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A dispersion problem:

First studied by Cabello, 2007.

Given n unit disks in the plane, select a point in each disk,

such that the minimum pairwise distance among the points

is maximized.

Variants:

• (not necessarily disjoint) disks of arbitrary radii

• disjoint unit disks

First variant: shown to be NP-hard. [Fiala, Kratochv́ıl,

Proskurowski, 2007].

Second variant: also NP-hard; one can modify their reduction.
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Dispersion in disjoint unit disks
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Background

Let R be a family of n subsets of a metric space. The problem of

dispersion in R is that of selecting n points, one in each subset,

such that the minimum inter-point distance is maximized.

This dispersion problem was introduced by Fiala et al. (2007) as

“systems of distant representatives”, generalizing the classic

problem “systems of distinct representatives”.

An especially interesting version of the dispersion problem, (with

natural applications to wireless networking and map labeling), is in

a geometric setting where:

R is a set of unit disks in the plane.
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Dispersion in disks

Example: Dispersion a heavily overlapping family of disks: leads to

a packing problem with congruent disks.
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Approximation algorithms (old and new)

Cabello (2007) gave a O(n2)-time approximation algorithm with

ratio 0.4465 for dispersion in n not necessarily disjoint unit disks.

For dispersion in disjoint disks, Cabello (2007) noticed that a naive

algorithm called Centers, which simply selects the centers of the

given disks as the points, gives a 1
2 -approximation.

• Arbitrary unit disks: 0.4465 → 0.4674

• Disjoint disks (or balls in d-space): 1/2 → 0.707

6



Our results

Theorem 1 There is an O(n logn)-time approximation algorithm

A1 with ratio 0.5110 for dispersion in n disjoint unit disks.

Theorem 2 There is an LP-based approximation algorithm A2,

with O(n) variables and constraints, and running in polynomial

time, that achieves approximation ratio 0.707, for dispersion in n

disjoint disks of arbitrary radii. Moreover, the algorithm can be

extended for disjoint balls of arbitrary radii in R
d, for any (fixed)

dimension d, while preserving the same features.

Theorem 3 In combination with an algorithm of Cabello, the

simple O(n logn)-time algorithm in Theorem 1 yields an

O(n2)-time algorithm with ratio 0.4487, and the LP-based algorithm

in Theorem 2 yields a polynomial-time algorithm with ratio 0.4674,

for dispersion in n (not necessarily disjoint) unit disks.
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Definitions and notations

For two points, p = (xp, yp) and q = (xq, yq),

|pq| =
√

(xp − xq)2 + (yp − yq)2

D = {Ω1, . . . ,Ωn} a set of n disjoint disks of arbitrary radii in the

plane; oi: the center of Ωi ri: the radius of Ωi.

Here: the distance between two disks is the distance between their

centers; e.g., the distance between two tangent unit disks is 2.

δij : the distance between Ωi and Ωj .

δ: the minimum pairwise distance of the disks in D, i.e.,

δ = mini 6=j δij .
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The algorithm Centers:

Let OPT denote an optimal solution and CEN denote the solution

returned by Centers. Clearly: CEN = δ.

Since the disks are disjoint, ri + rj ≤ δij , i 6= j.

It follows that

OPT ≤ min
i 6=j

(δij + ri + rj) ≤ 2min
i 6=j

δij = 2δ.

Consequently, the algorithm Centers achieves an approximation

ratio of CEN
OPT ≥ δ

2δ = 1
2 for disjoint disks.
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Next: An LP-based approx. alg. for disjoint disks

Ω1, . . . ,Ωn be n pairwise disjoint disks of radii r1, . . . , rn, and

centers o1, . . . , on. We set two parameters λ = 1/2 and λ′ = 3/4.

For i = 1, . . . , n, let ωi and ω′
i be two disks of radii λ · ri and λ′ · ri,

respectively, that are concentric with Ωi. Conveniently select

disjoint convex polygons Qi, i = 1, . . . , n, such that

ωi ⊂ Qi ⊂ ω′
i ⊂ Ωi, for each i = 1, . . . , n. E.g., Qi is an axis-aligned

square of side length ri concentric with ωi.

Qi

ωi

ω′
i

Ωi
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Ideas for the algorithm

1. Suppose we restrict the feasible region of each point pi from the

given disk Ωi to the smaller concentric disk ωi of radius λ · ri. The
centers of the original disks Ωi are still in the feasible regions for

each of the n points. So the 1
2 -approximation that we could easily

achieve earlier, is still attainable. E.g., setting λ = 0 yields the

algorithm Centers.

