Gábor Fejes Tóth

Convex Sets in Empty Convex Position

Let f(n) be the smallest number such that any set of f(n) points in general position in the plane has a subset of n points which are in convex position.

It is conjectured that

$$f(n) = 2^{n-2} + 1.$$

The best upper bound for f(n) is due to Géza Tóth and Pavel Valtr:

$$f(n) \le \binom{2n-5}{n-2} + 1.$$

Let S be a set of points in general position in the plane. A subset of n points of S is an empty convex n-gon, if they form the vertices of a convex n-gon which does not contain any point of S in its interior. Erdős asked whether for any n a sufficiently large cardinality

of S guaranties the existence of an empty n-gon.

Harborth showed that from 10 points we can always choose an empty pentagon. Horton constructed sets of arbitrary large cardinality which do not contain any empty heptagon. Erdős's question for n=6 was answered positively by Gerken and Nicolas.

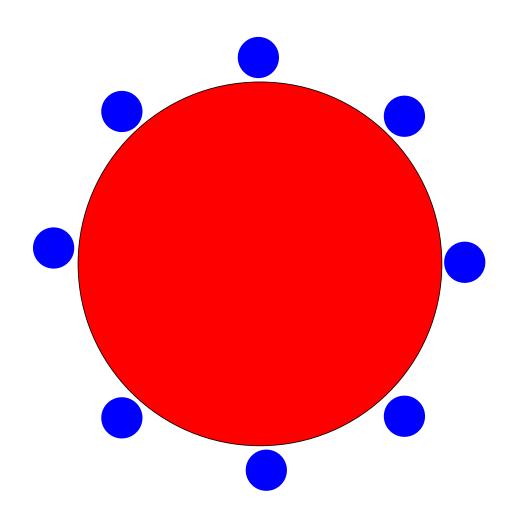
Let \mathcal{F} be a family of disjoint compact convex sets. member A of \mathcal{F} is a vertex of \mathcal{F} if it is not contained

A member A of \mathcal{F} is a vertex of \mathcal{F} if it is not contained in the convex hull of the union of the sets belonging to $\mathcal{F} \setminus \{A\}$. A sub-family $\underline{\mathcal{F}} \subset \mathcal{F}$ is in $convex\ position$ if all of its members are vertices of $\underline{\mathcal{F}}$.

Theorem (Bisztriczky, GFT). For every $n \geq 4$ there exists a smallest natural number g(n) such that any family of at least g(n) disjoint compact convex sets with the property that every three members of it are in convex position.

It is an open question whether f(n) = g(n). The best upper bound for g(n) was obtained by Hubard, Montejano, Mora and Suk:

$$g(n) \le \left(\binom{2n-5}{n-2} + 1\right) \binom{2n-4}{n-2} + 1.$$



A family \mathcal{F} of convex discs satisfies property P_k if any $m \leq k$ members of \mathcal{F} are in convex position.

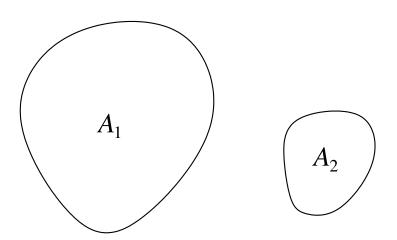
Theorem (Bisztriczky, GFT). For every pair of integers $k \geq 3$ and $n \geq 4$ there exists a smallest natural number h(k,n) such that any family of at least h(k,n) disjoint compact convex sets satisfying property P_k contains n members in convex position.

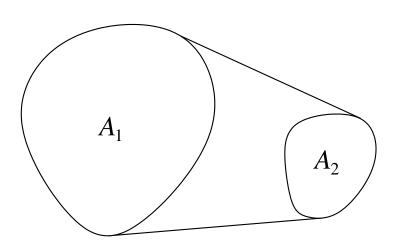
A sub-family $\underline{\mathcal{F}}$ of \mathcal{F} is in *empty convex position* in \mathcal{F} if it is in convex position and the convex hull of the union of its members does not contain any member of $\mathcal{F} \setminus \underline{\mathcal{F}}$. n members of \mathcal{F} that are in empty convex position is called an n-hole.

