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The unit distance problem
Introduced by Erdés (1946, 1960)
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Definitions
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u(S) == |E(S)
ug(n) :== max{u(S): S C RY,|S| = n}

Problem
Determine ugq(n).
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u(S) := [E(S)]

ug(n) :== max{u(S): S C RY,|S| = n}

Problem
Determine ugq(n).

Theorem (Spencer, Szemerédi, Trotter 1984)
up(n) < cn*/3

Simplest proof due to Székely (1997) — crossing number lemma
Not dense: wu(n) = o(n?)
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The unit distance problem
Introduced by Erdés (1946, 1960)

SCRY |S|=n. :
Definitions

E(S):={xy:x,y €S, |xy| =1}

u(S) = [E(S)|

ug(n) :== max{u(S): S C RY,|S| = n}

Problem
Determine ugq(n).

Theorem (Kaplan, Matousek, Safernova, Sharir; Zahl 2011)

uz(n) < cn®/?
Uses polynomial ham-sandwich theorem

Also not dense: u3(n) = o(n?)
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The Lenz construction

Definition

A Lenz configuration is a set that is congruent with a finite subset
of these circles (resp. the circles and the sphere)

There exist complete | d/2|-partite unit distance graphs:
Distribute n/|d/2] points on each circle:

i) = (Ldézj> (1) =3 (1 @)

Dense: ug(n) = ©(n?)
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The Lenz construction is asymptotically optimal

Theorem (Erdés 1960)
Forany d >4, ug4(n)= % (1 - Ld}2J> n? + o(n?)
Forbidden K3 3 3
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The Lenz construction is asymptotically optimal

Theorem (Erdés 1960)

Forany d >4, ug4(n)= % (1 - Ld}2J> n? + o(n?)

Theorem (Erdés 1967)

1
For any even d > 4, uq(n) = =
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The Lenz construction is asymptotically optimal

Theorem (Erdés 1960)

Forany d >4, ug4(n)= % (1 - Ld}2J> n? + o(n?)

Theorem (Erdés 1967)
For any even d > 4, uq(n) = E (1 — 2) n? + ©(n)

2 d
Theorem (Erdés and Pach 1990)
1 1
> = — ——— \n? 4/3
For any odd d > 5, uy(n) 2(1 Ld/2j>n + ©(n*/?)

There exist configurations of n points on a 2-sphere of radius
1/v/2 with Q(n*/3) unit distance pairs.
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Extremal structure
Definition
A finite set S C R is an extremal configuration if u(S) = ug(n),
where n = |§|.
Theorem (Brass 1997, Van Wamelen 1999)
|n?/4] +n if n is divisible by 8 or 10,
|n?/4] +n—1 otherwise.

Furthermore, any sufficiently large extremal configuration is a Lenz
configuration.

Theorem (S 2009)

Let d > 5. All extremal configurations of size n in R? are Lenz
configurations for n > no(d) sufficiently large.

Forn>5, us(n) = {

Proof is based on a stability result.
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then S is a Lenz configuration with the exception of o(n) points.
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Stability for unit distances

Theorem (S 2009)
Let d >4 and S C RY with |S| = n. If

u(S) > % (1 - ;) n? — o(n?)

then S is a Lenz configuration with the exception of o(n) points.

Proof.
Euclidean geometry + extremal graph theory:

»  Erdds-Stone theorem
»  Stability theorem of Erdds-Simonovits

Similar statements for the graph of diameters.

This was the motivation to look at favourite distances.
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The favourite distance problem

Introduced by Avis, Erdés, Pach (1988)

SCRY, [S|=n r:S—(0,00) R

Definitions
E/(S) = {xy:x,y € S,|xy| = r(x)}
er(S) = |E(9)|
fy(n) :== max{e,(S): SCRY|S|=n, r: S — (0,00)}

Problem
Determine fq(n).
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er(S) = |E(9)|
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The favourite distance problem

Introduced by Avis, Erdés, Pach (1988)

SCcRY |S|=n, r:S—(0,00) . c

Definitions
E/(S) = {xy:x,y € S,|xy| = r(x)}
er(S) = |E(9)|
fy(n) :== max{e,(S): SCRY|S|=n, r: S — (0,00)}

Theorem (Aronov, Sharir 2002)
fr(n) < cntd/11
Bound actually holds for point-circle incidences
Conjecture (Brass, Moser, Pach 2005)
fo(n) = ©(n*73)
Sharp if true: f(n) = Q(n*3) is known.
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The favourite distance problem in R3

Theorem (Avis, Erdés, Pach 1988)

2 2

+5 < An) <

n

2—¢eg
— cn .
Z +

NS

x r(x)=d(x,C)
e~ n/2 points
1

Lower bound: Suspension

n/2 points
7

Upper bound: Forbidden R373,3: extremal digraph theory
Dense unlike unit distances: f3(n) = ©(n?)



