ON A DISCRETE ISOPERIMETRIC INEQUALITY

Zsolt Lángi

Department of Geometry, Budapest University of Technology, Hungary

September 16, 2011

 \mathbb{E}^2 : the Euclidean plane

 \mathbb{H}^2 : the hyperbolic plane

 \mathbb{S}^2 : the sphere

 \mathbb{E}^2 : the Euclidean plane

 \mathbb{H}^2 : the hyperbolic plane

 \mathbb{S}^2 : the sphere

THEOREM (CLASSICAL DISCRETE ISOPERIMETRIC INEQUALITY)

Among convex polygons of a given perimeter in \mathbb{E}^2 , \mathbb{H}^2 or in \mathbb{S}^2 , the regular one has maximal area.

A more general approach (Brass, Moser, Pach: Research Problems in Discrete Geometry, 2005):

A more general approach (Brass, Moser, Pach: Research Problems in Discrete Geometry, 2005):

Any inequality relating two geometric quantities (area, perimeter, diameter, width, inradius, circumradius, etc.) of convex (or simple) n-gons is called a "discrete isoperimetric inequality".

A more general approach (Brass, Moser, Pach: Research Problems in Discrete Geometry, 2005):

Any inequality relating two geometric quantities (area, perimeter, diameter, width, inradius, circumradius, etc.) of convex (or simple) n-gons is called a "discrete isoperimetric inequality".

REMARK

For most pairs the optimal polygon is the regular *n*-gon.

A recent question:

A recent question:

QUESTION (BRASS, 2005)

For $n \geq 5$ odd, what is the supremum of the perimeters of the simple n-gons contained in a unit disk of \mathbb{E}^2 ?

A recent question:

QUESTION (BRASS, 2005)

For $n \ge 5$ odd, what is the supremum of the perimeters of the simple n-gons contained in a unit disk of \mathbb{E}^2 ?

THEOREM (AUDET, HANSEN AND MESSINE, 2009)

The supremum of the perimeters in the question of Brass is

$$\frac{\left(\sqrt{1+8(n-2)^2}-1\right)^{\frac{1}{2}}\left(\sqrt{1+8(n-2)^2}+3\right)^{\frac{3}{2}}}{4(n-2)}$$

THEOREM (AUDET, HANSEN AND MESSINE, 2009)

The supremum of the perimeters in the question of Brass is

$$\frac{\left(\sqrt{1+8(n-2)^2}-1\right)^{\frac{1}{2}}\left(\sqrt{1+8(n-2)^2}+3\right)^{\frac{3}{2}}}{4(n-2)}$$

THEOREM (L., 2011)

Let \mathbb{M} be \mathbb{E}^2 or \mathbb{H}^2 , and let $n \geq 3$ be an odd integer.

THEOREM (L., 2011)

Let \mathbb{M} be \mathbb{E}^2 or \mathbb{H}^2 , and let $n \geq 3$ be an odd integer. If $C \subset \mathbb{M}$ is a disk and P is a simple n-gon contained in C,

THEOREM (L., 2011)

Let \mathbb{M} be \mathbb{E}^2 or \mathbb{H}^2 , and let $n \geq 3$ be an odd integer. If $C \subset \mathbb{M}$ is a disk and P is a simple n-gon contained in C, then there is an isosceles triangle,

THEOREM (L., 2011)

Let \mathbb{M} be \mathbb{E}^2 or \mathbb{H}^2 , and let $n \geq 3$ be an odd integer. If $C \subset \mathbb{M}$ is a disk and P is a simple n-gon contained in C, then there is an isosceles triangle, inscribed in C and with side-lengths $\alpha \geq \beta$,

THEOREM (L., 2011)

Let \mathbb{M} be \mathbb{E}^2 or \mathbb{H}^2 , and let $n \geq 3$ be an odd integer. If $C \subset \mathbb{M}$ is a disk and P is a simple n-gon contained in C, then there is an isosceles triangle, inscribed in C and with side-lengths $\alpha \geq \beta$, such that perim $P < (n-2)\alpha + 2\beta$.

THEOREM (L., 2011)

Let \mathbb{M} be \mathbb{E}^2 or \mathbb{H}^2 , and let $n \geq 3$ be an odd integer. If $C \subset \mathbb{M}$ is a disk and P is a simple n-gon contained in C, then there is an isosceles triangle, inscribed in C and with side-lengths $\alpha \geq \beta$, such that perim $P \leq (n-2)\alpha + 2\beta$.

REMARK (L., 2011)

There is a real number $\varepsilon > 0$

THEOREM (L., 2011)

Let \mathbb{M} be \mathbb{E}^2 or \mathbb{H}^2 , and let $n \geq 3$ be an odd integer. If $C \subset \mathbb{M}$ is a disk and P is a simple n-gon contained in C, then there is an isosceles triangle, inscribed in C and with side-lengths $\alpha \geq \beta$, such that perim $P \leq (n-2)\alpha + 2\beta$.

