Entropy, Determinants, and ℓ^{2}-Torsion

Andreas Berthold Thom
University of Leipzig
and
Max-Planck-Institute "Mathematics in the Sciences", Leipzig

June 28, 2013 at the Fields Institute, Toronto
Conference in honor of Marc Rieffel

Content

Content

1. Determinants - from Gábor Szegő to Barry Simon

Content

1. Determinants - from Gábor Szegő to Barry Simon
2. Volumes and covolumes

Content

1. Determinants - from Gábor Szegő to Barry Simon
2. Volumes and covolumes
3. Entropy of algebraic actions

Content

1. Determinants - from Gábor Szegő to Barry Simon
2. Volumes and covolumes
3. Entropy of algebraic actions
4. ℓ^{2}-Torsion for amenable groups

Content

1. Determinants - from Gábor Szegő to Barry Simon
2. Volumes and covolumes
3. Entropy of algebraic actions
4. ℓ^{2}-Torsion for amenable groups

Almost all results are obtained in joint work with Hanfeng Li.

Determinants

The Mahler measure

The Mahler measure

Let $f: S^{1} \rightarrow \mathbb{R}$ be a continuous function.

The Mahler measure

Let $f: S^{1} \rightarrow \mathbb{R}$ be a continuous function. The quantity

$$
M(f)=\exp \left(\int_{S^{1}} \log |f(z)| d \lambda(z)\right)
$$

has properties of a formal determinant of f.

The Mahler measure

Let $f: S^{1} \rightarrow \mathbb{R}$ be a continuous function. The quantity

$$
M(f)=\exp \left(\int_{S^{1}} \log |f(z)| d \lambda(z)\right)
$$

has properties of a formal determinant of f.
If $f(z)=\left(z-\alpha_{1}\right)\left(z-\alpha_{2}\right) \cdots\left(z-\alpha_{n}\right)$ is a polynomial

The Mahler measure

Let $f: S^{1} \rightarrow \mathbb{R}$ be a continuous function. The quantity

$$
M(f)=\exp \left(\int_{S^{1}} \log |f(z)| d \lambda(z)\right)
$$

has properties of a formal determinant of f.
If $f(z)=\left(z-\alpha_{1}\right)\left(z-\alpha_{2}\right) \cdots\left(z-\alpha_{n}\right)$ is a polynomial, then

$$
M(f)=\prod_{i=1}^{n} \max \left\{1,\left|\alpha_{i}\right|\right\}=\prod_{\left|\alpha_{i}\right| \geq 1}\left|\alpha_{i}\right|
$$

The Mahler measure

Let $f: S^{1} \rightarrow \mathbb{R}$ be a continuous function. The quantity

$$
M(f)=\exp \left(\int_{S^{1}} \log |f(z)| d \lambda(z)\right)
$$

has properties of a formal determinant of f.
If $f(z)=\left(z-\alpha_{1}\right)\left(z-\alpha_{2}\right) \cdots\left(z-\alpha_{n}\right)$ is a polynomial, then

$$
M(f)=\prod_{i=1}^{n} \max \left\{1,\left|\alpha_{i}\right|\right\}=\prod_{\left|\alpha_{i}\right| \geq 1}\left|\alpha_{i}\right|
$$

The number $M(f)$ is called the Mahler measure of the function f.

Determinants of operators on Hilbert space

Determinants of operators on Hilbert space

We can view f as a multiplication operator

$$
M_{f}: L^{2}\left(S^{1}, \lambda\right) \rightarrow L^{2}\left(S^{1}, \lambda\right) .
$$

Determinants of operators on Hilbert space

We can view f as a multiplication operator

$$
M_{f}: L^{2}\left(S^{1}, \lambda\right) \rightarrow L^{2}\left(S^{1}, \lambda\right)
$$

Consider the Fourier isomorphism $L^{2}\left(S^{1}, \lambda\right) \cong \ell^{2} \mathbb{Z}$, where we view $\xi \in \ell^{2} \mathbb{Z}$ as the function $\sum_{k \in \mathbb{Z}} \xi_{k} z^{k}$ on S^{1}.

