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The unit distance problem
Introduced by Erdős (1946, 1960)

S ⊂ Rd , |S| = n.

Definitions
E (S) := {xy : x, y ∈ S, |xy | = 1}
u(S) := |E (S)|
ud (n) := max{u(S) : S ⊂ Rd , |S| = n}

Problem
Determine ud (n).



The unit distance problem
Introduced by Erdős (1946, 1960)
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Determine ud (n).
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Simplest proof due to Székely (1997) — crossing number lemma
Not dense: u2(n) = o(n2)
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The unit distance problem
Introduced by Erdős (1946, 1960)

S ⊂ Rd , |S| = n.

Definitions
E (S) := {xy : x, y ∈ S, |xy | = 1}
u(S) := |E (S)|
ud (n) := max{u(S) : S ⊂ Rd , |S| = n}

Problem
Determine ud (n).

Theorem (Kaplan, Matoušek, Safernová, Sharir; Zahl 2011)
u3(n) < cn3/2

Uses polynomial ham-sandwich theorem
Also not dense: u3(n) = o(n2)
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The Lenz construction
R6 = R2 ⊕ R2 ⊕ R2
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Definition
A Lenz configuration is a set that is congruent with a finite subset
of these circles (resp. the circles and the sphere)
There exist complete bd/2c-partite unit distance graphs:
Distribute n/bd/2c points on each circle:
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Dense: ud (n) = Θ(n2)
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The Lenz construction is asymptotically optimal

Theorem (Erdős 1960)
For any d ≥ 4, ud (n) =

1
2

(
1− 1
bd/2c

)
n2 + o(n2)

Forbidden K3, 3, . . . , 3︸ ︷︷ ︸
bd/2c+ 1

times

Theorem (Erdős 1967)
For any even d ≥ 4, ud (n) =

1
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n2 + Θ(n)

Theorem (Erdős and Pach 1990)
For any odd d ≥ 5, ud (n) =

1
2
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1− 1
bd/2c

)
n2 + Θ(n4/3)

There exist configurations of n points on a 2-sphere of radius
1/
√

2 with Ω(n4/3) unit distance pairs.
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Extremal structure
Definition
A finite set S ⊂ Rd is an extremal configuration if u(S) = ud (n),
where n = |S|.

Theorem (Brass 1997, Van Wamelen 1999)

For n ≥ 5, u4(n) =

{
bn2/4c+ n if n is divisible by 8 or 10,
bn2/4c+ n − 1 otherwise.

Furthermore, any sufficiently large extremal configuration is a Lenz
configuration.

Theorem (S 2009)
Let d ≥ 5. All extremal configurations of size n in Rd are Lenz
configurations for n > n0(d) sufficiently large.

Proof is based on a stability result.
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Stability for unit distances

Theorem (S 2009)
Let d ≥ 4 and S ⊂ Rd with |S| = n. If

u(S) >
1
2

(
1− 1

p

)
n2 − o(n2)

then S is a Lenz configuration with the exception of o(n) points.

Proof.
Euclidean geometry + extremal graph theory:
I Erdős-Stone theorem
I Stability theorem of Erdős-Simonovits

Similar statements for the graph of diameters.

This was the motivation to look at favourite distances.
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The favourite distance problem
Introduced by Avis, Erdős, Pach (1988)

S ⊂ Rd , |S| = n, r : S → (0,∞)

Definitions
~Er (S) := {xy : x, y ∈ S, |xy | = r(x)}
er (S) =

∣∣∣~E (S)
∣∣∣

fd (n) := max{er (S) : S ⊂ Rd , |S| = n, r : S → (0,∞)}

Problem
Determine fd (n).
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Theorem (Avis, Erdős, Pach 1988)

f2(n) <
√

2 n3/2 + n/2.

Forbidden ~K2,3

Not dense: u2(n) = o(n2)



The favourite distance problem
Introduced by Avis, Erdős, Pach (1988)

S ⊂ Rd , |S| = n, r : S → (0,∞)

Definitions
~Er (S) := {xy : x, y ∈ S, |xy | = r(x)}
er (S) =

∣∣∣~E (S)
∣∣∣

fd (n) := max{er (S) : S ⊂ Rd , |S| = n, r : S → (0,∞)}

Theorem (Aronov, Sharir 2002)
f2(n) < cn15/11

Bound actually holds for point-circle incidences

Conjecture (Brass, Moser, Pach 2005)
f2(n) = Θ(n4/3)

Sharp if true: f2(n) = Ω(n4/3) is known.
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The favourite distance problem in R3

Theorem (Avis, Erdős, Pach 1988)

n2

4 +
n
2 ≤ f3(n) ≤ n2

4 + cn2−ε0 .