REMARK (L., 2011)

There is a real number $\varepsilon > 0$ such that for every odd integer $n \ge 3$ and $0 < \rho < \varepsilon$ the following holds.

THEOREM (L., 2011)

Let \mathbb{M} be \mathbb{E}^2 or \mathbb{H}^2 , and let $n \geq 3$ be an odd integer. If $C \subset \mathbb{M}$ is a disk and P is a simple n-gon contained in C, then there is an isosceles triangle, inscribed in C and with side-lengths $\alpha \geq \beta$, such that perim $P \leq (n-2)\alpha + 2\beta$.

REMARK (L., 2011)

There is a real number $\varepsilon > 0$ such that for every odd integer $n \ge 3$ and $0 < \rho < \varepsilon$ the following holds. If $C \subset \mathbb{S}^2$ is a disk of radius ρ , and P is a simple n-gon contained in C,

THEOREM (L., 2011)

Let \mathbb{M} be \mathbb{E}^2 or \mathbb{H}^2 , and let $n \geq 3$ be an odd integer. If $C \subset \mathbb{M}$ is a disk and P is a simple n-gon contained in C, then there is an isosceles triangle, inscribed in C and with side-lengths $\alpha \geq \beta$, such that perim $P \leq (n-2)\alpha + 2\beta$.

REMARK (L., 2011)

There is a real number $\varepsilon>0$ such that for every odd integer $n\geq 3$ and $0<\rho<\varepsilon$ the following holds. If $C\subset\mathbb{S}^2$ is a disk of radius ρ , and P is a simple n-gon contained in C, then there is an isosceles triangle, inscribed in C and with side-lengths $\alpha\geq\beta$, such that perim $P\leq (n-2)\alpha+2\beta$.

REMARK

Using simple calculus, one can compute the maximum of the quantity $(n-2)\alpha+2\beta$ for $\mathbb{M}=\mathbb{H}^2$ and $\mathbb{M}=\mathbb{S}^2$, but these expressions are too long to be included here.

REMARK

Using simple calculus, one can compute the maximum of the quantity $(n-2)\alpha + 2\beta$ for $\mathbb{M} = \mathbb{H}^2$ and $\mathbb{M} = \mathbb{S}^2$, but these expressions are too long to be included here.

Notations:

• – If it is not stated otherwise, \mathbb{M} is any of the planes \mathbb{E}^2 , \mathbb{H}^2 and \mathbb{S}^2 .

REMARK

Using simple calculus, one can compute the maximum of the quantity $(n-2)\alpha + 2\beta$ for $\mathbb{M} = \mathbb{H}^2$ and $\mathbb{M} = \mathbb{S}^2$, but these expressions are too long to be included here.

- – If it is not stated otherwise, \mathbb{M} is any of the planes \mathbb{E}^2 , \mathbb{H}^2 and \mathbb{S}^2 .
- The closed/open segment with endpoints $p, q \in \mathbb{M}$ is [p,q]/(p,q), respectively.

REMARK

Using simple calculus, one can compute the maximum of the quantity $(n-2)\alpha+2\beta$ for $\mathbb{M}=\mathbb{H}^2$ and $\mathbb{M}=\mathbb{S}^2$, but these expressions are too long to be included here.

- – If it is not stated otherwise, \mathbb{M} is any of the planes \mathbb{E}^2 , \mathbb{H}^2 and \mathbb{S}^2 .
- The closed/open segment with endpoints $p, q \in \mathbb{M}$ is [p, q]/(p, q), respectively.
- The distance of p, q is denoted by $\operatorname{dist}_M(p, q)$, or, if $\mathbb{M} = \mathbb{E}^2$, by |p q|.

REMARK

Using simple calculus, one can compute the maximum of the quantity $(n-2)\alpha+2\beta$ for $\mathbb{M}=\mathbb{H}^2$ and $\mathbb{M}=\mathbb{S}^2$, but these expressions are too long to be included here.

- – If it is not stated otherwise, \mathbb{M} is any of the planes \mathbb{E}^2 , \mathbb{H}^2 and \mathbb{S}^2 .
- The closed/open segment with endpoints $p, q \in \mathbb{M}$ is [p, q]/(p, q), respectively.
- The distance of p, q is denoted by $\operatorname{dist}_M(p, q)$, or, if $\mathbb{M} = \mathbb{E}^2$, by |p q|.

Let *P* be a simple *n*-gon contained in the Euclidean disk *C*.

Let *P* be a simple *n*-gon contained in the Euclidean disk *C*.

REMARK

It is sufficient to find a triangle contained in C, with side-lengths α, β and γ , that satisfies perim $P \leq (n-2)\alpha + \beta + \gamma$.

Let *P* be a simple *n*-gon contained in the Euclidean disk *C*.

REMARK

It is sufficient to find a triangle contained in C, with side-lengths α, β and γ , that satisfies perim $P \leq (n-2)\alpha + \beta + \gamma$.

