λφ(i)(A) : φ : {1, . . . , k} 7→ {1, . . . , n} injection}

(Here A and B are symmetric, of orders n and k with n ≥ k.
The minimizer X is determined through eigenvectors
X = PQT .)
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Closed-form solution

The Hoffman-Wielandt theorem yields closed form
solutions. We need the eigenvalues of
• V T LV, these are λ2(L), . . . , λn(L).
• WM̃BM̃W T as µ1 ≤ . . . ≤ µk−1 as functions of m. For any
partition m it holds that

µ1 ≤ . . . ≤ µk−2 < 0 < µk−1

This gives

f(m) =
k−2
∑

i=1

(−µi)λi+1(L) − µk−1λn(L).
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Closed form in case of equal blocks

Consider partitions with m = (s, . . . , s, t) where
(k − 1)s + t = n

(k partition blocks, the separator has size t, all other k − 1
sets have equal size s).
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Closed form in case of equal blocks

Consider partitions with m = (s, . . . , s, t) where
(k − 1)s + t = n

(k partition blocks, the separator has size t, all other k − 1
sets have equal size s).

Lemma: The eigenvalues of WM̃BM̃W T with
m = (s, . . . , s, t) as above are

µ1 = . . . = µk−2 = −s, µk−1 =
k − 2

n
st.
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Closed form in case of equal blocks

Consider partitions with m = (s, . . . , s, t) where
(k − 1)s + t = n

(k partition blocks, the separator has size t, all other k − 1
sets have equal size s).

Lemma: The eigenvalues of WM̃BM̃W T with
m = (s, . . . , s, t) as above are

µ1 = . . . = µk−2 = −s, µk−1 =
k − 2

n
st.

This leads to the following lower bound on cut(m):

cut(m) ≥ 1

2
(s

k−1
∑

i=2

λi(L) − k − 2

n
stλn(L)).
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Improvements ?

How could this bound be improved ?

(a) use SDP formulation of the Hoffman-Wielandt Theorem
initial SDP can be warmstarted using HW Thm.

(b) use weight redistribution
works also for large instances
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Eigenvalue bounds

The eigenvalues µ1 ≤ . . . ≤ µk−1 of the (k − 1) × (k − 1)

matrix WM̃BM̃W T can easily computed, sometimes even
explicitely, see before.

The (extreme) eigenvalues of L, λn(L) and λ2(L),. . .,λk−1(L)
can be computed by iterative methods, in case A is a
reasonably sparse matrix.

The eigenvalue lower bound is in general rather weak, so
we need some improvement.

We use the idea of weight redistribution, as employed by
Boyd, Diaconis and Xiao (2004) for rapidly mixing Markov
chains, and Göring, Helmberg and Wappler (2008) for
geometric embedding problems of graphs.
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Weight redistribution

The lower bound can be interpreted as a function of the
Laplacian L. We consider a whole family of graphs, defined
through their Laplacians L(x) as follows.

Let E be the edge set of the underlying graph. We define a
family of Laplacians as

L(x) :=
∑

[i,j]∈E

xijEij

where xij ≥ ǫ, [i, j] ∈ E,
∑

[i,j]∈E xij = |E|.
These graphs have edges [i, j] exactly if [i, j] is an edge of
G, the weight of all edges is constant (= |E|) and positive
(≥ ǫ > 0).
Eij := (ei − ej)(ei − ej)

T , (Laplacian of edge [i, j]).
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Weight redistribution (2)

From before we have, with

µ1 ≤ . . . ≤ µk−2 < 0 < µk−1

(holds for any partition m)

f(L(x)) =
k−2
∑

i=1

(−µi)λi+1(L(x)) − µk−1λn(L(x)).

Due to the signs of µi this is a concave function in x.
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Weight redistribution (2)

From before we have, with

µ1 ≤ . . . ≤ µk−2 < 0 < µk−1

(holds for any partition m)

f(L(x)) =
k−2
∑

i=1

(−µi)λi+1(L(x)) − µk−1λn(L(x)).

Due to the signs of µi this is a concave function in x.

