ON A DISCRETE ISOPERIMETRIC INEQUALITY # Zsolt Lángi Department of Geometry, Budapest University of Technology, Hungary September 16, 2011 \mathbb{E}^2 : the Euclidean plane \mathbb{H}^2 : the hyperbolic plane \mathbb{S}^2 : the sphere \mathbb{E}^2 : the Euclidean plane \mathbb{H}^2 : the hyperbolic plane \mathbb{S}^2 : the sphere # THEOREM (CLASSICAL DISCRETE ISOPERIMETRIC INEQUALITY) Among convex polygons of a given perimeter in \mathbb{E}^2 , \mathbb{H}^2 or in \mathbb{S}^2 , the regular one has maximal area. A more general approach (Brass, Moser, Pach: Research Problems in Discrete Geometry, 2005): A more general approach (Brass, Moser, Pach: Research Problems in Discrete Geometry, 2005): Any inequality relating two geometric quantities (area, perimeter, diameter, width, inradius, circumradius, etc.) of convex (or simple) n-gons is called a "discrete isoperimetric inequality". A more general approach (Brass, Moser, Pach: Research Problems in Discrete Geometry, 2005): Any inequality relating two geometric quantities (area, perimeter, diameter, width, inradius, circumradius, etc.) of convex (or simple) n-gons is called a "discrete isoperimetric inequality". #### REMARK For most pairs the optimal polygon is the regular *n*-gon. A recent question: A recent question: ### QUESTION (BRASS, 2005) For $n \geq 5$ odd, what is the supremum of the perimeters of the simple n-gons contained in a unit disk of \mathbb{E}^2 ? A recent question: # QUESTION (BRASS, 2005) For $n \ge 5$ odd, what is the supremum of the perimeters of the simple n-gons contained in a unit disk of \mathbb{E}^2 ? #### THEOREM (AUDET, HANSEN AND MESSINE, 2009) The supremum of the perimeters in the question of Brass is $$\frac{\left(\sqrt{1+8(n-2)^2}-1\right)^{\frac{1}{2}}\left(\sqrt{1+8(n-2)^2}+3\right)^{\frac{3}{2}}}{4(n-2)}$$ #### THEOREM (AUDET, HANSEN AND MESSINE, 2009) The supremum of the perimeters in the question of Brass is $$\frac{\left(\sqrt{1+8(n-2)^2}-1\right)^{\frac{1}{2}}\left(\sqrt{1+8(n-2)^2}+3\right)^{\frac{3}{2}}}{4(n-2)}$$ # THEOREM (L., 2011) Let \mathbb{M} be \mathbb{E}^2 or \mathbb{H}^2 , and let $n \geq 3$ be an odd integer. # THEOREM (L., 2011) Let \mathbb{M} be \mathbb{E}^2 or \mathbb{H}^2 , and let $n \geq 3$ be an odd integer. If $C \subset \mathbb{M}$ is a disk and P is a simple n-gon contained in C, #### THEOREM (L., 2011) Let \mathbb{M} be \mathbb{E}^2 or \mathbb{H}^2 , and let $n \geq 3$ be an odd integer. If $C \subset \mathbb{M}$ is a disk and P is a simple n-gon contained in C, then there is an isosceles triangle, #### THEOREM (L., 2011) Let \mathbb{M} be \mathbb{E}^2 or \mathbb{H}^2 , and let $n \geq 3$ be an odd integer. If $C \subset \mathbb{M}$ is a disk and P is a simple n-gon contained in C, then there is an isosceles triangle, inscribed in C and with side-lengths $\alpha \geq \beta$, #### THEOREM (L., 2011) Let \mathbb{M} be \mathbb{E}^2 or \mathbb{H}^2 , and let $n \geq 3$ be an odd integer. If $C \subset \mathbb{M}$ is a disk and P is a simple n-gon contained in C, then there is an isosceles triangle, inscribed in C and with side-lengths $\alpha \geq \beta$, such that perim $P < (n-2)\alpha + 2\beta$. #### THEOREM (L., 2011) Let \mathbb{M} be \mathbb{E}^2 or \mathbb{H}^2 , and let $n \geq 3$ be an odd integer. If $C \subset \mathbb{M}$ is a disk and P is a simple n-gon contained in C, then there is an isosceles triangle, inscribed in C and with side-lengths $\alpha \geq \beta$, such that perim $P \leq (n-2)\alpha + 2\beta$. #### REMARK (L., 2011) There is a real number $\varepsilon > 0$ #### THEOREM (L., 2011) Let \mathbb{M} be \mathbb{E}^2 or \mathbb{H}^2 , and let $n \geq 3$ be an odd integer. If $C \subset \mathbb{M}$ is a disk and P is a simple n-gon contained in C, then there is an isosceles triangle, inscribed in C and with side-lengths $\alpha \geq \beta$, such that perim $P \leq (n-2)\alpha + 2\beta$. #### REMARK (L., 2011) There is a real number $\varepsilon > 0$ such that for every odd integer $n \ge 3$ and $0 < \rho < \varepsilon$ the following holds. #### THEOREM (L., 2011) Let \mathbb{M} be \mathbb{E}^2 or \mathbb{H}^2 , and let $n \geq 3$ be an odd integer. If $C \subset \mathbb{M}$ is a disk and P is a simple n-gon contained in C, then there is an isosceles triangle, inscribed in C and with side-lengths $\alpha \geq \beta$, such that perim $P \leq (n-2)\alpha + 2\beta$. #### REMARK (L., 2011) There is a real number $\varepsilon > 0$ such that for every odd integer $n \ge 3$ and $0 < \rho < \varepsilon$ the following holds. If $C \subset \mathbb{S}^2$ is a disk of radius ρ , and P is a simple n-gon contained in C, #### THEOREM (L., 2011) Let \mathbb{M} be \mathbb{E}^2 or \mathbb{H}^2 , and let $n \geq 3$ be an odd integer. If $C \subset \mathbb{M}$ is a disk and P is a simple n-gon contained in C, then there is an isosceles triangle, inscribed in C and with side-lengths $\alpha \geq \beta$, such that perim $P \leq (n-2)\alpha + 2\beta$. #### REMARK (L., 2011) There is a real number $\varepsilon>0$ such that for every odd integer $n\geq 3$ and $0<\rho<\varepsilon$ the following holds. If $C\subset\mathbb{S}^2$ is a disk of radius ρ , and P is a simple n-gon contained in C, then there is an isosceles triangle, inscribed in C and with side-lengths $\alpha\geq\beta$, such that perim $P\leq (n-2)\alpha+2\beta$. #### REMARK Using simple calculus, one can compute the maximum of the quantity $(n-2)\alpha+2\beta$ for $\mathbb{M}=\mathbb{H}^2$ and $\mathbb{M}=\mathbb{S}^2$, but these expressions are too long to be included here. #### REMARK Using simple calculus, one can compute the maximum of the quantity $(n-2)\alpha + 2\beta$ for $\mathbb{M} = \mathbb{H}^2$ and $\mathbb{M} = \mathbb{S}^2$, but these expressions are too long to be included here. #### Notations: • – If it is not stated otherwise, \mathbb{M} is any of the planes \mathbb{E}^2 , \mathbb{H}^2 and \mathbb{S}^2 . #### REMARK Using simple calculus, one can compute the maximum of the quantity $(n-2)\alpha + 2\beta$ for $\mathbb{M} = \mathbb{H}^2$ and $\mathbb{M} = \mathbb{S}^2$, but these expressions are too long to be included here. - – If it is not stated otherwise, \mathbb{M} is any of the planes \mathbb{E}^2 , \mathbb{H}^2 and \mathbb{S}^2 . - The closed/open segment with endpoints $p, q \in \mathbb{M}$ is [p,q]/(p,q), respectively. #### REMARK Using simple calculus, one can compute the maximum of the quantity $(n-2)\alpha+2\beta$ for $\mathbb{M}=\mathbb{H}^2$ and $\mathbb{M}=\mathbb{S}^2$, but these expressions are too long to be included here. - – If it is not stated otherwise, \mathbb{M} is any of the planes \mathbb{E}^2 , \mathbb{H}^2 and \mathbb{S}^2 . - The closed/open segment with endpoints $p, q \in \mathbb{M}$ is [p, q]/(p, q), respectively. - The distance of p, q is denoted by $\operatorname{dist}_M(p, q)$, or, if $\mathbb{M} = \mathbb{E}^2$, by |p q|. #### REMARK Using simple calculus, one can compute the maximum of the quantity $(n-2)\alpha+2\beta$ for $\mathbb{M}=\mathbb{H}^2$ and $\mathbb{M}=\mathbb{S}^2$, but these expressions are too long to be included here. - – If it is not stated otherwise, \mathbb{M} is any of the planes \mathbb{E}^2 , \mathbb{H}^2 and \mathbb{S}^2 . - The closed/open segment with endpoints $p, q \in \mathbb{M}$ is [p, q]/(p, q), respectively. - The distance of p, q is denoted by $\operatorname{dist}_M(p, q)$, or, if $\mathbb{M} = \mathbb{E}^2$, by |p q|. Let *P* be a simple *n*-gon contained in the Euclidean disk *C*. Let *P* be a simple *n*-gon contained in the Euclidean disk *C*. #### REMARK It is sufficient to find a triangle contained in C, with side-lengths α, β and γ , that satisfies perim $P \leq (n-2)\alpha + \beta + \gamma$. Let *P* be a simple *n*-gon contained in the Euclidean disk *C*. #### REMARK It is sufficient to find a triangle contained in C, with side-lengths α, β and γ , that satisfies perim $P \leq (n-2)\alpha + \beta + \gamma$. # THE PROOF FOR $\mathbb{M}=\mathbb{E}^2$ #### Notations: - The vertices of P are $p_1, p_2, \dots, p_n = p_0$ in this counterclockwise order. # THE PROOF FOR $\mathbb{M} = \mathbb{E}^2$ - The vertices of P are $p_1, p_2, \dots, p_n = p_0$ in this counterclockwise order. - In a given Descartes coordinate system, the coordinates of a point q are denoted by $q = (\omega_q, \theta_q)$. # THE PROOF FOR $\mathbb{M} = \mathbb{E}^2$ - The vertices of P are $p_1, p_2, \dots, p_n = p_0$ in this counterclockwise order. - In a given Descartes coordinate system, the coordinates of a point q are denoted by $q = (\omega_q, \theta_q)$. - The coordinates of p_i are denoted by $p_i = (\omega_i, \theta_i)$. #### Notations: - The vertices of P are $p_1, p_2, \dots, p_n = p_0$ in this counterclockwise order. - In a given Descartes coordinate system, the coordinates of a point q are denoted by $q = (\omega_q, \theta_q)$. - The coordinates of p_i are denoted by $p_i = (\omega_i, \theta_i)$. #### DEFINITION Let $p, q, a, b, c \in M$. # THE PROOF FOR $\mathbb{M} = \mathbb{E}^2$ #### Notations: - The vertices of P are $p_1, p_2, \dots, p_n = p_0$ in this counterclockwise order. - In a given Descartes coordinate system, the coordinates of a point q are denoted by $q = (\omega_q, \theta_q)$. - The coordinates of p_i are denoted by $p_i = (\omega_i, \theta_i)$. #### DEFINITION Let $p, q, a, b, c \in \mathbb{M}$. We say that the segment [p, q] and the polygonal curve $[a, b] \cup [b, c]$ do not cross, # THE PROOF FOR $\mathbb{M} = \mathbb{E}^2$ #### Notations: - The vertices of P are $p_1, p_2, \dots, p_n = p_0$ in this counterclockwise order. - In a given Descartes coordinate system, the coordinates of a point q are denoted by $q = (\omega_q, \theta_q)$. - The coordinates of p_i are denoted by $p_i = (\omega_i, \theta_i)$. #### DEFINITION Let $p, q, a, b, c \in \mathbb{M}$. We say that the segment [p, q] and the polygonal curve $[a, b] \cup [b, c]$ do not cross, if the set $(p, q) \cap ((a, b] \cup [b, c))$ is either empty or a segment. # The proof for $\mathbb{M} = \mathbb{E}^2$ ### LEMMA Let $[p, q] \in C$ be a vertical segment and set $\delta = |p - q|$. ### LEMMA Let $[p,q] \in C$ be a vertical segment and set $\delta = |p-q|$. Let $a,b,c \in C$ be points such that $\theta_a \leq \theta_b \leq \theta_c$, #### LEMMA Let $[p,q] \in C$ be a vertical segment and set $\delta = |p-q|$. Let $a,b,c \in C$ be points such that $\theta_a \leq \theta_b \leq \theta_c$, and the polygonal curve $[a,b] \cup [b,c]$ and [p,q] do not cross. #### LEMMA Let $[p,q] \in C$ be a vertical segment and set $\delta = |p-q|$. Let $a,b,c \in C$ be points such that $\theta_a \leq \theta_b \leq \theta_c$, and the polygonal curve $[a,b] \cup [b,c]$ and [p,q] do not cross. If $|b-a|,|c-b| \leq \delta$, #### LEMMA Let $[p,q] \in C$ be a vertical segment and set $\delta = |p-q|$. Let $a,b,c \in C$ be points such that $\theta_a \leq \theta_b \leq \theta_c$, and the polygonal curve $[a,b] \cup [b,c]$ and [p,q] do not cross. If $|b-a|,|c-b| \leq \delta$, then there are points $a',b',c' \in C$ such that $|b-a|+|c-b| \leq |b'-a'|+|c'-b'|$, #### LEMMA Let $[p,q] \in C$ be a vertical segment and set $\delta = |p-q|$. Let $a,b,c \in C$ be points such that $\theta_a \leq \theta_b \leq \theta_c$, and the polygonal curve $[a,b] \cup [b,c]$ and [p,q] do not cross. If $|b-a|,|c-b| \leq \delta$, then there are points $a',b',c' \in C$ such that $|b-a|+|c-b| \leq |b'-a'|+|c'-b'|$, and $\delta \leq |c'-b'|$. #### LEMMA Let $[p,q] \in C$ be a vertical segment and set $\delta = |p-q|$. Let $a,b,c \in C$ be points such that $\theta_a \leq \theta_b \leq \theta_c$, and the polygonal curve $[a,b] \cup [b,c]$ and [p,q] do not