THE PROOF FOR $\mathbb{M}=\mathbb{E}^2$

Notations:

- The vertices of P are $p_1, p_2, \dots, p_n = p_0$ in this counterclockwise order.

THE PROOF FOR $\mathbb{M} = \mathbb{E}^2$

- The vertices of P are $p_1, p_2, \dots, p_n = p_0$ in this counterclockwise order.
- In a given Descartes coordinate system, the coordinates of a point q are denoted by $q = (\omega_q, \theta_q)$.

THE PROOF FOR $\mathbb{M} = \mathbb{E}^2$

- The vertices of P are $p_1, p_2, \dots, p_n = p_0$ in this counterclockwise order.
- In a given Descartes coordinate system, the coordinates of a point q are denoted by $q = (\omega_q, \theta_q)$.
- The coordinates of p_i are denoted by $p_i = (\omega_i, \theta_i)$.

Notations:

- The vertices of P are $p_1, p_2, \dots, p_n = p_0$ in this counterclockwise order.
- In a given Descartes coordinate system, the coordinates of a point q are denoted by $q = (\omega_q, \theta_q)$.
- The coordinates of p_i are denoted by $p_i = (\omega_i, \theta_i)$.

DEFINITION

Let $p, q, a, b, c \in M$.

THE PROOF FOR $\mathbb{M} = \mathbb{E}^2$

Notations:

- The vertices of P are $p_1, p_2, \dots, p_n = p_0$ in this counterclockwise order.
- In a given Descartes coordinate system, the coordinates of a point q are denoted by $q = (\omega_q, \theta_q)$.
- The coordinates of p_i are denoted by $p_i = (\omega_i, \theta_i)$.

DEFINITION

Let $p, q, a, b, c \in \mathbb{M}$. We say that the segment [p, q] and the polygonal curve $[a, b] \cup [b, c]$ do not cross,

THE PROOF FOR $\mathbb{M} = \mathbb{E}^2$

Notations:

- The vertices of P are $p_1, p_2, \dots, p_n = p_0$ in this counterclockwise order.
- In a given Descartes coordinate system, the coordinates of a point q are denoted by $q = (\omega_q, \theta_q)$.
- The coordinates of p_i are denoted by $p_i = (\omega_i, \theta_i)$.

DEFINITION

Let $p, q, a, b, c \in \mathbb{M}$. We say that the segment [p, q] and the polygonal curve $[a, b] \cup [b, c]$ do not cross, if the set $(p, q) \cap ((a, b] \cup [b, c))$ is either empty or a segment.

The proof for $\mathbb{M} = \mathbb{E}^2$

LEMMA

Let $[p, q] \in C$ be a vertical segment and set $\delta = |p - q|$.

LEMMA

Let $[p,q] \in C$ be a vertical segment and set $\delta = |p-q|$. Let $a,b,c \in C$ be points such that $\theta_a \leq \theta_b \leq \theta_c$,

LEMMA

Let $[p,q] \in C$ be a vertical segment and set $\delta = |p-q|$. Let $a,b,c \in C$ be points such that $\theta_a \leq \theta_b \leq \theta_c$, and the polygonal curve $[a,b] \cup [b,c]$ and [p,q] do not cross.

LEMMA

Let $[p,q] \in C$ be a vertical segment and set $\delta = |p-q|$. Let $a,b,c \in C$ be points such that $\theta_a \leq \theta_b \leq \theta_c$, and the polygonal curve $[a,b] \cup [b,c]$ and [p,q] do not cross. If $|b-a|,|c-b| \leq \delta$,

LEMMA

Let $[p,q] \in C$ be a vertical segment and set $\delta = |p-q|$. Let $a,b,c \in C$ be points such that $\theta_a \leq \theta_b \leq \theta_c$, and the polygonal curve $[a,b] \cup [b,c]$ and [p,q] do not cross. If $|b-a|,|c-b| \leq \delta$, then there are points $a',b',c' \in C$ such that $|b-a|+|c-b| \leq |b'-a'|+|c'-b'|$,

LEMMA

Let $[p,q] \in C$ be a vertical segment and set $\delta = |p-q|$. Let $a,b,c \in C$ be points such that $\theta_a \leq \theta_b \leq \theta_c$, and the polygonal curve $[a,b] \cup [b,c]$ and [p,q] do not cross. If $|b-a|,|c-b| \leq \delta$, then there are points $a',b',c' \in C$ such that $|b-a|+|c-b| \leq |b'-a'|+|c'-b'|$, and $\delta \leq |c'-b'|$.

LEMMA

Let $[p,q] \in C$ be a vertical segment and set $\delta = |p-q|$. Let $a,b,c \in C$ be points such that $\theta_a \leq \theta_b \leq \theta_c$, and the polygonal curve $[a,b] \cup [b,c]$ and [p,q] do not cross. If $|b-a|,|c-b| \leq \delta$, then there are points $a',b',c' \in C$ such that $|b-a|+|c-b| \leq |b'-a'|+|c'-b'|$, and $\delta \leq |c'-b'|$.