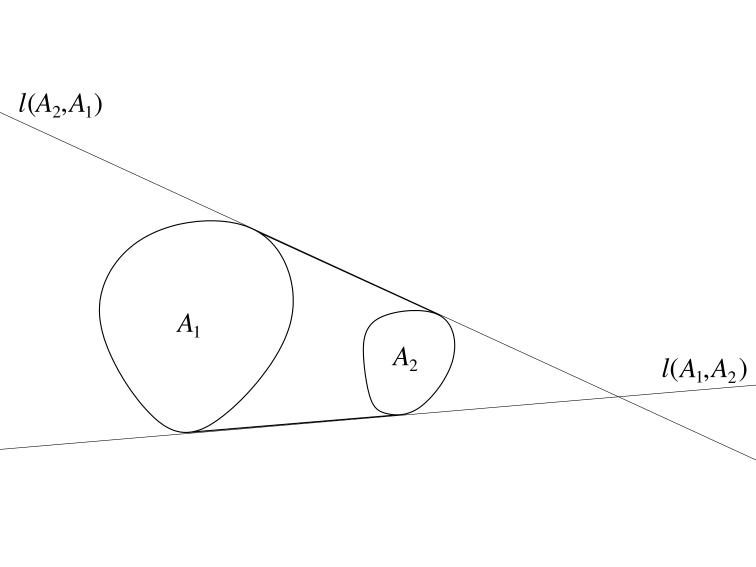
Theorem. For every pair of integers $k \geq 4$ and $n \geq k$ there is an integer N such that any family of more than N disjoint compact convex sets satisfying property P_k has n members in empty convex position.

Let A_1 and A_2 be two disjoint compact convex sets with non-empty interiors. We observe that there are two distinct supporting lines $l(A_1, A_2)$ and $l(A_2, A_1)$ of conv $(A_1 \cup A_2)$ which also support A_1 and A_2 . We choose the notation so that while traveling on $l(A_i, A_j)$ so that conv $(A_1 \cup A_2)$ is to the left, we meet

first A_i and then A_i .







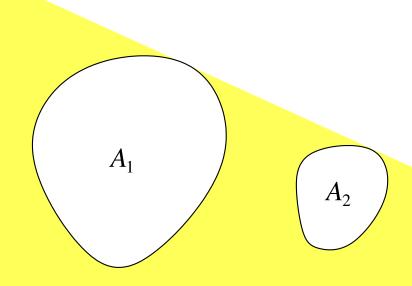
Let $H(A_i, A_j)$ be the open half-plane bounded by $l(A_i, A_j)$ containing int conv $(A_1 \cup B_2)$ and let

 $H^-(A_i, A_j)$ be the complement of $H(A_i, A_j)$.