Determinants of operators on Hilbert space

We can view f as a multiplication operator

$$
M_{f}: L^{2}\left(S^{1}, \lambda\right) \rightarrow L^{2}\left(S^{1}, \lambda\right)
$$

Consider the Fourier isomorphism $L^{2}\left(S^{1}, \lambda\right) \cong \ell^{2} \mathbb{Z}$, where we view $\xi \in \ell^{2} \mathbb{Z}$ as the function $\sum_{k \in \mathbb{Z}} \xi_{k} z^{k}$ on S^{1}.
On $\ell^{2} \mathbb{Z}$, the operator M_{f} has matrix coefficients

$$
M_{f}=\left(\begin{array}{ccccc}
\ddots & \ddots & \ddots & \ddots & \ddots \\
\ddots & a_{0} & a_{1} & a_{2} & \ddots \\
\ddots & a_{-1} & a_{0} & a_{1} & \ddots \\
\ddots & a_{-2} & a_{-1} & a_{0} & \ddots \\
\ddots & \ddots & \ddots & \ddots & \ddots
\end{array}\right)
$$

Determinants of operators on Hilbert space

We can view f as a multiplication operator

$$
M_{f}: L^{2}\left(S^{1}, \lambda\right) \rightarrow L^{2}\left(S^{1}, \lambda\right)
$$

Consider the Fourier isomorphism $L^{2}\left(S^{1}, \lambda\right) \cong \ell^{2} \mathbb{Z}$, where we view $\xi \in \ell^{2} \mathbb{Z}$ as the function $\sum_{k \in \mathbb{Z}} \xi_{k} z^{k}$ on S^{1}.
On $\ell^{2} \mathbb{Z}$, the operator M_{f} has matrix coefficients

$$
M_{f}=\left(\begin{array}{ccccc}
\ddots & \ddots & \ddots & \ddots & \ddots \\
\ddots & a_{0} & a_{1} & a_{2} & \ddots \\
\ddots & a_{-1} & a_{0} & a_{1} & \ddots \\
\ddots & a_{-2} & a_{-1} & a_{0} & \ddots \\
\ddots & \ddots & \ddots & \ddots & \ddots
\end{array}\right), \quad a_{k}=\int_{S^{1}} f(z) z^{-k} d \lambda(z)
$$

Determinants of operators on Hilbert space

We consider the matrix

$$
D_{f}^{(n+1)}:=\left(\begin{array}{ccccc}
a_{0} & a_{1} & \ldots & a_{n-1} & a_{n} \\
a_{-1} & a_{0} & a_{1} & \ddots & a_{n-1} \\
\vdots & a_{-1} & a_{0} & \ddots & \vdots \\
a_{-n+1} & \ddots & \ddots & \ddots & a_{1} \\
a_{-n} & a_{-n+1} & \cdots & a_{-1} & a_{0}
\end{array}\right)
$$

If $f \geq 0$, then $D_{f}^{(n)}$ is positive semi-definite.

Theorem (Szegő, 1915)
Let $f: S^{1} \rightarrow \mathbb{R}$ be a positive and continuous function.

Theorem (Szegő, 1915)
Let $f: S^{1} \rightarrow \mathbb{R}$ be a positive and continuous function. Then,

$$
\lim _{n \rightarrow \infty} \operatorname{det}\left(D_{f}^{(n)}\right)^{1 / n}=\exp \left(\int_{S^{1}} \log f(z) d \lambda(z)\right)
$$

Theorem (Szegő, 1915)
Let $f: S^{1} \rightarrow \mathbb{R}$ be a positive and continuous function. Then,

$$
\lim _{n \rightarrow \infty} \operatorname{det}\left(D_{f}^{(n)}\right)^{1 / n}=\exp \left(\int_{S^{1}} \log f(z) d \lambda(z)\right) .
$$

The restrictions on f have been removed over the years.
Barry Simon showed that the corresponding result holds for all $f: S^{1} \rightarrow \mathbb{R}$ measurable, essentially bounded and non-negative.

Theorem (Szegő, 1915)
Let $f: S^{1} \rightarrow \mathbb{R}$ be a positive and continuous function. Then,

$$
\lim _{n \rightarrow \infty} \operatorname{det}\left(D_{f}^{(n)}\right)^{1 / n}=\exp \left(\int_{S^{1}} \log f(z) d \lambda(z)\right) .
$$

The restrictions on f have been removed over the years.
Barry Simon showed that the corresponding result holds for all $f: S^{1} \rightarrow \mathbb{R}$ measurable, essentially bounded and non-negative.

AIM: We want to generalize Simon's result to a non-commutative setting.