LEMMA

Let $[p,q] \in C$ be a vertical segment and set $\delta = |p-q|$. Let $a,b,c \in C$ be points such that $\theta_a \leq \theta_b \leq \theta_c$, and the polygonal curve $[a,b] \cup [b,c]$ and [p,q] do not cross. If $|b-a|,|c-b| \leq \delta$, then there are points $a',b',c' \in C$ such that $|b-a|+|c-b| \leq |b'-a'|+|c'-b'|$, and $\delta \leq |c'-b'|$.

We may assume that

We may assume that

 $-[p_0, p_1]$ is a longest side of P,

We may assume that

- $-[p_0, p_1]$ is a longest side of P,
- $-[p_0, p_1]$ is a vertical segment $(\omega_0 = \omega_1)$.

We may assume that

- $-[p_0, p_1]$ is a longest side of P,
- $-[p_0, p_1]$ is a vertical segment ($\omega_0 = \omega_1$).

Consider the (n+1)-element sequence $\mu_1, \mu_2, \dots \mu_{n+1}$ defined as follows.

We may assume that

- $-[p_0, p_1]$ is a longest side of P,
- $-[p_0, p_1]$ is a vertical segment $(\omega_0 = \omega_1)$.

Consider the (n+1)-element sequence $\mu_1, \mu_2, \dots \mu_{n+1}$ defined as follows.

For i = 1, 2, ..., n + 1,

$$\mu_i = \begin{cases} 1, & \text{if } \theta_i < \theta_{i+1}; \\ -1, & \text{if } \theta_i > \theta_{i+1}; \\ 0, & \text{if } \theta_i = \theta_{i+1}. \end{cases}$$

Observe that $\mu_0 = \mu_n \neq 0$.

Since n + 1 is even, there are two consecutive elements of the sequence that are both nonnegative or both nonpositive.

Since n + 1 is even, there are two consecutive elements of the sequence that are both nonnegative or both nonpositive. Thus, we may apply Lemma.

TWO REMARKS

Notations:

- -L(p,q): the line containing [p,q];
- $-R_p$: the connected component of $L(p,q) \setminus (p,q)$, containing p;
- $-R_q$: the connected component of $L(p,q) \setminus (p,q)$, containing q.

Notations:

- -L(p,q): the line containing [p,q];
- $-R_p$: the connected component of $L(p,q) \setminus (p,q)$, containing p;
- $-R_q$: the connected component of $L(p,q)\setminus (p,q)$, containing q.

Notations:

- -L(p,q): the line containing [p,q];
- $-R_p$: the connected component of $L(p,q) \setminus (p,q)$, containing p;
- $-R_q$: the connected component of $L(p,q)\setminus (p,q)$, containing q.

Notations:

- -L(p,q): the line containing [p,q];
- $-R_p$: the connected component of $L(p,q) \setminus (p,q)$, containing p;
- $-R_q$: the connected component of $L(p,q) \setminus (p,q)$, containing q.

Notations:

- -L(p,q): the line containing [p,q];
- $-R_p$: the connected component of $L(p,q) \setminus (p,q)$, containing p;
- $-R_q$: the connected component of $L(p,q) \setminus (p,q)$, containing q.

Notations:

- -L(p,q): the line containing [p,q];
- $-R_p$: the connected component of $L(p,q) \setminus (p,q)$, containing p;
- $-R_q$: the connected component of $L(p,q)\setminus (p,q)$, containing q.

Assumptions: $\theta_{p} < \theta_{q}$ and the centre of C is the origin.

Case 1, if [a, b] intersects R_q .

$$|\mathbf{b} - \mathbf{a}| \le \delta \le |\mathbf{b} - \mathbf{p}|$$

 $\delta \le |\mathbf{c} - \mathbf{p}|$.

We may choose a', b' and c' as p, b and c, respectively.

Notations:

- -L(p,q): the line containing [p,q];
- $-R_p$: the connected component of $L(p,q) \setminus (p,q)$, containing p;
- $-R_a$: the connected component of $L(p,q) \setminus (p,q)$, containing q.

Assumptions: $\theta_p < \theta_q$ and the centre of *C* is the origin.

 $\delta < |\mathbf{c} - \mathbf{p}|$. We may choose a', b' and c' as

p, b and c, respectively.

If [b, c] intersects R_p , we may apply a similar argument.

Case 2, if [a, b] intersects R_p .

Case 2, if [a, b] intersects R_p . If [b, c] intersects R_q , then $\delta \le |c - a|$, and we are done.

Case 2, if [a, b] intersects R_p . If [b, c] intersects R_q , then $\delta \le |c - a|$, and we are done. Let b, c be in the closed half plane \bar{H} bounded by L(p, q).

Case 2, if [a,b] intersects R_p . If [b,c] intersects R_q , then $\delta \leq |c-a|$, and we are done. Let b,c be in the closed half plane \bar{H} bounded by L(p,q). \bar{C} : the set of points $u \in \bar{H} \cap C$ that satisfy $\theta_u \geq \theta_b$.