cross. If $|b-a|,|c-b| \leq \delta$, then there are points $a',b',c' \in C$ such that $|b-a|+|c-b| \leq |b'-a'|+|c'-b'|$, and $\delta \leq |c'-b'|$. #### LEMMA Let $[p,q] \in C$ be a vertical segment and set $\delta = |p-q|$. Let $a,b,c \in C$ be points such that $\theta_a \leq \theta_b \leq \theta_c$, and the polygonal curve $[a,b] \cup [b,c]$ and [p,q] do not cross. If $|b-a|,|c-b| \leq \delta$, then there are points $a',b',c' \in C$ such that $|b-a|+|c-b| \leq |b'-a'|+|c'-b'|$, and $\delta \leq |c'-b'|$. We may assume that We may assume that $-[p_0, p_1]$ is a longest side of P, ### We may assume that - $-[p_0, p_1]$ is a longest side of P, - $-[p_0, p_1]$ is a vertical segment $(\omega_0 = \omega_1)$. We may assume that - $-[p_0, p_1]$ is a longest side of P, - $-[p_0, p_1]$ is a vertical segment ($\omega_0 = \omega_1$). Consider the (n+1)-element sequence $\mu_1, \mu_2, \dots \mu_{n+1}$ defined as follows. We may assume that - $-[p_0, p_1]$ is a longest side of P, - $-[p_0, p_1]$ is a vertical segment $(\omega_0 = \omega_1)$. Consider the (n+1)-element sequence $\mu_1, \mu_2, \dots \mu_{n+1}$ defined as follows. For i = 1, 2, ..., n + 1, $$\mu_i = \begin{cases} 1, & \text{if } \theta_i < \theta_{i+1}; \\ -1, & \text{if } \theta_i > \theta_{i+1}; \\ 0, & \text{if } \theta_i = \theta_{i+1}. \end{cases}$$ Observe that $\mu_0 = \mu_n \neq 0$. Since n + 1 is even, there are two consecutive elements of the sequence that are both nonnegative or both nonpositive. Since n + 1 is even, there are two consecutive elements of the sequence that are both nonnegative or both nonpositive. Thus, we may apply Lemma. # TWO REMARKS ### Notations: - -L(p,q): the line containing [p,q]; - $-R_p$: the connected component of $L(p,q) \setminus (p,q)$, containing p; - $-R_q$: the connected component of $L(p,q) \setminus (p,q)$, containing q. ### Notations: - -L(p,q): the line containing [p,q]; - $-R_p$: the connected component of $L(p,q) \setminus (p,q)$, containing p; - $-R_q$: the connected component of $L(p,q)\setminus (p,q)$, containing q. ### Notations: - -L(p,q): the line containing [p,q]; - $-R_p$: the connected component of $L(p,q) \setminus (p,q)$, containing p; - $-R_q$: the connected component of $L(p,q)\setminus (p,q)$, containing q. ### Notations: - -L(p,q): the line containing [p,q]; - $-R_p$: the connected component of $L(p,q) \setminus (p,q)$, containing p; - $-R_q$: the connected component of $L(p,q) \setminus (p,q)$, containing q. ### Notations: - -L(p,q): the line containing [p,q]; - $-R_p$: the connected component of $L(p,q) \setminus (p,q)$, containing p; - $-R_q$: the connected component of $L(p,q) \setminus (p,q)$, containing q. ### Notations: - -L(p,q): the line containing [p,q]; - $-R_p$: the connected component of $L(p,q) \setminus (p,q)$, containing p; - $-R_q$: the connected component of $L(p,q)\setminus (p,q)$, containing q. Assumptions: $\theta_{p} < \theta_{q}$ and the centre of C is the origin. Case 1, if [a, b] intersects R_q . $$|\mathbf{b} - \mathbf{a}| \le \delta \le |\mathbf{b} - \mathbf{p}|$$ $\delta \le |\mathbf{c} - \mathbf{p}|$. We may choose a', b' and c' as p, b and c, respectively. ### Notations: - -L(p,q): the line containing [p,q]; - $-R_p$: the connected component of $L(p,q) \setminus (p,q)$, containing p; - $-R_a$: the connected component of $L(p,q) \setminus (p,q)$, containing q. Assumptions: $\theta_p < \theta_q$ and the centre of *C* is the origin. $\delta < |\mathbf{c} - \mathbf{p}|$. We may choose a', b' and c' as p, b and c, respectively. If [b, c] intersects R_p , we may apply a similar argument. Case 2, if [a, b] intersects R_p . Case 2, if [a, b] intersects R_p . If [b, c] intersects R_q , then $\delta \le |c - a|$, and we are done. Case 2, if [a, b] intersects R_p . If [b, c] intersects R_q , then $\delta \le |c - a|$, and we are done. Let b, c be in the closed half