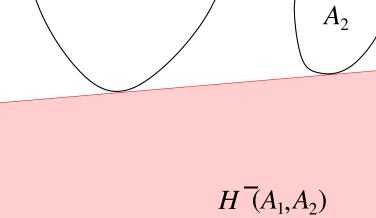
$H(A_1,A_2)$

 $l(A_1,A_2)$

 $l(A_2,A_1)$

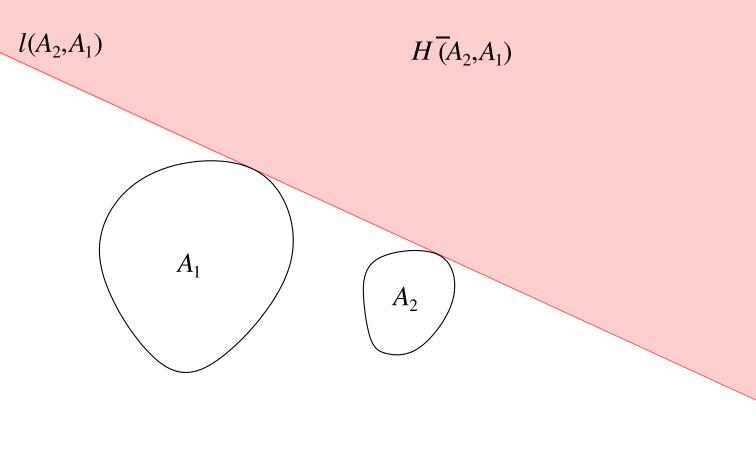


 $H(A_2,A_1)$



 $l(A_1,A_2)$

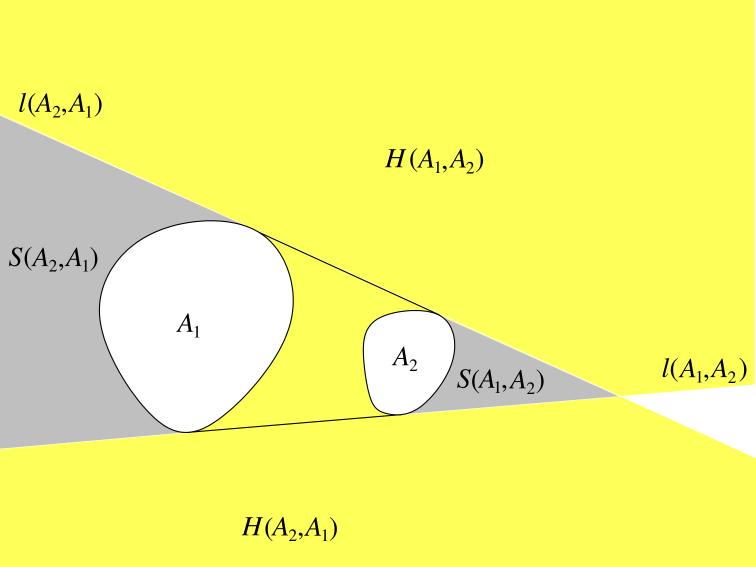
 A_1



Let $L(A_1A_2) = L(A_2A_1) = H(A_1A_2) \cap H(A_2A_1)$ and define $S(A_i, A_j)$ as that component of $L(A_1A_2) \setminus$ int conv $(A_1 \cap A_2)$ which has nonempty intersection

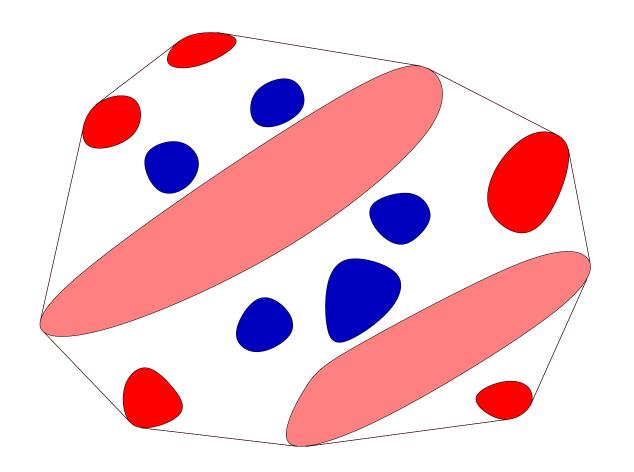
with A_i . We call $S(A_i, A_i)$ the shadow of A_i from

 A_i .

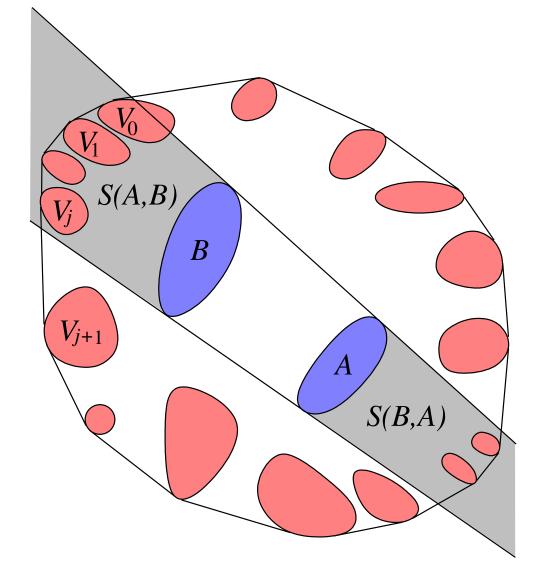


Members of \mathcal{F} that are not vertices of \mathcal{F} are called internal members of \mathcal{F} . A vertex V is called regular if $\operatorname{bd} V \cap \operatorname{conv} \bigcup_{A \in \mathcal{F}} A$ is connected, otherwise it is said to be irregular. The sub-families of \mathcal{F} consisting of the vertices and of the internal embers of \mathcal{F} are denoted

by $\mathcal{V}(\mathcal{F})$ and $\mathcal{I}(\mathcal{F})$, respectively.