Case 2, if [a, b] intersects R_p . If [b, c] intersects R_q , then $\delta \le |c - a|$, and we are done. Let b, c be in the closed half plane \bar{H} bounded by L(p, q).

 \bar{C} : the set of points $u \in \bar{H} \cap C$ that satisfy $\theta_u \geq \theta_b$.

z: the intersection point of R_q and bd C.

Case 2, if [a, b] intersects R_p . If [b, c] intersects R_q , then $\delta \le |c - a|$, and we are done. Let b, c be in the closed half plane \bar{H} bounded by L(p, q).

 \bar{C} : the set of points $u \in \bar{H} \cap C$ that satisfy $\theta_u \ge \theta_b$.

z: the intersection point of R_q and bd C.

x: the point of $\bar{H} \cap \text{bd } C$ with $\theta_x = \theta_b$

Case 2, if [a, b] intersects R_p . If [b, c] intersects R_q , then $\delta \le |c - a|$, and we are done. Let b, c be in the closed half plane \bar{H} bounded by L(p, q).

 \bar{C} : the set of points $u \in \bar{H} \cap C$ that satisfy $\theta_u \ge \theta_b$.

z: the intersection point of R_q and bd C.

x: the point of $\bar{H} \cap \text{bd } C$ with $\theta_x = \theta_b$

w: the intersection point of bd C and the ray through o that starts at b, and w = z otherwise.

If $w \in \bar{C}$, then $|c-b| \le |w-b|$, and we may choose a, b and w as a', b' and c', respectively.

If $w \in \bar{C}$, then $|c-b| \le |w-b|$, and we may choose a, b and w as a', b' and c', respectively. Assume that $w \notin \bar{C}$. Then $|c-b| \le max\{|x-b|,|z-b|\}$.

If $w \in \bar{C}$, then $|c-b| \leq |w-b|$, and we may choose a, b and w as a', b' and c', respectively. Assume that $w \notin \bar{C}$. Then $|c-b| \leq max\{|x-b|,|z-b|\}$. If $|x-b| \leq |z-b|$, then we may choose a, b and z as a', b' and c', respectively.

If $w \in C$, then $|c-b| \leq |w-b|$, and we may choose a, b and w as a', b' and c', respectively. Assume that $w \notin \bar{C}$. Then $|c-b| < max\{|x-b|, |z-b|\}.$ If $|x-b| \leq |z-b|$, then we may choose a, b and z as a', b' and c', respectively. In the opposite case, we may choose a, x and z, respectively.

If $w \in C$, then $|c-b| \leq |w-b|$, and we may choose a, b and w as a', b' and c', respectively. Assume that $w \notin \bar{C}$. Then $|c-b| < max\{|x-b|, |z-b|\}.$ If $|x-b| \leq |z-b|$, then we may choose a, b and z as a', b' and c', respectively. In the opposite case, we may choose a, x and z, respectively.

A similar argument proves the assertion in the case that [b, c] intersects R_a .

Case 3, a, b and c are in the same closed half plane H^+ bounded by L(p,q).

Case 3, a, b and c are in the same closed half plane H^+ bounded by L(p,q).

We may assume that $o \in H^+$, and that $p, q \in bd C$.

Case 3, a, b and c are in the same closed half plane H^+ bounded by L(p,q).

We may assume that $o \in H^+$, and that $p, q \in \operatorname{bd} C$. Now we drop the conditions that $|b-a|, |c-b| \le \delta$, and maximize |b-a|+|c-b| under the conditions that $a,b,c \in C \cap H^+ = C^+$ and $\theta_a < \theta_b < \theta_c$.

Case 3, a, b and c are in the same closed half plane H^+ bounded by L(p,q).

We may assume that $o \in H^+$, and that $p, q \in \operatorname{bd} C$. Now we drop the conditions that $|b-a|, |c-b| \le \delta$, and maximize |b-a|+|c-b| under the conditions that $a,b,c \in C \cap H^+ = C^+$ and $\theta_a \le \theta_b \le \theta_c$.

r: the reflected image of a about the y-axis

r: the reflected image of *a* about the *y*-axis Observation: $\omega_{\text{C}} \leq \omega_{-\text{r}} = \omega_{\text{a}}$

r: the reflected image of a about the y-axis

Observation: $\omega_c \leq \omega_{-r} = \omega_a$

T: the reflection about the line bisecting [a, b]

r: the reflected image of a about the y-axis

Observation: $\omega_c \leq \omega_{-r} = \omega_a$

T: the reflection about the line bisecting [a, b]

Then: T(a) = b, T(b) = a and

$$T(c) \in C^+$$

r: the reflected image of a about the y-axis

Observation: $\omega_c \leq \omega_{-r} = \omega_a$

T: the reflection about the line bisecting [a, b]

Then: T(a) = b, T(b) = a and

$$T(c) \in C^+$$

$$|b-a|\leq |p-a|,$$

r: the reflected image of a about the y-axis

Observation: $\omega_{c} \leq \omega_{-r} = \omega_{a}$

T: the reflection about the line bisecting [a, b]

Then: T(a) = b, T(b) = a and

$$T(c) \in C^+$$

$$|b-a|\leq |p-a|,$$

$$|c-b|=|T(c)-a|\leq |q-a|,$$

r: the reflected image of a about the y-axis Observation: $\omega_c \leq \omega_{-r} = \omega_a$ T: the reflection about the line bisecting [a,b] Then: T(a) = b, T(b) = a and $T(c) \in C^+$ $|b-a| \leq |p-a|$, $|c-b| = |T(c)-a| \leq |q-a|$, we can choose p,a,q as

a', b', c'.