C

Lower bound: Suspension x r(x) = d(x, C)

 n/2 points
`

 
n/2 points

Upper bound: Forbidden ~K3,3,3: extremal digraph theory
Dense unlike unit distances: f3(n) = Θ(n2)



The favourite distance problem in R3

Theorem (S)
For sufficiently large n,

n2

4 +
5n
2 − 6 ≤ f3(n) <

n2

4 +
5n
2 + 6.

Uses a structural result for extremal configurations.

Definitions
A spindle configuration is a finite subset of a circle and its axis of
symmetry. A pair (S, r) is an extremal configuration if
er (S) = fd (n), where n = |S|.

Theorem (S)
If (S, r) is an extremal configuration on a sufficiently large set
S ⊂ R3, then S is a spindle configuration up to two points, and for
all points x ∈ S on the line of the spindle, r(x) equals the distance
from x to the circle of the spindle.
Proof is again based on a stability result.
I conjecture that the two points are unnecessary.



Stability

Theorem (S)
If a set S of n points in R3 and r : S → (0,∞) are such that
er (S) > n2/4− o(n2), then S is a suspension up to o(n) points.

Proof follows in the steps of Avis, Erdős, Pach (1988).

There is a similar statement for the furthest neighbour digraph of a
set of points in R3: fix

r(x) := max{|xy | : y ∈ S}.

The furthest neighbour digraph has been considered by Csizmadia
(1996), who determined extremal configurations for sufficiently
large n.
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The Lenz construction again
R7 = R2 ⊕ R2 ⊕ R3
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Set r identically 1 to obtain

fd (n) ≥ 2ud (n) ≥
(

1− 1
bd/2c

)
n2.
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fd (n) ≥ 2ud (n) ≥
(
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)
n2.

Theorem (Avis, Erdős, Pach 1988)

fd (n) =

(
1− 2

d

)
n2 + O(n2−ε0) for even d ≥ 4.
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Set r identically 1 to obtain

fd (n) ≥ 2ud (n) ≥
(

1− 1
bd/2c

)
n2.

Theorem (Erdős, Pach 1990)

fd (n) =

(
1− 1
bd/2c

)
n2 + o(n2) for odd d ≥ 5.

Extremal digraph theory



If unit distance graphs are dense, then favourite distance
digraphs are equally dense

Observation (S)
For any even d ≥ 4, fd (n) =

(
1− 2

d

)
n2 + Θ(n).

For any odd d ≥ 5, fd (n) =

(
1− 1
bd/2c

)
n2 + Θ(n4/3)

Actually follows easily from previously mentioned theorems:

Theorem (Erdős 1967)
For any even d ≥ 4, ud (n) =

1
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Stability and extremality in dimensions d ≥ 4
Theorem (S)
If a set S of n points in Rd , d ≥ 4, and r : S → (0,∞) are such
that er (S) > (1− 1

bd/2c)n2 − o(n2), then S is a Lenz configuration
on which r is contant, up to o(n) points.

Very easy if d ≥ 6. d = 5 much harder.

Theorem (S)
Let d ≥ 4 and let n be sufficiently large. If a set S of n points in
Rd , and r : S → (0,∞) satisfy er (S) = fd (n), then r is constant
and S is a Lenz configuration, except when d = 4 and a second
extremal configuration exists when n ≡ 1 (mod 8):

o o⊕
r(x) = 1 if x 6= o

r(o) = 1/
√

2
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Further work
I The equally dense argument generalises to metric spaces.
I Stability generalises to metric spaces as long as the density is
≥ 2/3 (as when d ≥ 6).

I Stability and extremal results for normed planes that are not
strictly convex: density is 1/2.

I Normed spaces? Difficult case is when density is 1/2: there
exist arbitrarily large Ks,s but not Ks,s,s as unit distance
graphs.

Thank you for your attention.
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