Benjamin Matschke

Disputationsvortrag

PLAN

- 1 The square peg problem
- 2 Proof for smooth curves
- 3 A DIFFERENT CLASS OF CURVES
- 4 What about immersed curves?
- **5** What about rectangles on curves?
- 6 Many related problems

DEFINITION

A **Jordan curve** γ is a continuous simple closed curve in the plane,

$$\gamma: S^1 \hookrightarrow \mathbb{R}^2.$$

DEFINITION

A polygon P is **inscribed** in γ if all vertices of P belong to γ .

PROBLEM (OTTO TOEPLITZ 1911)

Does every Jordan curve inscribe a square?

- solved for "smooth enough" curves (e.g. C^1),
- \bullet open otherwise (\rightarrow why? Because no working approximating argument is known)

PROBLEM (OTTO TOEPLITZ 1911)

Does every Jordan curve inscribe a square?

- solved for "smooth enough" curves (e.g. C^1),
- \bullet open otherwise (\rightarrow why? Because no working approximating argument is known)

PROBLEM (OTTO TOEPLITZ 1911)

Does every Jordan curve inscribe a square?

- solved for "smooth enough" curves (e.g. C^1),
- ullet open otherwise (o why? Because no working approximating argument is known)

KNOWN PROOFS

Many proofs are known for various smoothness conditions:

- Toeplitz 1911 (convex curves)?
- Emch 1913, 1915 ("smooth enough" convex curves)
- Schnirel'man 1944 ("a bit less" than C^2)
- Jerrard 1961 (analytic curves)
- Fenn 1970 (convex curves)
- Stromquist 1989 ("locally monotone curves")
- Pak 2008 (piecewise linear curves)
- Vrećica–Živaljević 2008 (Stromquist's curves)
- ...

The problem is either due to

- Toeplitz or
- Emch (Kemptner suggested to him the problem).

STROMQUIST'S CRITERION:

Locally monotone curves:

THEOREM (STROMQUIST 2011)

Any locally monotone Jordan curve inscribes a square.

NEW CRITERION:

DEFINITION

A special trapezoid of size ε ...

THEOREM (M 2009)

Let $\varepsilon \in (0, 2\pi)$. Any Jordan curve without (or with generically an even number of) special trapezoids of size ε inscribes a square.

NEW CRITERION

- This strictly generalizes Stromquist's theorem.
- "Having no inscribed special trapezoid of size ε " is an *open* condition for γ ! (w.r.t. compact-open topology; being locally monotone is not an open condition)
- The theorem holds for curves in arbitrary metric spaces.
- Proof based on obstruction theory, first used in this context by Vrećica-Živaljević.

PLAN

- 1 The square peg problem
- 2 Proof for smooth curves
- 3 A DIFFERENT CLASS OF CURVES
- 4 What about immersed curves?
- **5** What about rectangles on curves?
- 6 Many related problems

GENERAL PROOF METHOD FOR SMOOTH CURVES

Generically, the number of inscribed squares is odd.

Let $\gamma: S^1 \hookrightarrow \mathbb{R}^2$ be smooth (C^{∞}) . Construct a test map

$$f_{\gamma}: (S^1)^4 \longrightarrow_G \mathbb{R}^4 \times \mathbb{R}^2$$

that measures the four edges and two diagonals of the parametrized quadrilateral. Then

$$Q_{\gamma}:=f_{\gamma}^{-1}(\{(a,a,a,a,b,b)\in\mathbb{R}^6\})$$

is the set of inscribed squares.

Now deform the given γ to an ellipse.

•
$$[Q] \in \mathcal{N}_0((S^1)^4/G) = \mathbb{Z}_2$$
,

$$\bullet \ [Q]=1 \ \Rightarrow \ Q\neq \emptyset.$$

- $[Q] \in \mathcal{N}_0((S^1)^4/G) = \mathbb{Z}_2$,
- $\bullet \ [Q] = 1 \ \Rightarrow \ Q \neq \emptyset.$

- $[Q] \in \mathcal{N}_0((S^1)^4/G) = \mathbb{Z}_2$,
- $\bullet \ [Q]=1 \ \Rightarrow \ Q\neq \emptyset.$

- $[Q] \in \mathcal{N}_0((S^1)^4/G) = \mathbb{Z}_2$,
- $[Q] = 1 \Rightarrow Q \neq \emptyset$.

PLAN

- 1 The square peg problem
- 2 Proof for smooth curves
- 3 A DIFFERENT CLASS OF CURVES
- 4 What about immersed curves?
- **6** What about rectangles on curves?
- 6 Many related problems

A DIFFERENT, OPEN CLASS OF CURVES

THEOREM (M 2011)

Let $\gamma: S^1 \to A$ represent a generator of $\pi_1(A)$, where

$$A := \{ x \in \mathbb{R}^2 \mid 1 \le ||x|| \le 1 + \sqrt{2} \}.$$

Then γ inscribes a square with edge length at least $\sqrt{2}$.

- \bullet γ needs to be only continuous, not even injective.
- ullet This is the first known *open* class of curves $S^1 o \mathbb{R}^2$ that inscribe squares.

A DIFFERENT, OPEN CLASS OF CURVES

PROOF IDEA:

Let S be the set of squares with all vertices in A. Then,

 $S = \{ \text{big squares} \} \uplus \{ \text{small squares} \}.$

Now,

- an ellipse in A inscribes one big square, and
- bordisms of squares stay in their component.

A DIFFERENT, OPEN CLASS OF CURVES

Similar theorems for other shapes:

QUESTION

Can this approach be made more general in order to solve the square peg problem completely?

PLAN

- 1 The square peg problem
- 2 Proof for smooth curves
- 3 A DIFFERENT CLASS OF CURVES
- 4 What about immersed curves?
- **6** What about rectangles on curves?
- 6 Many related problems

IMMERSED CURVES

EXAMPLE

Conjecture (Cantarella 2008)

Modulo 2, the number of inscribed squares of "generic" curves is the following ambient isotopy invariant of the curve: . . .

IMMERSED CURVES

COUNTER-EXAMPLE:

IMMERSED CURVES

Let $\gamma:S^1\hookrightarrow\mathbb{R}^2$ be "generic". Chequerboard coloring associated to γ :

Crossings are called **fat** if the black angles are $>90^{\circ}$. Dots mark the fat crossings.

THEOREM (M 2011)

```
\#\{\text{inscribed squares}\} = \#\{\text{fat crossings}\} + \\ \#\{\text{black components}\} \mod 2.
```


PROOF

PLAN

- 1 The square peg problem
- 2 Proof for smooth curves
- 3 A DIFFERENT CLASS OF CURVES
- 4 What about immersed curves?
- **5** What about rectangles on curves?
- 6 Many related problems

What about rectangles

PROBLEM

Does every smooth Jordan curve inscribe a rectangle of a given aspect ratio r:1?

• This is open! (for $r \neq 1$).

We have

- Partial results for $r = \sqrt{3}$.
- There is a mod-2 formula for immersed curves.

PLAN

- 1 The square peg problem
- 2 Proof for smooth curves
- 3 A DIFFERENT CLASS OF CURVES
- 4 What about immersed curves?
- **5** What about rectangles on curves?
- 6 MANY RELATED PROBLEMS

Thank you!

Discussion