Dense favourite-distance digraphs

Konrad Swanepoel

Workshop on Discrete Geometry
Fields Institute
14th September 2011

The unit distance problem

Definitions and the low-dimensional cases High dimensions: the Lenz construction Optimality of the Lenz construction Stability of the Lenz construction

The favourite distance problem

Definitions and the two-dimensional case The 3-dimensional case Stability and optimality in high dimensions

The unit distance problem

Definitions and the low-dimensional cases High dimensions: the Lenz construction Optimality of the Lenz construction Stability of the Lenz construction

The favourite distance problem

Definitions and the two-dimensional case The 3-dimensional case Stability and optimality in high dimensions

The unit distance problem

Definitions and the low-dimensional cases

High dimensions: the Lenz construction Optimality of the Lenz construction Stability of the Lenz construction

The favourite distance problem

Definitions and the two-dimensional case The 3-dimensional case Stability and optimality in high dimensions

Introduced by Erdős (1946, 1960)
· · · · ·

$$S \subset \mathbb{R}^d$$
, $|S| = n$.

Definitions

$$E(S) := \{ xy : x, y \in S, |xy| = 1 \}$$

 $u(S) := |E(S)|$
 $u_d(n) := \max\{ u(S) : S \subset \mathbb{R}^d, |S| = n \}$

Problem

Determine $u_d(n)$.

Introduced by Erdős (1946, 1960)

$$S \subset \mathbb{R}^d$$
, $|S| = n$.

Definitions

$$E(S) := \{ xy : x, y \in S, |xy| = 1 \}$$

 $u(S) := |E(S)|$
 $u_d(n) := \max\{u(S) : S \subset \mathbb{R}^d, |S| = n \}$

Problem

Determine $u_d(n)$.

Theorem (Erdős 1946)
$$e^{1+\frac{c}{\log\log n}} < u_2(n) < cn^{3/2}$$

Lower bound: lattice Upper bound: forbidden $K_{2,3}$ Not dense: $u_2(n) = o(n^2)$

Introduced by Erdős (1946, 1960)

$$S \subset \mathbb{R}^d$$
, $|S| = n$.

Definitions

$$E(S) := \{ xy : x, y \in S, |xy| = 1 \}$$

 $u(S) := |E(S)|$
 $u_d(n) := \max\{u(S) : S \subset \mathbb{R}^d, |S| = n \}$

Problem

Determine $u_d(n)$.

Theorem (Spencer, Szemerédi, Trotter 1984)

$$u_2(n) < cn^{4/3}$$

Simplest proof due to Székely (1997) — crossing number lemma Not dense: $u_2(n) = o(n^2)$

Introduced by Erdős (1946, 1960) $S \subset \mathbb{R}^d, |S| = n.$ $\vdots : \vdots$

Definitions

$$E(S) := \{ xy : x, y \in S, |xy| = 1 \}$$

 $u(S) := |E(S)|$
 $u_d(n) := \max\{u(S) : S \subset \mathbb{R}^d, |S| = n \}$

Problem

Determine $u_d(n)$.

Theorem (Erdős 1960)

 $cn^{4/3}\log\log n < u_3(n) < cn^{5/3}$

Lower bound: lattice Upper bound: forbidden $K_{3,3}$

Also not dense: $u_3(n) = o(n^2)$

Introduced by Erdős (1946, 1960)

$$S \subset \mathbb{R}^d$$
, $|S| = n$.

Definitions

$$E(S) := \{ xy : x, y \in S, |xy| = 1 \}$$

 $u(S) := |E(S)|$
 $u_d(n) := \max\{u(S) : S \subset \mathbb{R}^d, |S| = n \}$

Problem

Determine $u_d(n)$.

Theorem (Kaplan, Matoušek, Safernová, Sharir; Zahl 2011) $u_3(n) < cn^{3/2}$

Uses polynomial ham-sandwich theorem Also not dense: $u_3(n) = o(n^2)$

The unit distance problem

Definitions and the low-dimensional cases
High dimensions: the Lenz construction
Optimality of the Lenz construction
Stability of the Lenz construction

The favourite distance problem

Definitions and the two-dimensional case The 3-dimensional case Stability and optimality in high dimensions

Definition

A Lenz configuration is a set that is congruent with a finite subset of these circles (resp. the circles and the sphere)

Definition

A Lenz configuration is a set that is congruent with a finite subset of these circles (resp. the circles and the sphere)