Theorem (Szegő, 1915)
Let $f: S^{1} \rightarrow \mathbb{R}$ be a positive and continuous function. Then,

$$
\lim _{n \rightarrow \infty} \operatorname{det}\left(D_{f}^{(n)}\right)^{1 / n}=\exp \left(\int_{S^{1}} \log f(z) d \lambda(z)\right) .
$$

The restrictions on f have been removed over the years.
Barry Simon showed that the corresponding result holds for all $f: S^{1} \rightarrow \mathbb{R}$ measurable, essentially bounded and non-negative.

AIM: We want to generalize Simon's result to a non-commutative setting. This possibility was suggested by Deninger 2005.

Amenable groups

Amenable groups

Definition
A group Γ is called amenable if for every finite set $S \subset \Gamma$

Amenable groups

Definition

A group Γ is called amenable if for every finite set $S \subset \Gamma$ and every $\varepsilon>0$,

Amenable groups

Definition

A group Γ is called amenable if for every finite set $S \subset \Gamma$ and every
$\varepsilon>0$, there exists a finite set $F \subset \Gamma$,

Amenable groups

Definition

A group Γ is called amenable if for every finite set $S \subset \Gamma$ and every
$\varepsilon>0$, there exists a finite set $F \subset \Gamma$, such that

$$
|S F|<(1+\varepsilon)|F| .
$$

Amenable groups

Definition

A group Γ is called amenable if for every finite set $S \subset \Gamma$ and every
$\varepsilon>0$, there exists a finite set $F \subset \Gamma$, such that

$$
|S F|<(1+\varepsilon)|F| .
$$

The set F is called a (S, ε)-Følner set.

Amenable groups

Definition

A group Γ is called amenable if for every finite set $S \subset \Gamma$ and every
$\varepsilon>0$, there exists a finite set $F \subset \Gamma$, such that

$$
|S F|<(1+\varepsilon)|F| .
$$

The set F is called a (S, ε)-Følner set.

Example

The groups \mathbb{Z}^{d} are easily seen to be amenable. Nilpotent and solvable groups are amenable.

Amenable groups

Definition

A group Γ is called amenable if for every finite set $S \subset \Gamma$ and every
$\varepsilon>0$, there exists a finite set $F \subset \Gamma$, such that

$$
|S F|<(1+\varepsilon)|F| .
$$

The set F is called a (S, ε)-Følner set.

Example

The groups \mathbb{Z}^{d} are easily seen to be amenable. Nilpotent and solvable groups are amenable.
For a function φ defined on all finite subsets of Γ,

Amenable groups

Definition

A group Γ is called amenable if for every finite set $S \subset \Gamma$ and every
$\varepsilon>0$, there exists a finite set $F \subset \Gamma$, such that

$$
|S F|<(1+\varepsilon)|F| .
$$

The set F is called a (S, ε)-Følner set.

Example

The groups \mathbb{Z}^{d} are easily seen to be amenable. Nilpotent and solvable groups are amenable.
For a function φ defined on all finite subsets of Γ, we write

$$
\lim _{F \rightarrow \infty} \varphi(F)
$$

to denote the limit of φ as F becomes more and more invariant.

The group von Neumann algebra

The group von Neumann algebra

Let Γ be a group.

The group von Neumann algebra

Let Γ be a group. Then $\ell^{2} \Gamma$ denotes the Hilbert space with orthonormal basis $\left\{\delta_{g} \mid g \in \Gamma\right\}$,

The group von Neumann algebra

Let Γ be a group. Then $\ell^{2} \Gamma$ denotes the Hilbert space with orthonormal basis $\left\{\delta_{g} \mid g \in \Gamma\right\}$, and let $\lambda: \Gamma \rightarrow U\left(\ell^{2} \Gamma\right)$ denote the left-regular representation

$$
\lambda(g) \delta_{h}=\delta_{g h}
$$

The group von Neumann algebra

Let Γ be a group. Then $\ell^{2} \Gamma$ denotes the Hilbert space with orthonormal basis $\left\{\delta_{g} \mid g \in \Gamma\right\}$, and let $\lambda: \Gamma \rightarrow U\left(\ell^{2} \Gamma\right)$ denote the left-regular representation

$$
\lambda(g) \delta_{h}=\delta_{g h}
$$

We define the group von Neumann algebra of Γ

$$
L \Gamma:=\overline{\operatorname{span}\{\lambda(g) \mid g \in \Gamma\}}^{S O T}
$$