The favourite distance problem in R3
Theorem (S)

For sufficiently large n,
n>  5n n’> 5n

LT < N ]
4+2 6_f3(n)<4+2+6

Uses a structural result for extremal configurations.

Definitions
A spindle configuration is a finite subset of a circle and its axis of
symmetry. A pair (S, r) is an extremal configuration if

e-(S) = fy(n), where n = |S|.
Theorem (S)

If (S, r) is an extremal configuration on a sufficiently large set

S C R3, then S is a spindle configuration up to two points, and for
all points x € S on the line of the spindle, r(x) equals the distance
from x to the circle of the spindle.

Proof is again based on a stability result.
| conjecture that the two points are unnecessary.



Stability

Theorem (S)

If a set S of n points in R3 and r: S — (0,00) are such that
e/(S) > n?/4 — o(n?), then S is a suspension up to o(n) points.

Proof follows in the steps of Avis, Erdés, Pach (1988).



Stability

Theorem (S)
If a set S of n points in R3 and r: S — (0,00) are such that
e/(S) > n?/4 — o(n?), then S is a suspension up to o(n) points.
Proof follows in the steps of Avis, Erdés, Pach (1988).
There is a similar statement for the furthest neighbour digraph of a
set of points in R3: fix

r(x) := max{|xy| : y € S}.
The furthest neighbour digraph has been considered by Csizmadia

(1996), who determined extremal configurations for sufficiently
large n.
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The Lenz construction again

Set r identically 1 to obtain
1
fa(n) > 2uq4(n) > (1 - ) n?.



The Lenz construction again

Set r identically 1 to obtain

1
) = 2u(n) > (1= 57 )

Theorem (Avis, Erdés, Pach 1988)

fq(n) = (1 - (21) n? + O(n*~%0) for even d > 4.



The Lenz construction again

Set r identically 1 to obtain
1
fa(n) > 2uq4(n) > (1 - ) n?.

Theorem (Erdés, Pach 1990)
fu(n) = (1 — 1) n*+o(n*)  foroddd >5.
[d/2]

Extremal digraph theory



If unit distance graphs are dense, then favourite distance
digraphs are equally dense

Observation (S)

For any even d > 4, fy(n) = <1 — 3) n? + ©(n).

<1 - 1> n? 4+ ©(n*/3)

For any odd d > 5, fy(n) (/2]



If unit distance graphs are dense, then favourite distance
digraphs are equally dense

Observation (S)
For any even d > 4, fy(n) = <1 — 3) n? + O(n).

_ (1 2 4/3
Foranyoddd25,fd(n)—<1 Ld/2J>n + O(n*/?)

Actually follows easily from previously mentioned theorems:

Theorem (Erdés 1967)

1 2
For any even d > 4, uy(n) = 5 <1 — d) n? 4+ ©(n)

Theorem (Erdés and Pach 1990)

For any odd d > 5, u4(n) = % (1 — W:>2J> n? 4+ ©(n*/3)



Stability and extremality in dimensions d > 4
Theorem (S)

If a set S of n pointsinRY, d >4, andr: S — (0, 00) are such
that e,(S) > (1 — ﬁ)# —o(n?), then S is a Lenz configuration
on which r is contant, up to o(n) points.

Very easy if d > 6. d =5 much harder.



Stability and extremality in dimensions d > 4
Theorem (S)

If a set S of n pointsinRY, d >4, andr: S — (0, 00) are such
that e,(S) > (1 — ﬁ)n2 —o(n?), then S is a Lenz configuration
on which r is contant, up to o(n) points.

Very easy if d > 6. d =5 much harder.

Theorem (S)

Let d > 4 and let n be sufficiently large. If a set S of n points in
RY, and r: S — (0, 00) satisfy e,(S) = fy(n), then r is constant
and S is a Lenz configuration, except when d = 4 and a second

extremal configuration exists when n =1 (mod 8):

IS NS———F7 >\

r(x)=1ifx#o0
r(o) =1/v2
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Further work

» The equally dense argument generalises to metric spaces.

» Stability generalises to metric spaces as long as the density is
> 2/3 (as when d > 6).

» Stability and extremal results for normed planes that are not
strictly convex: density is 1/2.

» Normed spaces? Difficult case is when density is 1/2: there
exist arbitrarily large Ks s but not Ks s s as unit distance
graphs.
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» The equally dense argument generalises to metric spaces.

» Stability generalises to metric spaces as long as the density is
> 2/3 (as when d > 6).

» Stability and extremal results for normed planes that are not
strictly convex: density is 1/2.

» Normed spaces? Difficult case is when density is 1/2: there
exist arbitrarily large Ks s but not Ks s s as unit distance
graphs.

THANK YOU FOR YOUR ATTENTION.
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