Lemma 1 (Géza Tóth). Let $k \geq 4$ and let \mathcal{F} be a family of disjoint compact convex sets satisfying property P_k . Let A be an arbitrary and B an internal member of \mathcal{F} . Then S(A,B), contains at least k-3 vertices of \mathcal{F} .



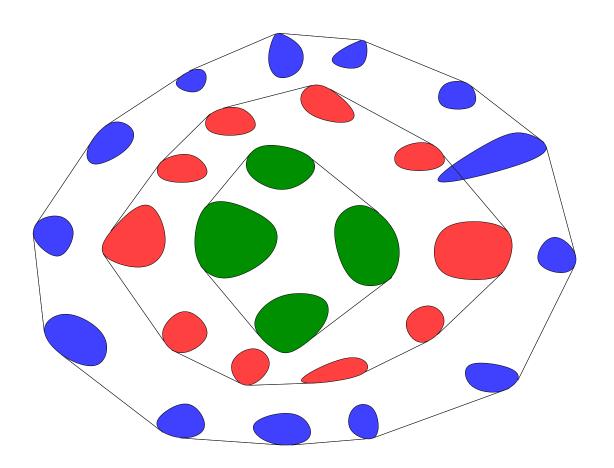
Write $\mathcal{F}_1 = \mathcal{F}$ and define inductively the families

 \mathcal{F}_i and \mathcal{S}_i , i = 1, ..., N, by $\mathcal{F}_i = \mathcal{I}(\mathcal{F}_{i-1})$, $\mathcal{S}_i = \mathcal{V}(\mathcal{F}_i)$,

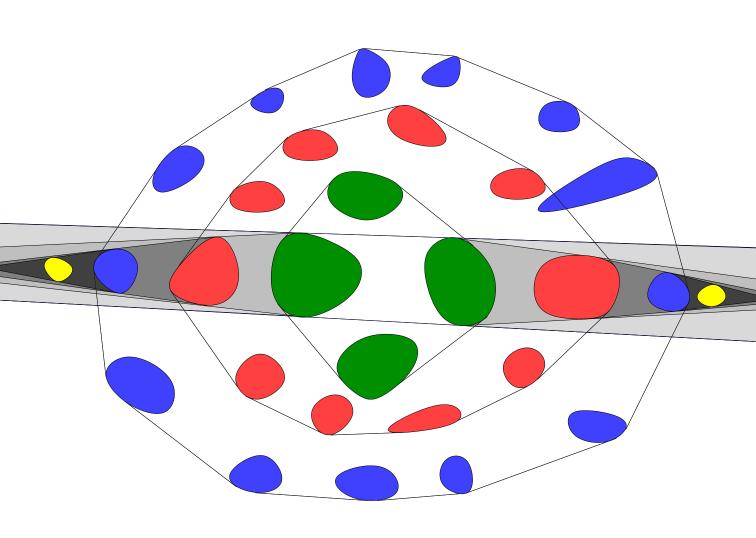
 $\mathcal{F}_N = \mathcal{V}(\mathcal{F}_N) = \mathcal{S}_N$. We shall refer to the families

 \mathcal{F}_i and \mathcal{S}_i as the *i-th core* and the *i-th shell of* \mathcal{F} ,

respectively.



Lemma 2. Let $k \geq 4$ and let \mathcal{F} be a family of disjoint compact convex sets satisfying property P_k . Suppose that \mathcal{F} consists of N shells. If \mathcal{S}_N contains more than one members, then \mathcal{F} contains a 2N-hole. If \mathcal{S}_N consists of a single member, then \mathcal{F} contains (2N-1) members in empty convex position