What is the coordinate system?

What is the coordinate system?

What is the coordinate system?

An additional assumption for \mathbb{S}^2 : the radius ρ of the circle is $\rho \leq \frac{\pi}{4}$.

In \mathbb{H}^2 $\phi < \frac{\pi}{2}$, in \mathbb{S}^2 $\phi > \frac{\pi}{2}$.

Lemma does not hold for some spherical disks with radius $\frac{\pi}{4}<\rho<\frac{\pi}{2}.$

EXAMPLE

Let $\varepsilon > 0$ and let $p, q \in \mathbb{S}^2$ be two points with $\operatorname{dist}_{\mathcal{S}}(p,q) = \pi - \varepsilon$.

Lemma does not hold for some spherical disks with radius $\frac{\pi}{4}<\rho<\frac{\pi}{2}.$

EXAMPLE

Let $\varepsilon > 0$ and let $p, q \in \mathbb{S}^2$ be two points with $\operatorname{dist}_{\mathcal{S}}(p,q) = \pi - \varepsilon$. Let k, -k be the centres of the two open hemispheres bounded by L(p,q).

Lemma does not hold for some spherical disks with radius $\frac{\pi}{4}<\rho<\frac{\pi}{2}.$

EXAMPLE

Let $\varepsilon > 0$ and let $p, q \in \mathbb{S}^2$ be two points with $\operatorname{dist}_S(p,q) = \pi - \varepsilon$. Let k, -k be the centres of the two open hemispheres bounded by L(p,q). Let [a,b] be a segment of length $\pi - \varepsilon$, perpendicular to [p,q], such that q is the midpoint of [a,b].

Lemma does not hold for some spherical disks with radius $\frac{\pi}{4}<\rho<\frac{\pi}{2}.$

EXAMPLE

Let $\varepsilon > 0$ and let $p, q \in \mathbb{S}^2$ be two points with $\operatorname{dist}_S(p,q) = \pi - \varepsilon$. Let k, -k be the centres of the two open hemispheres bounded by L(p,q). Let [a,b] be a segment of length $\pi - \varepsilon$, perpendicular to [p,q], such that q is the midpoint of [a,b]. Note that $k, -k \in L(a,b) \setminus [a,b]$.

Lemma does not hold for some spherical disks with radius $\frac{\pi}{4}<\rho<\frac{\pi}{2}.$

EXAMPLE

Let $\varepsilon>0$ and let $p,q\in\mathbb{S}^2$ be two points with $\mathrm{dist}_{\mathcal{S}}(p,q)=\pi-\varepsilon$. Let k,-k be the centres of the two open hemispheres bounded by L(p,q). Let [a,b] be a segment of length $\pi-\varepsilon$, perpendicular to [p,q], such that q is the midpoint of [a,b]. Note that $k,-k\in L(a,b)\setminus [a,b]$. Thus, there is a disk C of radius $\rho<\frac{\pi}{2}$ that contains [p,q] and [a,b].

Lemma does not hold for some spherical disks with radius $\frac{\pi}{4}<\rho<\frac{\pi}{2}.$

EXAMPLE

Let $\varepsilon>0$ and let $p,q\in\mathbb{S}^2$ be two points with $\mathrm{dist}_{\mathcal{S}}(p,q)=\pi-\varepsilon$. Let k,-k be the centres of the two open hemispheres bounded by L(p,q). Let [a,b] be a segment of length $\pi-\varepsilon$, perpendicular to [p,q], such that q is the midpoint of [a,b]. Note that $k,-k\in L(a,b)\setminus [a,b]$. Thus, there is a disk C of radius $\rho<\frac{\pi}{2}$ that contains [p,q] and [a,b]. Set c=a.

Lemma does not hold for some spherical disks with radius $\frac{\pi}{4}<\rho<\frac{\pi}{2}.$

EXAMPLE

Let $\varepsilon>0$ and let $p,q\in\mathbb{S}^2$ be two points with $\mathrm{dist}_{\mathcal{S}}(p,q)=\pi-\varepsilon$. Let k,-k be the centres of the two open hemispheres bounded by L(p,q). Let [a,b] be a segment of length $\pi-\varepsilon$, perpendicular to [p,q], such that q is the midpoint of [a,b]. Note that $k,-k\in L(a,b)\setminus [a,b]$. Thus, there is a disk C of radius $\rho<\frac{\pi}{2}$ that contains [p,q] and [a,b]. Set c=a. If ε is sufficiently small, then $3\pi-3\varepsilon$ is greater than the perimeter of any triangle inscribed in C.