plane \bar{H} bounded by L(p, q). Case 2, if [a,b] intersects R_p . If [b,c] intersects R_q , then $\delta \leq |c-a|$, and we are done. Let b,c be in the closed half plane \bar{H} bounded by L(p,q). \bar{C} : the set of points $u \in \bar{H} \cap C$ that satisfy $\theta_u \geq \theta_b$. Case 2, if [a, b] intersects R_p . If [b, c] intersects R_q , then $\delta \le |c - a|$, and we are done. Let b, c be in the closed half plane \bar{H} bounded by L(p, q). \bar{C} : the set of points $u \in \bar{H} \cap C$ that satisfy $\theta_u \geq \theta_b$. z: the intersection point of R_q and bd C. Case 2, if [a, b] intersects R_p . If [b, c] intersects R_q , then $\delta \le |c - a|$, and we are done. Let b, c be in the closed half plane \bar{H} bounded by L(p, q). \bar{C} : the set of points $u \in \bar{H} \cap C$ that satisfy $\theta_u \ge \theta_b$. z: the intersection point of R_q and bd C. *x*: the point of $\bar{H} \cap \text{bd } C$ with $\theta_x = \theta_b$ Case 2, if [a, b] intersects R_p . If [b, c] intersects R_q , then $\delta \le |c - a|$, and we are done. Let b, c be in the closed half plane \bar{H} bounded by L(p, q). \bar{C} : the set of points $u \in \bar{H} \cap C$ that satisfy $\theta_u \ge \theta_b$. z: the intersection point of R_q and bd C. *x*: the point of $\bar{H} \cap \text{bd } C$ with $\theta_x = \theta_b$ w: the intersection point of bd C and the ray through o that starts at b, and w = z otherwise. If $w \in \bar{C}$, then $|c-b| \le |w-b|$, and we may choose a, b and w as a', b' and c', respectively. If $w \in \bar{C}$, then $|c-b| \le |w-b|$, and we may choose a, b and w as a', b' and c', respectively. Assume that $w \notin \bar{C}$. Then $|c-b| \le max\{|x-b|,|z-b|\}$. If $w \in \bar{C}$, then $|c-b| \leq |w-b|$, and we may choose a, b and w as a', b' and c', respectively. Assume that $w \notin \bar{C}$. Then $|c-b| \leq max\{|x-b|,|z-b|\}$. If $|x-b| \leq |z-b|$, then we may choose a, b and z as a', b' and c', respectively. If $w \in C$, then $|c-b| \leq |w-b|$, and we may choose a, b and w as a', b' and c', respectively. Assume that $w \notin \bar{C}$. Then $|c-b| < max\{|x-b|, |z-b|\}.$ If $|x-b| \leq |z-b|$, then we may choose a, b and z as a', b' and c', respectively. In the opposite case, we may choose a, x and z, respectively. If $w \in C$, then $|c-b| \leq |w-b|$, and we may choose a, b and w as a', b' and c', respectively. Assume that $w \notin \bar{C}$. Then $|c-b| < max\{|x-b|, |z-b|\}.$ If $|x-b| \leq |z-b|$, then we may choose a, b and z as a', b' and c', respectively. In the opposite case, we may choose a, x and z, respectively. A similar argument proves the assertion in the case that [b, c] intersects R_a . Case 3, a, b and c are in the same closed half plane H^+ bounded by L(p,q). Case 3, a, b and c are in the same closed half plane H^+ bounded by L(p,q). We may assume that $o \in H^+$, and that $p, q \in bd C$. Case 3, a, b and c are in the same closed half plane H^+ bounded by L(p,q). We may assume that $o \in H^+$, and that $p, q \in \operatorname{bd} C$. Now we drop the conditions that $|b-a|, |c-b| \le \delta$, and maximize |b-a|+|c-b| under the conditions that $a,b,c \in C \cap H^+ = C^+$ and $\theta_a < \theta_b < \theta_c$. Case 3, a, b and c are in the same closed half plane H^+ bounded by L(p,q). We may assume that $o \in H^+$, and that $p, q \in \operatorname{bd} C$. Now we drop the conditions that $|b-a|, |c-b| \le \delta$, and maximize |b-a|+|c-b| under the conditions that $a,b,c \in C \cap H^+ = C^+$ and $\theta_a \le \theta_b \le \theta_c$. r: the reflected image of a about the y-axis *r*: the reflected image of *a* about the *y*-axis Observation: $\omega_{\text{C}} \leq \omega_{-\text{r}} = \omega_{\text{a}}$ r: the reflected image of a about the y-axis Observation: $\omega_c \leq \omega_{-r} = \omega_a$ T: the reflection about the line bisecting [a, b] r: the reflected image of a about the y-axis Observation: $\omega_c \leq \omega_{-r} = \omega_a$ T: the reflection about the line bisecting [a, b] Then: T(a) = b, T(b) = a and $$T(c) \in C^+$$ r: the reflected image of a about the y-axis Observation: $\omega_c \leq \omega_{-r} = \omega_a$ T: the reflection about the line bisecting [a, b] Then: T(a) = b, T(b) = a and $$T(c) \in C^+$$ $$|b-a|\leq |p-a|,$$ r: the reflected image of a about the y-axis Observation: $\omega_{c} \leq \omega_{-r} = \omega_{a}$ T: the reflection about the line bisecting [a, b] Then: T(a) = b, T(b) = a and $$T(c) \in C^+$$ $$|b-a|\leq |p-a|,$$ $$|c-b|=|T(c)-a|\leq |q-a|,$$ r: the reflected image of a about the y-axis Observation: $\omega_c \leq \omega_{-r} = \omega_a$ T: the reflection about the line bisecting [a,b] Then: T(a) = b, T(b) = a and $T(c) \in C^+$ $|b-a| \leq |p-a|$, $|c-b| = |T(c)-a| \leq |q-a|$, we can choose p,a,q as a', b', c'. What is the coordinate system? What is the coordinate system? What is the coordinate system? An additional assumption for \mathbb{S}^2 : the radius ρ of the circle is $\rho \leq \frac{\pi}{4}$. In \mathbb{H}^2 $\phi < \frac{\pi}{2}$, in \mathbb{S}^2 $\phi > \frac{\pi}{2}$. Lemma does not hold for some spherical disks with radius $\frac{\pi}{4}<\rho<\frac{\pi}{2}.$ #### **EXAMPLE** Let $\varepsilon > 0$ and let $p, q \in \mathbb{S}^2$ be two points with $\operatorname{dist}_{\mathcal{S}}(p,q) = \pi - \varepsilon$. Lemma does not hold for some spherical disks with radius $\frac{\pi}{4}<\rho<\frac{\pi}{2}.$ #### **EXAMPLE** Let $\varepsilon > 0$ and let $p, q \in \mathbb{S}^2$ be two points with $\operatorname{dist}_{\mathcal{S}}(p,q) = \pi - \varepsilon$. Let k, -k be the centres of the two open hemispheres bounded by L(p,q). Lemma does not hold for some spherical disks with radius $\frac{\pi}{4}<\rho<\frac{\pi}{2}.$ #### **EXAMPLE** Let $\varepsilon > 0$ and let $p, q \in \mathbb{S}^2$ be two points with $\operatorname{dist}_S(p,q) = \pi - \varepsilon$. Let k, -k be the centres of the two open hemispheres bounded by L(p,q). Let [a,b] be a segment of length $\pi - \varepsilon$, perpendicular to [p,q], such that q is the midpoint of [a,b]. Lemma does not hold for some spherical disks with radius $\frac{\pi}{4}<\rho<\frac{\pi}{2}.$ #### **EXAMPLE** Let $\varepsilon > 0$ and let $p, q \in \mathbb{S}^2$ be two points with $\operatorname{dist}_S(p,q) = \pi - \varepsilon$. Let k, -k be the centres of the two open hemispheres bounded by L(p,q). Let [a,b] be a segment of length $\pi - \varepsilon$, perpendicular to [p,q], such that q is the midpoint of [a,b]. Note that $k, -k \in L(a,b) \setminus [a,b]$. Lemma does not hold for some spherical disks with radius $\frac{\pi}{4}<\rho<\frac{\pi}{2}.$ #### **EXAMPLE** Let $\varepsilon>0$ and let $p,q\in\mathbb{S}^2$ be two points with $\mathrm{dist}_{\mathcal{S}}(p,q)=\pi-\varepsilon$. Let k,-k be the centres of the two open hemispheres bounded by L(p,q). Let [a,b] be a segment of length $\pi-\varepsilon$, perpendicular to [p,q], such that q is the midpoint of [a,b]. Note that $k,-k\in L(a,b)\setminus [a,b]$. Thus, there is a disk C of radius $\rho<\frac{\pi}{2}$ that contains [p,q] and [a,b]. Lemma does not hold for some spherical disks with radius $\frac{\pi}{4}<\rho<\frac{\pi}{2}.$ #### EXAMPLE Let $\varepsilon>0$ and let $p,q\in\mathbb{S}^2$ be two points with $\mathrm{dist}_{\mathcal{S}}(p,q)=\pi-\varepsilon$. Let k,-k be the centres of the two open hemispheres bounded by L(p,q). Let [a,b] be a segment of length $\pi-\varepsilon$, perpendicular to [p,q], such that q is the midpoint of [a,b]. Note that $k,-k\in L(a,b)\setminus [a,b]$. Thus, there is a disk C of radius $\rho<\frac{\pi}{2}$ that contains [p,q] and [a,b]. Set c=a. Lemma does not hold for some spherical disks with radius $\frac{\pi}{4}<\rho<\frac{\pi}{2}.