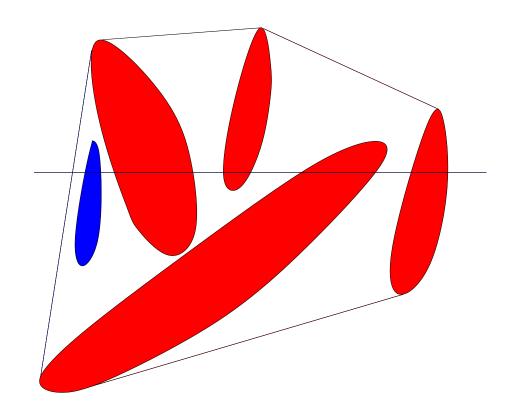


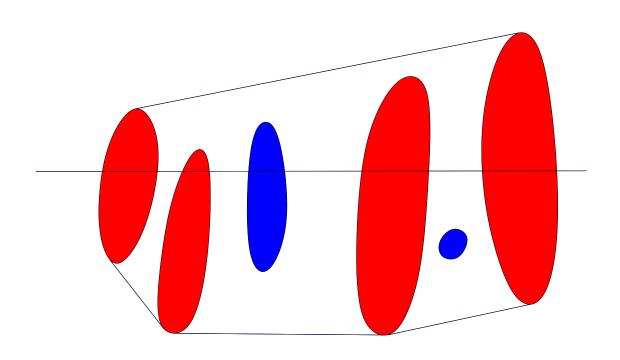
Lemma 3. Let \mathcal{H} be a family of disjoint compact convex sets and let $\underline{\mathcal{H}}$ be the sub-family of \mathcal{H} consisting of all members of \mathcal{H} which intersect a straight segment L.

(i) If \mathcal{H} satisfies property P_5 , then $\underline{\mathcal{H}}$ is in empty convex position in \mathcal{H} .

(ii) If \mathcal{H} satisfies property P_4 and

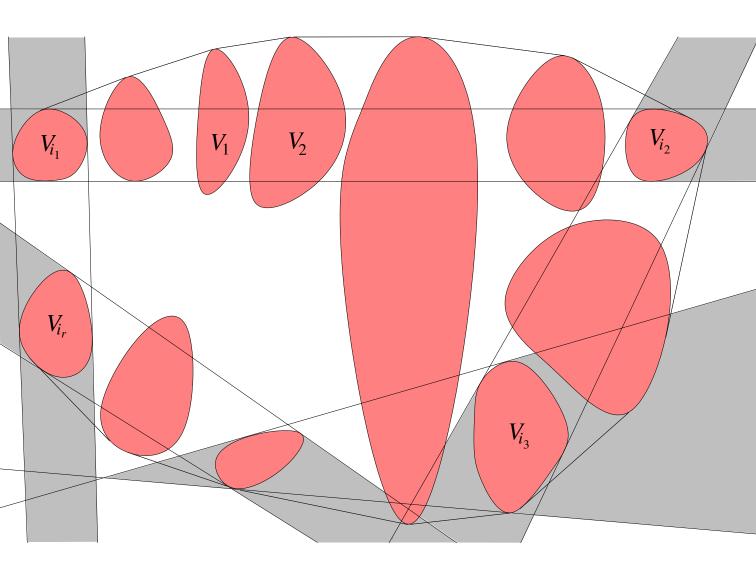
Proposition. Suppose that all members of a family \mathcal{F} of disjoint compact convex sets intersect a line L. Then the first, as well as the last member of \mathcal{F} intersecting L is a vertex of \mathcal{F} . If a convex set B which is disjoint from all members of the family is contained in conv $\bigcup_{A \in \mathcal{F}} A$, then B is contained in the convex hull of the union of at most four members of \mathcal{F} . Moreover, if B lies in one of the closed half-planes bounded by L, then it is contained in the convex hull of the union of two members of \mathcal{F} .





Lemma 4. Let \mathcal{F} be a family of disjoint compact

convex sets satisfying property P_k for some $k \geq 3$. Let V_1, \ldots, V_m be the regular vertices of \mathcal{F} enumerated in the cyclic order as we meet them while traveling on $\operatorname{bd}\operatorname{conv}\bigcup_{A\in\mathcal{F}}A$ in clockwise direction. Then one can choose $l \leq m$ regular vertices V_{i_1}, \ldots, V_{i_l} of \mathcal{F} enumerated in their natural cyclic order such that $V_l \cap$ $H^-(V_{i_j}, V_{i_{j+1}}) \neq \emptyset$ for $l = i_j, i_j + 1, \dots, i_{j+1} - 1, i_{j+1}$ and no member of \mathcal{F} is contained in $S(V_{i_i}, V_{i_{i+1}})$ or $S(V_{i_i}, V_{i_{i-1}}), j = 1, \dots, l, V_{i_{i+l}} = V_{i_i}.$