QUESTION

Let $n \ge 5$ be odd, $0 < \rho < \frac{\pi}{2}$, and $C \subset \mathbb{S}^2$ be a disk of radius ρ . What is the supremum of the perimeters of the simple n-gons contained in C?

QUESTION

Let $n \ge 5$ be odd, $0 < \rho < \frac{\pi}{2}$, and $C \subset \mathbb{S}^2$ be a disk of radius ρ . What is the supremum of the perimeters of the simple n-gons contained in C?

QUESTION

Let $n \ge 5$ be odd, and let $C \subset \mathbb{E}^2$ be a plane convex body. Prove or disprove that if P is a simple n-gon contained in C, then there is a triangle, inscribed in C and with side-lengths α, β and γ , such that perim $P \le (n-2)\alpha + \beta + \gamma$. Is it true for plane convex bodies in the hyperbolic plane or on the sphere?

QUESTION

Let $n \ge 5$ be odd, and let $\mathbb M$ be a Minkowski plane with the unit disk C. What is the supremum of the perimeters of the simple n-gons contained in C? In particular, can Theorem be generalized for Minkowski planes? Can it be generalized for an arbitrary plane convex body of $\mathbb M$ instead of the unit disk of $\mathbb M$?

QUESTION

Let $n \ge 5$ be odd, and let $\mathbb M$ be a Minkowski plane with the unit disk C. What is the supremum of the perimeters of the simple n-gons contained in C? In particular, can Theorem be generalized for Minkowski planes? Can it be generalized for an arbitrary plane convex body of $\mathbb M$ instead of the unit disk of $\mathbb M$?

In the last two questions the optimal triangle inscribed in ${\it C}$ is not necessarily isosceles.

A RESULT ABOUT PLANE CONVEX BODIES

THEOREM

Let $n \ge 3$ be an odd integer, and let C be a plane convex body in \mathbb{E}^2 or in \mathbb{H}^2 . For every simple n-gon P contained in C there is a triangle, inscribed in C and with side-lengths $\alpha \ge \beta \ge \gamma$, such that perim $P \le (n-2)\alpha + \beta + \gamma$.

A RESULT ABOUT PLANE CONVEX BODIES

THEOREM

Let $n \ge 3$ be an odd integer, and let C be a plane convex body in \mathbb{E}^2 or in \mathbb{H}^2 . For every simple n-gon P contained in C there is a triangle, inscribed in C and with side-lengths $\alpha \ge \beta \ge \gamma$, such that perim $P \le (n-2)\alpha + \beta + \gamma$.

Our lemma fails:

$$p = (0,0), \quad q = (0,1),$$
 $a = (0.31,0.095), \quad b = (0,0.095),$
 $c = (0.208,1.05),$
 $C = \text{conv}\{p,q,a,b,c\},$

$$|b-a| = 0.3100...,$$

$$|c-b| = 0.9773...,$$

$$|c-a| = 0.9604...,$$

$$|b-a| + |c-b| = 1.2873...,$$

$$|c-p| + |q-c| = 1.2843...,$$

$$|a-p| + |c-a| = 1.2808...,$$

$$|a-p| + |c-a| = 1.2846...$$

The idea of the proof

Step 1: To examine under what conditions does the assertion of the lemma fail

Step 2: To prove the theorem in this case using a different method.

The idea of the proof

Step 1: To examine under what conditions does the assertion of the lemma fail

Step 2: To prove the theorem in this case using a different method.

DEFINITION

If a',b',c' satisfy $|p-q| \le |c'-a'|$ and $|b-a|+|c-b| \le |b'-a'|+|c'-b'|$, we say that a',b' and c' satisfy Property (*).

Assumptions:

• p = (0,0) and q = (0,1).

Assumptions:

- p = (0,0) and q = (0,1).
- $\theta_{a} \leq \theta_{b} \leq \theta_{c},$

Assumptions:

- p = (0,0) and q = (0,1).
- $\theta_{a} \leq \theta_{b} \leq \theta_{c},$
- **3** a is not farther from the bisector of [p, q] than c (or in other words, $\theta_a + \theta_c \ge 1$),

Assumptions:

- **1** p = (0,0) and q = (0,1).
- $\theta_{a} \leq \theta_{b} \leq \theta_{c},$
- **3** a is not farther from the bisector of [p, q] than c (or in other words, $\theta_a + \theta_c \ge 1$),
- **1** at least one of ω_a , ω_b and ω_c is positive.

Assumptions:

- p = (0,0) and q = (0,1).
- $\theta_{a} \leq \theta_{b} \leq \theta_{c},$
- **3** a is not farther from the bisector of [p, q] than c (or in other words, $\theta_a + \theta_c \ge 1$),
- at least one of ω_a , ω_b and ω_c is positive.