$ #### **EXAMPLE** Let $\varepsilon>0$ and let $p,q\in\mathbb{S}^2$ be two points with $\mathrm{dist}_{\mathcal{S}}(p,q)=\pi-\varepsilon$. Let k,-k be the centres of the two open hemispheres bounded by L(p,q). Let [a,b] be a segment of length $\pi-\varepsilon$, perpendicular to [p,q], such that q is the midpoint of [a,b]. Note that $k,-k\in L(a,b)\setminus [a,b]$. Thus, there is a disk C of radius $\rho<\frac{\pi}{2}$ that contains [p,q] and [a,b]. Set c=a. If ε is sufficiently small, then $3\pi-3\varepsilon$ is greater than the perimeter of any triangle inscribed in C. #### QUESTION Let $n \ge 5$ be odd, $0 < \rho < \frac{\pi}{2}$, and $C \subset \mathbb{S}^2$ be a disk of radius ρ . What is the supremum of the perimeters of the simple n-gons contained in C? #### QUESTION Let $n \ge 5$ be odd, $0 < \rho < \frac{\pi}{2}$, and $C \subset \mathbb{S}^2$ be a disk of radius ρ . What is the supremum of the perimeters of the simple n-gons contained in C? #### QUESTION Let $n \ge 5$ be odd, and let $C \subset \mathbb{E}^2$ be a plane convex body. Prove or disprove that if P is a simple n-gon contained in C, then there is a triangle, inscribed in C and with side-lengths α, β and γ , such that perim $P \le (n-2)\alpha + \beta + \gamma$. Is it true for plane convex bodies in the hyperbolic plane or on the sphere? #### **QUESTION** Let $n \ge 5$ be odd, and let $\mathbb M$ be a Minkowski plane with the unit disk C. What is the supremum of the perimeters of the simple n-gons contained in C? In particular, can Theorem be generalized for Minkowski planes? Can it be generalized for an arbitrary plane convex body of $\mathbb M$ instead of the unit disk of $\mathbb M$? #### **QUESTION** Let $n \ge 5$ be odd, and let $\mathbb M$ be a Minkowski plane with the unit disk C. What is the supremum of the perimeters of the simple n-gons contained in C? In particular, can Theorem be generalized for Minkowski planes? Can it be generalized for an arbitrary plane convex body of $\mathbb M$ instead of the unit disk of $\mathbb M$? In the last two questions the optimal triangle inscribed in ${\it C}$ is not necessarily isosceles. ### A RESULT ABOUT PLANE CONVEX BODIES #### THEOREM Let $n \ge 3$ be an odd integer, and let C be a plane convex body in \mathbb{E}^2 or in \mathbb{H}^2 . For every simple n-gon P contained in C there is a triangle, inscribed in C and with side-lengths $\alpha \ge \beta \ge \gamma$, such that perim $P \le (n-2)\alpha + \beta + \gamma$. ### A RESULT ABOUT PLANE CONVEX BODIES #### THEOREM Let $n \ge 3$ be an odd integer, and let C be a plane convex body in \mathbb{E}^2 or in \mathbb{H}^2 . For every simple n-gon P contained in C there is a triangle, inscribed in C and with side-lengths $\alpha \ge \beta \ge \gamma$, such that perim $P \le (n-2)\alpha + \beta + \gamma$. #### Our lemma fails: $$p = (0,0), \quad q = (0,1),$$ $a = (0.31,0.095), \quad b = (0,0.095),$ $c = (0.208,1.05),$ $C = \text{conv}\{p,q,a,b,c\},$ $$|b-a| = 0.3100...,$$ $$|c-b| = 0.9773...,$$ $$|c-a| = 0.9604...,$$ $$|b-a| + |c-b| = 1.2873...,$$ $$|c-p| + |q-c| = 1.2843...,$$ $$|a-p| + |c-a| = 1.2808...,$$ $$|a-p| + |c-a| = 1.2846...$$ ### The idea of the proof Step 1: To examine under what conditions does the assertion of the lemma fail Step 2: To prove the theorem in this case using a different method. ### The idea of the proof Step 1: To examine under what conditions does the assertion of the lemma fail Step 2: To prove the theorem in this case using a different method. #### DEFINITION If a',b',c' satisfy $|p-q| \le |c'-a'|$ and $|b-a|+|c-b| \le |b'-a'|+|c'-b'|$, we say that a',b' and c' satisfy Property (*). ## Assumptions: • p = (0,0) and q = (0,1). ### Assumptions: - p = (0,0) and q = (0,1). - $\theta_{a} \leq \theta_{b} \leq \theta_{c},$ ### Assumptions: - p = (0,0) and q = (0,1). - $\theta_{a} \leq \theta_{b} \leq \theta_{c},$ - **3** a is not farther from the bisector