There exist complete $\lfloor d/2 \rfloor$ -partite unit distance graphs: Distribute $n/\lfloor d/2 \rfloor$ points on each circle:

$$u_d(n) \geq \left(\frac{n}{|d/2|}\right)^2$$

Definition

A Lenz configuration is a set that is congruent with a finite subset of these circles (resp. the circles and the sphere)

There exist complete $\lfloor d/2 \rfloor$ -partite unit distance graphs: Distribute $n/\lfloor d/2 \rfloor$ points on each circle:

$$u_d(n) \ge \binom{\lfloor d/2 \rfloor}{2} \left(\frac{n}{\lfloor d/2 \rfloor}\right)^2$$

Definition

A Lenz configuration is a set that is congruent with a finite subset of these circles (resp. the circles and the sphere)

There exist complete $\lfloor d/2 \rfloor$ -partite unit distance graphs: Distribute $n/\lfloor d/2 \rfloor$ points on each circle:

$$u_d(n) \ge \binom{\lfloor d/2 \rfloor}{2} \left(\frac{n}{\lfloor d/2 \rfloor} \right)^2 = \frac{1}{2} \left(1 - \frac{1}{\lfloor d/2 \rfloor} \right) n^2$$

Dense: $u_d(n) = \Theta(n^2)$

The unit distance problem

Definitions and the low-dimensional cases High dimensions: the Lenz construction Optimality of the Lenz construction Stability of the Lenz construction

The favourite distance problem

Definitions and the two-dimensional case The 3-dimensional case Stability and optimality in high dimensions

The Lenz construction is asymptotically optimal

Theorem (Erdős 1960)

For any
$$d \ge 4$$
, $u_d(n) = \frac{1}{2} \left(1 - \frac{1}{|d/2|} \right) n^2 + o(n^2)$

Forbidden
$$K_{\underbrace{3,3,\ldots,3}}_{\lfloor d/2\rfloor+1}$$

The Lenz construction is asymptotically optimal

Theorem (Erdős 1960)

For any
$$d \ge 4$$
, $u_d(n) = \frac{1}{2} \left(1 - \frac{1}{|d/2|} \right) n^2 + o(n^2)$

Theorem (Erdős 1967)

For any even
$$d \ge 4$$
, $u_d(n) = \frac{1}{2} \left(1 - \frac{2}{d} \right) n^2 + \Theta(n)$

The Lenz construction is asymptotically optimal

Theorem (Erdős 1960)

For any
$$d \ge 4$$
, $u_d(n) = \frac{1}{2} \left(1 - \frac{1}{|d/2|} \right) n^2 + o(n^2)$

Theorem (Erdős 1967)

For any even
$$d \geq 4$$
, $u_d(n) = \frac{1}{2} \left(1 - \frac{2}{d} \right) n^2 + \Theta(n)$

Theorem (Erdős and Pach 1990)

For any odd
$$d \ge 5$$
, $u_d(n) = \frac{1}{2} \left(1 - \frac{1}{|d/2|} \right) n^2 + \Theta(n^{4/3})$

There exist configurations of n points on a 2-sphere of radius $1/\sqrt{2}$ with $\Omega(n^{4/3})$ unit distance pairs.

Extremal structure

Definition

A finite set $S \subset \mathbb{R}^d$ is an extremal configuration if $u(S) = u_d(n)$, where n = |S|.

Extremal structure

Definition

A finite set $S \subset \mathbb{R}^d$ is an extremal configuration if $u(S) = u_d(n)$, where n = |S|.

Theorem (Brass 1997, Van Wamelen 1999)

For
$$n \ge 5$$
, $u_4(n) = \begin{cases} \lfloor n^2/4 \rfloor + n & \text{if } n \text{ is divisible by 8 or 10,} \\ \lfloor n^2/4 \rfloor + n - 1 & \text{otherwise.} \end{cases}$

Furthermore, any sufficiently large extremal configuration is a Lenz configuration.

Extremal structure

Definition

A finite set $S \subset \mathbb{R}^d$ is an extremal configuration if $u(S) = u_d(n)$, where n = |S|.

Theorem (Brass 1997, Van Wamelen 1999)

For
$$n \ge 5$$
, $u_4(n) = \begin{cases} \lfloor n^2/4 \rfloor + n & \text{if } n \text{ is divisible by 8 or 10,} \\ \lfloor n^2/4 \rfloor + n - 1 & \text{otherwise.} \end{cases}$

Furthermore, any sufficiently large extremal configuration is a Lenz configuration.