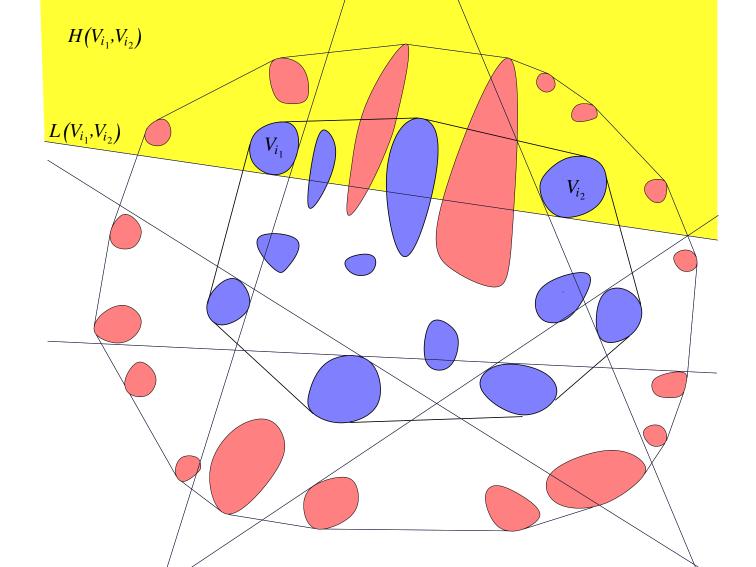
Lemma 5. Let $k \geq 3$ be an integer and let \mathcal{F} be a family of disjoint compact convex sets satisfying property P_k for some $k \geq 4$. Let $\overline{\mathcal{F}}$ be a sub-family of \mathcal{F} with M vertices and let $\underline{\mathcal{F}}$ be the sub-family of $\overline{\mathcal{F}}$ consisting of its internal members. If $\underline{\mathcal{F}}$ has $m \geq 2$ regular vertices,

(i)
$$k \ge 5$$
, and $M \ge 2m(2n - k)$,

or if

(ii)
$$k = 4$$
 and $M \ge m[(n-3)|\underline{\mathcal{F}}| + 4]$.

then \mathcal{F} has n members in empty convex position.



Proof of the Theorem. Suppose that the family \mathcal{F} of disjoint compact convex sets satisfies property P_k for $k \geq 4$ and does not contain any n-hole. Let

$$a_i = |\mathcal{F}_i|$$

be the number of members in the *i*-th core \mathcal{F}_i . Then

$$|S_i| = a_i - a_{i+1}$$
 for $i = 1, ..., N-1$.

Since \mathcal{F} does not contain any n-hole, we have

$$a_N \le n - 1$$

It follows from Lemma 2 that \mathcal{F} consists of at most $\lfloor \frac{n+1}{2} \rfloor$ shells, thus

$$N \leq \left| \frac{n+1}{2} \right|$$
.

We apply Lemma 5 to S_i and S_{i+1} in the roles of $\overline{\mathcal{F}}$ and $\underline{\mathcal{F}}$.

$$a_i - a_{i+1} \le [(n-3)a_i + 4](a_{i-1} - a_i) - 1, \quad 1 \le i \le N - 1$$

if k = 4 and

$$a_i - a_{i+1} \le (2n - k)(a_{i-1} - a_i) - 1, \quad 1 \le i \le N - 1$$

if k > 4.

We do not expect that the exact solution of these recursions gives a sharp bound for e(k, n). Therefore we use the following weaker inequalities that are easily obtained from the above ones.

$$a_i \le na_{i+1}^2 \quad \text{for} \quad 1 \le i \le N-1$$
 (1)

if k = 4 and

$$a_i \le (2n - k + 1)a_{i+1}$$
 for $1 \le i \le N - 1$ (2)

if k > 4.

Hence it follows that

$$|\mathcal{F}_i| = |\mathcal{F}_i| = a_1 \le a_N \le a_{\frac{n+1}{2}} \le n^{2^n}$$

if k=4 and

$$|\mathcal{F}_i| = |\mathcal{F}_i| = a_1 \le a_N \le (n-1)(2n-k+1)^{\frac{n+1}{2}}$$

if $k \geq 5$.