We then show the existence of a good approximation for the

dispersion problem constrained to the smaller disks.
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Ideas for the algorithm

2. If λ is small, then the distance between two points (in two

smaller disks) can be well approximated by the projection of the

connecting segment onto the line connecting the disk centers.

Enclose each smaller disk ωi in a suitable convex polygon Qi, where

ωi ⊂ Qi ⊂ ω′
i ⊂ Ωi. The length of each such projection can be

expressed as a linear combination of the coordinates of the two

points. Use linear programming to maximize the smallest

projection of an inter-point distance.
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A key fact relating projections to distances

Lemma 1 Let λ = 1/2. Consider two disjoint disks Ωi and Ωj at

distance δij = |oioj |. Let pi ∈ Ωi and pj ∈ Ωj be two points. Let

qi ∈ ωi be the point on oipi at distance λ|oipi| from oi. Similarly

define qj ∈ ωj as the point on ojpj at distance λ|ojpj | from oj .

Then
projij(qi, qj)

|pipj |
≥ 1√

2
.

pi

qi

qj
oi

oj

pj
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A key fact relating projections to distances

This bound is tight:

qj

pj

pi
projij(qi,qj)

|pipj| =
1√
2

oi

oj

qi
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Linear Program

A set {q1, . . . , qn} of n points is sought, where qi = (xi, yi) ∈ Qi, for

i = 1, . . . , n. LP2 maximizes the minimum pairwise projection on

the line connecting the corresponding centers of the disks; that is,

for each pair (i, j), the length of the projection of the segment

connecting the two points qi and qj , on the line connecting the

corresponding disk centers oi and oj .

We are lead to the following symbolic LP:

maximize z (LP2)

subject to







qi ∈ Qi, 1 ≤ i ≤ n

projij(qi, qj) ≥ z, 1 ≤ i < j ≤ n
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Writing the linear constraints

oi = (ξi, νi), pi = (xi, yi), for i = 1, . . . , n

For simplicity, assume ξ1 ≤ ξ2 ≤ . . . ≤ ξn. Consider a pair (i, j),

where i < j. αij ∈ [−π/2, π/2) is the angle of the line determined

by oi and oj . Assuming that ξ1 ≤ ξ2 ≤ . . . ≤ ξn, we have

cosαij =
ξj − ξi
|oioj |

, sinαij =
νj − νi
|oioj |

.

Let aij = (cosαij , sinαij), so that |aij | = 1. Let

sij = (xj − xi, yj − yi). Hence:

projαij
(pi, pj) = 〈aij · sij〉 = (xj − xi) cosαij + (yj − yi) sinαij .

• For each pair i, j, where i < j, generate the constraint:

(xj − xi) cosαij + (yj − yi) sinαij ≥ z;
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Solving the linear program

Lemma 2 For any given ε > 0, a (1− ε)-approximation of the

solution of LP2 can be obtained in polynomial time.

The constraints of the linear program LP2 involve irrational

numbers, and hence it cannot be claimed that the original LP is

solvable in polynomial time. However, it is enough to solve the LP

up to some precision. For this, it is enough to approximate the

numbers involved in the constraints up to some precision, which is

polynomial in the error of the output.

Establishing the approximation ratio

Lemma 3 For any given ε > 0, the approximation algorithm A2

can achieve a ratio at least 1−ε√
2

for pairwise disjoint disks.
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Reducing the number of constraints to O(n)

Recall that OPT ≤ 2δ. The LP solution, z∗, is bounded from above

as (recall that λ′ = 3/4)

z∗ ≤ δ +
3(ri + rj)

4
≤ 7δ

4
,

where (i, j) are a closest pair of disks.

It follows that there is no need to write any constraints for pairs of

disks at distance larger than 7δ. Indeed, if now (i, j) is such a pair,

the distance between two points, one in Qi and one in Qj , is at least

δij −
3(ri + rj)

4
≥ δij −

3δij
4

=
δij
4

>
7δ

4
> z∗.

An easy packing argument shows that the number of pairs of disks

at distance at most 7δ is only O(n).
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Extension to any (fixed) dimension d

Differences:

• The balls ωi and ω′
i are two smaller balls of radii λ · ri and

λ′ · ri concentric with Ωi, where λ = 1/2 and λ′ = 3/4.

• Qi is any suitable convex polytope in R
d such that

ωi ⊂ Qi ⊂ ω′
i ⊂ Ωi.

A similar lemma (and proof) with the planar case:
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Extension to any (fixed) dimension d

Lemma 4 Let λ = 1/2. Consider two disjoint balls Ωi and Ωj at

distance δij = |oioj |. Let pi ∈ Ωi and pj ∈ Ωj be two points. Let

qi ∈ ωi be the point on oipi at distance λ|oipi| from oi. Similarly

define qj ∈ ωj as the point on ojpj at distance λ|ojpj | from oj .