Notation:
$$p_a = (0, \theta_a), p_b = (0, \theta_b), p_c = (0, \theta_c).$$

Assumptions:

- p = (0,0) and q = (0,1).
- $\theta_{a} \leq \theta_{b} \leq \theta_{c},$
- **3** a is not farther from the bisector of [p, q] than c (or in other words, $\theta_a + \theta_c \ge 1$),
- at least one of ω_a , ω_b and ω_c is positive.

Notation:
$$p_a = (0, \theta_a), p_b = (0, \theta_b), p_c = (0, \theta_c).$$

LEMMA

LEMMA

(A)
$$|c-a| < 1$$
.

LEMMA

- (A) |c a| < 1.
- (B) a, b and c are in the same closed half-plane bounded by L(p,q).

LEMMA

- (A) |c a| < 1.
- (B) a, b and c are in the same closed half-plane bounded by L(p,q).
- (B) $\theta_c > 1$ and $0 < \theta_a < \frac{1}{2}$.

LEMMA

- (A) |c a| < 1.
- (B) a, b and c are in the same closed half-plane bounded by L(p,q).
- (B) $\theta_c > 1$ and $0 < \theta_a < \frac{1}{2}$.
- (D) $b \in \text{conv}\{p_a, p_c, a, c\}$.

LEMMA

- (A) |c a| < 1.
- (B) a, b and c are in the same closed half-plane bounded by L(p,q).
- (B) $\theta_c > 1$ and $0 < \theta_a < \frac{1}{2}$.
- (D) $b \in \text{conv}\{p_a, p_c, a, c\}$.
- (E) $|b-a|+|c-b| \leq |p_a-a|+|c-p_a|$.

We may assume that a, b, c, p, q does not satisfy Property (*).

We may assume that a, b, c, p, q does not satisfy Property (*).

Observation: $\theta_c - \theta_a > \frac{\theta_c}{2}$.

We may assume that a, b, c, p, q does not satisfy Property (*).

Observation: $\theta_c - \theta_a > \frac{\theta_c}{2}$. Case 1, n = 5.

We may assume that a, b, c, p, q does not satisfy Property (*).

Observation: $\theta_c - \theta_a > \frac{\theta_c}{2}$.

Case 1, n = 5.

Then the remaining two edges of P are [p, a] and [c, q],

We may assume that a, b, c, p, q does not satisfy Property (*).

Observation: $\theta_c - \theta_a > \frac{\theta_c}{2}$. Case 1, n = 5.

Then the remaining two edges of P are [p, a] and [c, q], and perim $P \le 3|p-c|+|p-q|+|q-c|$.

Case 2, $n \geq 7$.

Case 2, $n \geq 7$.If $|c - a| \geq |c - p_a|$, then p, a, c satisfies Property (*). Thus, we assume that $\omega_c \geq \frac{\omega_a}{2}$.

Case 2, $n \geq 7$.If $|c - a| \geq |c - p_a|$, then p, a, c satisfies Property (*). Thus, we assume that $\omega_c \geq \frac{\omega_a}{2}$.

Since |q-p|=1, it is sufficient to prove that $5+|p_a-a|+|c-p_a| \le 5|c-p|+|a-p|+|c-a|$.

$$I = \frac{5\omega_c}{\sqrt{\omega_c^2 + \theta_c^2}} - \frac{2\omega_c}{\sqrt{\omega_c^2 + (\theta_c - \theta_a)^2}} \ge \frac{5\omega_c}{\sqrt{\omega_c^2 + \theta_c^2}} - \frac{2\omega_c}{\sqrt{\omega_c^2 + (\theta_c/2)^2}} =$$

$$= \frac{\omega_c \left(21\omega_c^2 + \frac{9}{4}\theta_c^2\right)}{\sqrt{\omega_c^2 + \theta_c^2}\sqrt{\omega_c^2 + (\theta_c/2)^2} \left(5\sqrt{\omega_c^2 + (\theta_c/2)^2} + 2\sqrt{\omega_c^2 + \theta_c^2}\right)} \ge 0.$$

$$\begin{split} I &= \frac{5\omega_c}{\sqrt{\omega_c^2 + \theta_c^2}} - \frac{2\omega_c}{\sqrt{\omega_c^2 + (\theta_c - \theta_a)^2}} \ge \frac{5\omega_c}{\sqrt{\omega_c^2 + \theta_c^2}} - \frac{2\omega_c}{\sqrt{\omega_c^2 + (\theta_c/2)^2}} = \\ &= \frac{\omega_c \left(21\omega_c^2 + \frac{9}{4}\theta_c^2\right)}{\sqrt{\omega_c^2 + \theta_c^2}\sqrt{\omega_c^2 + (\theta_c/2)^2} \left(5\sqrt{\omega_c^2 + (\theta_c/2)^2} + 2\sqrt{\omega_c^2 + \theta_c^2}\right)} \ge 0. \end{split}$$

For \mathbb{H}^2 a similar proof works.

AND FINALLY ...

The End