Theorem (S 2009)

Let $d \geq 5$. All extremal configurations of size n in \mathbb{R}^d are Lenz configurations for $n > n_0(d)$ sufficiently large.

Proof is based on a stability result.

The unit distance problem

Definitions and the low-dimensional cases High dimensions: the Lenz construction Optimality of the Lenz construction Stability of the Lenz construction

The favourite distance problem

Definitions and the two-dimensional case The 3-dimensional case Stability and optimality in high dimensions

Theorem (S 2009)

Let $d \geq 4$ and $S \subset \mathbb{R}^d$ with |S| = n. If

$$u(S) > \frac{1}{2} \left(1 - \frac{1}{p} \right) n^2 - o(n^2)$$

then S is a Lenz configuration with the exception of o(n) points.

Theorem (S 2009)

Let $d \geq 4$ and $S \subset \mathbb{R}^d$ with |S| = n. If

$$u(S) > \frac{1}{2} \left(1 - \frac{1}{p} \right) n^2 - o(n^2)$$

then S is a Lenz configuration with the exception of o(n) points.

Proof.

Euclidean geometry + extremal graph theory:

- Erdős-Stone theorem
- Stability theorem of Erdős-Simonovits

Theorem (S 2009)

Let $d \geq 4$ and $S \subset \mathbb{R}^d$ with |S| = n. If

$$u(S) > \frac{1}{2} \left(1 - \frac{1}{p} \right) n^2 - o(n^2)$$

then S is a Lenz configuration with the exception of o(n) points.

Proof.

Euclidean geometry + extremal graph theory:

- Erdős-Stone theorem
- Stability theorem of Erdős-Simonovits

Similar statements for the graph of diameters.

Theorem (S 2009)

Let $d \geq 4$ and $S \subset \mathbb{R}^d$ with |S| = n. If

$$u(S) > \frac{1}{2} \left(1 - \frac{1}{p} \right) n^2 - o(n^2)$$

then S is a Lenz configuration with the exception of o(n) points.

Proof.

Euclidean geometry + extremal graph theory:

- Erdős-Stone theorem
- Stability theorem of Erdős-Simonovits

Similar statements for the graph of diameters.

This was the motivation to look at favourite distances.

The unit distance problem

Definitions and the low-dimensional cases High dimensions: the Lenz construction Optimality of the Lenz construction Stability of the Lenz construction

The favourite distance problem

Definitions and the two-dimensional case The 3-dimensional case Stability and optimality in high dimensions

The unit distance problem

Definitions and the low-dimensional cases High dimensions: the Lenz construction Optimality of the Lenz construction Stability of the Lenz construction

The favourite distance problem

Definitions and the two-dimensional case

The 3-dimensional case Stability and optimality in high dimensions

The favourite distance problem

Introduced by Avis, Erdős, Pach (1988)

$$S \subset \mathbb{R}^d$$
, $|S| = n$, $r \colon S \to (0, \infty)$ \vdots \vdots

Definitions

$$\vec{E}_r(S) := \{ \mathbf{x}\mathbf{y} : \mathbf{x}, \mathbf{y} \in S, |\mathbf{x}\mathbf{y}| = r(\mathbf{x}) \}
e_r(S) = |\vec{E}(S)|
f_d(n) := \max\{e_r(S) : S \subset \mathbb{R}^d, |S| = n, \quad r : S \to (0, \infty) \}$$

Problem

Determine $f_d(n)$.

The favourite distance problem

Introduced by Avis, Erdős, Pach (1988)

$$S \subset \mathbb{R}^d$$
, $|S| = n$, $r \colon S \to (0, \infty)$

Definitions

$$\begin{split} \vec{E}_r(S) &:= \{ \boldsymbol{x} \boldsymbol{y} : \boldsymbol{x}, \boldsymbol{y} \in S, |\boldsymbol{x} \boldsymbol{y}| = r(\boldsymbol{x}) \} \\ e_r(S) &= \left| \vec{E}(S) \right| \\ f_d(n) &:= \max\{ e_r(S) : S \subset \mathbb{R}^d, |S| = n, \ r : S \to (0, \infty) \} \end{split}$$