Then
projij(qi, qj)

|pipj |
≥ 1√

2
.

pi

qi

qj
oi

oj

pj
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Implementation in d-space

There exists a convex polytope Q ⊂ R
d and a function f(d) such

that ω ⊂ Q ⊂ ω′ ⊂ Ω, where Q has f(d) facets, and ω, ω′ and Ω are

concentric balls of radii 1/2, 3/4 and 1, respectively. For d ≥ 5, a

concentric unit hyper-cube is not contained in the unit ball!

The polytope Qi is a translate of riQ placed at oi, so that

ωi ⊂ Qi ⊂ ω′
i ⊂ Ωi. Each symbolic constraint qi ∈ Qi is

implemented as f(d) linear inequalities, one for each facet of Qi.

Qi

ωi

ω′
i

Ωi
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Implementation in d-space

Each symbolic constraint projij(qi, qj) ≥ z implements the dot

products. Again (as in the planar case) there is no need to write

any constraints for pairs of balls at distance larger than 7δ, and the

number of such pairs is linear in n for fixed d. The total number of

constraints is therefore O(n).

The approximation ratio remains the same as for the planar case,

namely 1−ε√
2
, for any given ε > 0, e.g., 0.707 for ε = 10−4.
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A hybrid algorithm for unit disks

For dispersion in (not necessarily disjoint) unit disks, Cabello

presented a hybrid algorithm that applies two different algorithms

Placement and Centers and then returns the better solution.

We present an improved hybrid algorithm that uses the algorithm

Placement in combination with either the simple O(n logn)-time

algorithm or the LP-based algorithm.
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A hybrid algorithm for unit disks

Write OPT = 2x and δ = 2µ.

We can assume w.l.o.g. that δ ≤ 2, as otherwise the unit disks are

disjoint. We also record the obvious inequalities:

δ ≤ OPT ≤ δ + 2 ≤ 4 ⇔ µ ≤ x ≤ 1 + µ ≤ 2. (1)

The algorithm Placement, which runs in O(n2) time, achieves a

ratio of

c1(x) =
−
√
3 +

√
3x+

√
3 + 2x− x2

4x
, for 1 ≤ x ≤ 2, (2)

and a ratio of at least 1
2 for 0 ≤ x ≤ 1.
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A hybrid algorithm for unit disks

We discuss the hybrid algorithm that runs Placement and A2.

Obviously the n disks of radius µ ≤ 1 concentric with the n input

unit disks are pairwise-disjoint.

The hybrid algorithm runs Placement on the given unit disks and

A2 on the disks of radius µ and then returns the better solution.

Clearly the solution is valid, and it remains to analyze the

approximation ratio.

For any given ε > 0, it achieves a ratio at least
(1−ε)

√
2

1+
√

9−2
√
6
= (1− ε) · 0.46749 . . ..

For ε = 10−4, we get a 0.4674-approximation.
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A hybrid algorithm for unit disks; a key lemma

Relate the optimal solution OPT for the unit disks to the optimal

solution OPTµ for the smaller disjoint disks of radius µ:

Lemma 5 For a problem instance with µ ∈ [0, 1], we have

OPTµ ≥ OPT− 2(1− µ).
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Proof of key lemma:OPTµ ≥ OPT− 2(1− µ)

qj

pj

oj

pi

qi
oi

Consider an optimal solution given by n points p1, . . . , pn, where

pi ∈ Ωi, such that |pipj | ≥ OPT, for all i 6= j, and |pipj | = OPT for

at least one pair (i, j). For each i, let qi ∈ Ωi be the point on oipi
at distance µ|oipi| from oi. Obviously, the set {qi : i = 1, . . . , n} is

a valid solution for dispersion in the disks of radius µ concentric

with the unit disks Ω1, . . . ,Ωn. Moreover, since |piqi| ≤ 1− µ, for

any i, by the triangle inequality we have |qiqj | ≥ OPT− 2(1− µ),

for any i 6= j. Consequently, OPTµ ≥ OPT− 2(1− µ).
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Summary of current best approximation ratios

for the three variants of dispersion in disks

Recall our two algorithms A1 and A2 and the two algorithms

Placement and Centers by Cabello.

• Arbitrary (not necessarily unit or disjoint): 3/8 = 0.375 by

Placement.

• Unit (not necessarily disjoint): 0.4674 by A2 plus Placement,

which improves 0.4465 by Centers plus Placement.

• Disjoint (not necessarily unit): 0.707 by A2, which improves

0.5 by Centers.
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Conclusion

• Other applications of using projections for approximating

distances?

• The dispersion problem in other domains instead of disks?
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