of [p, q] than c (or in other words, $\theta_a + \theta_c \ge 1$), #### Assumptions: - **1** p = (0,0) and q = (0,1). - $\theta_{a} \leq \theta_{b} \leq \theta_{c},$ - **3** a is not farther from the bisector of [p, q] than c (or in other words, $\theta_a + \theta_c \ge 1$), - **1** at least one of ω_a , ω_b and ω_c is positive. #### Assumptions: - p = (0,0) and q = (0,1). - $\theta_{a} \leq \theta_{b} \leq \theta_{c},$ - **3** a is not farther from the bisector of [p, q] than c (or in other words, $\theta_a + \theta_c \ge 1$), - at least one of ω_a , ω_b and ω_c is positive. Notation: $$p_a = (0, \theta_a), p_b = (0, \theta_b), p_c = (0, \theta_c).$$ #### Assumptions: - p = (0,0) and q = (0,1). - $\theta_{a} \leq \theta_{b} \leq \theta_{c},$ - **3** a is not farther from the bisector of [p, q] than c (or in other words, $\theta_a + \theta_c \ge 1$), - at least one of ω_a , ω_b and ω_c is positive. Notation: $$p_a = (0, \theta_a), p_b = (0, \theta_b), p_c = (0, \theta_c).$$ #### LEMMA #### LEMMA (A) $$|c-a| < 1$$. #### LEMMA - (A) |c a| < 1. - (B) a, b and c are in the same closed half-plane bounded by L(p,q). #### LEMMA - (A) |c a| < 1. - (B) a, b and c are in the same closed half-plane bounded by L(p,q). - (B) $\theta_c > 1$ and $0 < \theta_a < \frac{1}{2}$. #### LEMMA - (A) |c a| < 1. - (B) a, b and c are in the same closed half-plane bounded by L(p,q). - (B) $\theta_c > 1$ and $0 < \theta_a < \frac{1}{2}$. - (D) $b \in \text{conv}\{p_a, p_c, a, c\}$. #### LEMMA - (A) |c a| < 1. - (B) a, b and c are in the same closed half-plane bounded by L(p,q). - (B) $\theta_c > 1$ and $0 < \theta_a < \frac{1}{2}$. - (D) $b \in \text{conv}\{p_a, p_c, a, c\}$. - (E) $|b-a|+|c-b| \leq |p_a-a|+|c-p_a|$. We may assume that a, b, c, p, q does not satisfy Property (*). We may assume that a, b, c, p, q does not satisfy Property (*). Observation: $\theta_c - \theta_a > \frac{\theta_c}{2}$. We may assume that a, b, c, p, q does not satisfy Property (*). Observation: $\theta_c - \theta_a > \frac{\theta_c}{2}$. Case 1, n = 5. We may assume that a, b, c, p, q does not satisfy Property (*). Observation: $\theta_c - \theta_a > \frac{\theta_c}{2}$. Case 1, n = 5. Then the remaining two edges of P are [p, a] and [c, q], We may assume that a, b, c, p, q does not satisfy Property (*). Observation: $\theta_c - \theta_a > \frac{\theta_c}{2}$. Case 1, n = 5. Then the remaining two edges of P are [p, a] and [c, q], and perim $P \le 3|p-c|+|p-q|+|q-c|$. Case 2, $n \geq 7$. Case 2, $n \geq 7$.If $|c - a| \geq |c - p_a|$, then p, a, c satisfies Property (*). Thus, we assume that $\omega_c \geq \frac{\omega_a}{2}$. Case 2, $n \geq 7$.If $|c - a| \geq |c - p_a|$, then p, a, c satisfies Property (*). Thus, we assume that $\omega_c \geq \frac{\omega_a}{2}$. Since |q-p|=1, it is sufficient to prove that $5+|p_a-a|+|c-p_a| \le 5|c-p|+|a-p|+|c-a|$. $$I = \frac{5\omega_c}{\sqrt{\omega_c^2 + \theta_c^2}} - \frac{2\omega_c}{\sqrt{\omega_c^2 + (\theta_c - \theta_a)^2}} \ge \frac{5\omega_c}{\sqrt{\omega_c^2 + \theta_c^2}} - \frac{2\omega_c}{\sqrt{\omega_c^2 + (\theta_c/2)^2}} =$$ $$= \frac{\omega_c \left(21\omega_c^2 + \frac{9}{4}\theta_c^2\right)}{\sqrt{\omega_c^2 + \theta_c^2}\sqrt{\omega_c^2 + (\theta_c/2)^2} \left(5\sqrt{\omega_c^2 + (\theta_c/2)^2} + 2\sqrt{\omega_c^2 + \theta_c^2}\right)} \ge 0.$$ $$\begin{split} I &= \frac{5\omega_c}{\sqrt{\omega_c^2 + \theta_c^2}} - \frac{2\omega_c}{\sqrt{\omega_c^2 + (\theta_c - \theta_a)^2}} \ge \frac{5\omega_c}{\sqrt{\omega_c^2 + \theta_c^2}} - \frac{2\omega_c}{\sqrt{\omega_c^2 + (\theta_c/2)^2}} = \\ &= \frac{\omega_c \left(21\omega_c^2 + \frac{9}{4}\theta_c^2\right)}{\sqrt{\omega_c^2 + \theta_c^2}\sqrt{\omega_c^2 + (\theta_c/2)^2} \left(5\sqrt{\omega_c^2 + (\theta_c/2)^2} + 2\sqrt{\omega_c^2 + \theta_c^2}\right)} \ge 0. \end{split}$$ For \mathbb{H}^2 a similar proof works. #### AND FINALLY ... # The End