Theorem (Avis, Erdős, Pach 1988)

$$f_2(n) < \sqrt{2} n^{3/2} + n/2.$$

Forbidden $\vec{K}_{2,3}$

Not dense: $u_2(n) = o(n^2)$

The favourite distance problem

Introduced by Avis, Erdős, Pach (1988)

Introduced by Avis, Erdős, Pach (1988)
$$S \subset \mathbb{R}^d, \quad |S| = n, \quad r \colon S \to (0, \infty)$$

Definitions

$$ec{E}_r(S) := \{ \mathbf{x}\mathbf{y} : \mathbf{x}, \mathbf{y} \in S, |\mathbf{x}\mathbf{y}| = r(\mathbf{x}) \}$$

$$e_r(S) = \left| \vec{E}(S) \right|$$

$$f_d(n) := \max\{e_r(S) : S \subset \mathbb{R}^d, |S| = n, \quad r : S \to (0, \infty) \}$$

$$f_2(n) < cn^{15/11}$$

Bound actually holds for point-circle incidences

Conjecture (Brass, Moser, Pach 2005)
$$f_2(n) = \Theta(n^{4/3})$$

Sharp if true:
$$f_2(n) = \Omega(n^{4/3})$$
 is known.

Overview

The unit distance problem

Definitions and the low-dimensional cases High dimensions: the Lenz construction Optimality of the Lenz construction Stability of the Lenz construction

The favourite distance problem

Definitions and the two-dimensional case

The 3-dimensional case

Stability and optimality in high dimensions

The favourite distance problem in \mathbb{R}^3

Theorem (Avis, Erdős, Pach 1988)

$$\frac{n^2}{4} + \frac{n}{2} \le f_3(n) \le \frac{n^2}{4} + cn^{2-\varepsilon_0}.$$

Upper bound: Forbidden $\vec{K}_{3,3,3}$: extremal digraph theory Dense unlike unit distances: $f_3(n) = \Theta(n^2)$

The favourite distance problem in \mathbb{R}^3 Theorem (S)

For sufficiently large n,

$$\frac{n^2}{4} + \frac{5n}{2} - 6 \le f_3(n) < \frac{n^2}{4} + \frac{5n}{2} + 6.$$

Uses a structural result for extremal configurations.

Definitions

A spindle configuration is a finite subset of a circle and its axis of symmetry. A pair (S, r) is an extremal configuration if $e_r(S) = f_d(n)$, where n = |S|.

Theorem (S)

If (S, r) is an extremal configuration on a sufficiently large set $S \subset \mathbb{R}^3$, then S is a spindle configuration up to two points, and for all points $\mathbf{x} \in S$ on the line of the spindle, $r(\mathbf{x})$ equals the distance from \mathbf{x} to the circle of the spindle.

Proof is again based on a stability result.

I conjecture that the two points are unnecessary.

Stability

Theorem (S)

If a set S of n points in \mathbb{R}^3 and $r: S \to (0, \infty)$ are such that $e_r(S) > n^2/4 - o(n^2)$, then S is a suspension up to o(n) points.

Proof follows in the steps of Avis, Erdős, Pach (1988).

Stability

Theorem (S)

If a set S of n points in \mathbb{R}^3 and $r: S \to (0, \infty)$ are such that $e_r(S) > n^2/4 - o(n^2)$, then S is a suspension up to o(n) points.

Proof follows in the steps of Avis, Erdős, Pach (1988).

There is a similar statement for the furthest neighbour digraph of a set of points in \mathbb{R}^3 : fix

$$r(\mathbf{x}) := \max\{|\mathbf{x}\mathbf{y}| : \mathbf{y} \in \mathcal{S}\}.$$

The furthest neighbour digraph has been considered by Csizmadia (1996), who determined extremal configurations for sufficiently large n.

Overview

The unit distance problem

Definitions and the low-dimensional cases High dimensions: the Lenz construction Optimality of the Lenz construction Stability of the Lenz construction

The favourite distance problem

Definitions and the two-dimensional case
The 3-dimensional case
Stability and optimality in high dimensions

The Lenz construction again

Set r identically 1 to obtain

$$f_d(n) \geq 2u_d(n) \geq \left(1 - \frac{1}{|d/2|}\right)n^2.$$

The Lenz construction again

Set r identically 1 to obtain

$$f_d(n) \geq 2u_d(n) \geq \left(1 - \frac{1}{|d/2|}\right)n^2.$$

Theorem (Avis, Erdős, Pach 1988)

$$f_d(n) = \left(1 - \frac{2}{d}\right)n^2 + O(n^{2-\varepsilon_0})$$
 for even $d \ge 4$.