In case that we can find x such that f(L(x)) > 0, then the
bandwidth is greater than t + 1, and no separator of size t

exists. Hence we want to maximize the lower bound f(L(x))
over all admissable x > 0,

∑

e∈E xe = |E|.
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Maximizing f (L(x))

Maximizing f can be done by

• Eigenvalue optimization
(suitable for large problems)

• Semidefinite optimization
(exact optimum, but computationally expensive)
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Maximizing f as SDP

Anstreicher-Wolkowicz (2000) show the following:

For A,B ∈ Sn min
X

{〈A,XBXT 〉 : XT X = I} =

max
S,T

{trS + trT : B ⊗ A − S ⊗ I − I ⊗ T � 0}.
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Maximizing f as SDP

Anstreicher-Wolkowicz (2000) show the following:

For A,B ∈ Sn min
X

{〈A,XBXT 〉 : XT X = I} =

max
S,T

{trS + trT : B ⊗ A − S ⊗ I − I ⊗ T � 0}.

In case that order k of B is ≤ n, this becomes:

For B ∈ Sk, k ≤ n min
X

{〈A,XBXT 〉 : XT X = Ik} =

= max
S,T

trS + trT such that

B ⊗ A − S ⊗ I − I ⊗ T � 0, S ∈ Sk, T ∈ Sn,−T � 0.
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SDP formulation (2)

From before we have

min
X∈Fm

tr(−L)XBXT = min
ZT Z=Ik−1

tr(−V T LV )Z(B̃)ZT

= max
S,T

trS + trT such that

B̃ ⊗ (−V T LV ) − S ⊗ I − I ⊗ T � 0, S ∈ Sk, T ∈ Sn,−T � 0.
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SDP formulation (2)

From before we have

min
X∈Fm

tr(−L)XBXT = min
ZT Z=Ik−1

tr(−V T LV )Z(B̃)ZT

= max
S,T

trS + trT such that

B̃ ⊗ (−V T LV ) − S ⊗ I − I ⊗ T � 0, S ∈ Sk, T ∈ Sn,−T � 0.

Now substitute L(x) =
∑

[i,j]∈E xijEij and we get

max
S,T,x

trS + trT :
∑

ij

xijFij −S ⊗ I − I ⊗T � 0, S ∈ Sk,−T � 0.

Here Fij = −B̃ ⊗ (V T EijV ).
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SDP formulation (3)

We have (for x ≥ 0,
∑

xij = |E|)

max
x

f(x) =
k−2
∑

i=1

(−µi)λi+1(L(x)) − µk−1λn(L(x)) =

max
S,T,x

trS + trT :
∑

ij

xijFij −S ⊗ I − I ⊗T � 0, S ∈ Sk,−T � 0.

The SDP is difficult to solve computationally.
The dual slack matrix is of order nk, so there are O((nk)2)
equality constraints.

We work with the dual instead.

Computational limits for n ≈ 100 and k ≤ 4.
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Eigenvalue maximization approach

We recall the situation. From the Hoffman-Wielandt we have

f(x) =
k−2
∑

i=1

(−µi)λi+1(L(x)) − µk−1λn(L(x)).

This is concave in x (but nonsmooth) and can therefore be
approached using subgradient techniques.

We use bundle methods to maximize this function.

Main interest: Can we get lower bound from <0 to >0
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First computational experience

Random graph, with obvious structure, n = 200, block
size=90
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random graph, density =0.25
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Columns of X

column of X before (blue) and after (red) weight
redistribution
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Where are the big weights ?

Edges with weight > 1.5
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density =0.1, x>1.5
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A 5-block example

Random graph, four blocks, n = 200, block size=45
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density =0.25, 4 blocks
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Columns of X

column of X before (blue) and after (red) weight
redistribution
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density =0.25, 4 blocks, column of X
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A 5-block example with noise

m = (40, 40, 40, 40, 10).
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Columns of X

column of X before (red) and after (blue) weight
redistribution
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The final (blue) curves give better estimates for partition
blocks.
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Columns of X

column of X before (red) and after (blue) weight
redistribution
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An example from the Davis collection

Graph Can96:
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Original bandwidth is 31, after reodering it is 21.
Optimization moves lower bound from 3 to 5.
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Last Slide

• Rich mathematical structure (Eigenvalues, SDP).

• First results look encouraging.

• Can be done for large graphs using iterative eigenvalue
computation

• Can be used for rounding using optimizer X

• Work in progress, jointly done with Abdel Lisser (Orsay,
Paris) and Mauro Piacentini (Roma)
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