The Lenz construction again

Set r identically 1 to obtain

$$f_d(n) \geq 2u_d(n) \geq \left(1 - \frac{1}{|d/2|}\right)n^2.$$

Theorem (Erdős, Pach 1990)

$$f_d(n) = \left(1 - \frac{1}{|d/2|}\right)n^2 + o(n^2)$$
 for odd $d \ge 5$.

Extremal digraph theory

If unit distance graphs are dense, then favourite distance digraphs are equally dense

Observation (S)

For any even $d \geq 4$, $f_d(n) = \left(1 - \frac{2}{d}\right)n^2 + \Theta(n)$.

For any odd $d \geq 5$, $f_d(n) = \left(1 - \frac{1}{\mid d/2 \mid}\right) n^2 + \Theta(n^{4/3})$

If unit distance graphs are dense, then favourite distance digraphs are equally dense

Observation (S)

For any even
$$d \ge 4$$
, $f_d(n) = \left(1 - \frac{2}{d}\right)n^2 + \Theta(n)$.

For any odd
$$d \geq 5$$
, $f_d(n) = \left(1 - \frac{1}{\mid d/2 \mid}\right) n^2 + \Theta(n^{4/3})$

Actually follows easily from previously mentioned theorems:

For any even
$$d \geq 4$$
, $u_d(n) = \frac{1}{2} \left(1 - \frac{2}{d} \right) n^2 + \Theta(n)$

For any odd
$$d \ge 5$$
, $u_d(n) = \frac{1}{2} \left(1 - \frac{1}{|d/2|} \right) n^2 + \Theta(n^{4/3})$

Stability and extremality in dimensions $d \ge 4$

Theorem (S)

If a set S of n points in \mathbb{R}^d , $d \geq 4$, and $r \colon S \to (0, \infty)$ are such that $e_r(S) > (1 - \frac{1}{\lfloor d/2 \rfloor})n^2 - o(n^2)$, then S is a Lenz configuration on which r is contant, up to o(n) points.

Very easy if $d \ge 6$. d = 5 much harder.

Stability and extremality in dimensions $d \ge 4$

Theorem (S)

If a set S of n points in \mathbb{R}^d , $d \geq 4$, and $r: S \to (0, \infty)$ are such that $e_r(S) > (1 - \frac{1}{\lfloor d/2 \rfloor})n^2 - o(n^2)$, then S is a Lenz configuration on which r is contant, up to o(n) points.

Very easy if $d \ge 6$. d = 5 much harder.

Theorem (S)

Let $d \ge 4$ and let n be sufficiently large. If a set S of n points in \mathbb{R}^d , and $r: S \to (0, \infty)$ satisfy $e_r(S) = f_d(n)$, then r is constant and S is a Lenz configuration, except when d = 4 and a second extremal configuration exists when $n \equiv 1 \pmod{8}$:

$$r(\mathbf{x}) = 1 \text{ if } \mathbf{x} \neq \mathbf{o}$$

 $r(\mathbf{o}) = 1/\sqrt{2}$

Overview

The unit distance problem

Definitions and the low-dimensional cases High dimensions: the Lenz construction Optimality of the Lenz construction Stability of the Lenz construction

The favourite distance problem

Definitions and the two-dimensional case The 3-dimensional case Stability and optimality in high dimensions

- ▶ The equally dense argument generalises to metric spaces.
- ▶ Stability generalises to metric spaces as long as the density is $\geq 2/3$ (as when $d \geq 6$).
- ▶ Stability and extremal results for normed planes that are not strictly convex: density is 1/2.
- Normed spaces? Difficult case is when density is 1/2: there exist arbitrarily large $K_{s,s}$ but not $K_{s,s,s}$ as unit distance graphs.

Further work

- ▶ The equally dense argument generalises to metric spaces.
- ▶ Stability generalises to metric spaces as long as the density is $\geq 2/3$ (as when $d \geq 6$).
- ▶ Stability and extremal results for normed planes that are not strictly convex: density is 1/2.
- Normed spaces? Difficult case is when density is 1/2: there exist arbitrarily large $K_{s,s}$ but not $K_{s,s,s}$ as unit distance graphs.

THANK YOU FOR YOUR ATTENTION.