The group von Neumann algebra

Let Γ be a group. Then $\ell^{2} \Gamma$ denotes the Hilbert space with orthonormal basis $\left\{\delta_{g} \mid g \in \Gamma\right\}$, and let $\lambda: \Gamma \rightarrow U\left(\ell^{2} \Gamma\right)$ denote the left-regular representation

$$
\lambda(g) \delta_{h}=\delta_{g h}
$$

We define the group von Neumann algebra of Γ

$$
L \Gamma:=\overline{\operatorname{span}\{\lambda(g) \mid g \in \Gamma\}}^{S O T}
$$

and note that $\tau: L \Gamma \rightarrow \mathbb{C}$ given by

$$
\tau(a):=\left\langle a \delta_{e}, \delta_{e}\right\rangle
$$

The group von Neumann algebra

Let Γ be a group. Then $\ell^{2} \Gamma$ denotes the Hilbert space with orthonormal basis $\left\{\delta_{g} \mid g \in \Gamma\right\}$, and let $\lambda: \Gamma \rightarrow U\left(\ell^{2} \Gamma\right)$ denote the left-regular representation

$$
\lambda(g) \delta_{h}=\delta_{g h}
$$

We define the group von Neumann algebra of Γ

$$
L \Gamma:=\overline{\operatorname{span}\{\lambda(g) \mid g \in \Gamma\}}^{S O T}
$$

and note that $\tau: L \Gamma \rightarrow \mathbb{C}$ given by

$$
\tau(a):=\left\langle a \delta_{e}, \delta_{e}\right\rangle
$$

defines a unital, positive, faithful trace on $L \Gamma$.

The spectral measure of a self-adjoint element in $L \Gamma$

The spectral measure of a self-adjoint element in $L \Gamma$

For each self-adjoint element $a \in L \Gamma$,

The spectral measure of a self-adjoint element in $L \Gamma$

For each self-adjoint element $a \in L \Gamma$, we define the spectral measure of a to be the unique probability measure on \mathbb{R},

The spectral measure of a self-adjoint element in $L \Gamma$

For each self-adjoint element $a \in L \Gamma$, we define the spectral measure of a to be the unique probability measure on \mathbb{R}, such that

$$
\tau(p(a))=\int_{\mathbb{R}} p(t) d \mu_{a}(t)
$$

for all polynomials $p \in \mathbb{C}[t]$.

The spectral measure of a self-adjoint element in $L \Gamma$

For each self-adjoint element $a \in L \Gamma$, we define the spectral measure of a to be the unique probability measure on \mathbb{R}, such that

$$
\tau(p(a))=\int_{\mathbb{R}} p(t) d \mu_{a}(t)
$$

for all polynomials $p \in \mathbb{C}[t]$.
It is a basic fact that $a \geq 0$ if and only if the support of μ_{a} is in $\mathbb{R}_{\geq 0}$

The spectral measure of a self-adjoint element in $L \Gamma$

For each self-adjoint element $a \in L \Gamma$, we define the spectral measure of a to be the unique probability measure on \mathbb{R}, such that

$$
\tau(p(a))=\int_{\mathbb{R}} p(t) d \mu_{a}(t)
$$

for all polynomials $p \in \mathbb{C}[t]$.
It is a basic fact that $a \geq 0$ if and only if the support of μ_{a} is in $\mathbb{R}_{\geq 0}$ and $\operatorname{ker}(a)=0$ if and only if $\mu_{a}(\{0\})=0$.

The spectral measure of a self-adjoint element in $L \Gamma$

For each self-adjoint element $a \in L \Gamma$, we define the spectral measure of a to be the unique probability measure on \mathbb{R}, such that

$$
\tau(p(a))=\int_{\mathbb{R}} p(t) d \mu_{a}(t)
$$

for all polynomials $p \in \mathbb{C}[t]$.
It is a basic fact that $a \geq 0$ if and only if the support of μ_{a} is in $\mathbb{R}_{\geq 0}$ and $\operatorname{ker}(a)=0$ if and only if $\mu_{a}(\{0\})=0$.

We can think about μ_{a} as the distribution of eigenvalues of the operator $a \in B\left(\ell^{2} \Gamma\right)$.

The Fuglede-Kadison determinant

The Fuglede-Kadison determinant

Let Γ be a group and $a \in L \Gamma$.

The Fuglede-Kadison determinant

Let Γ be a group and $a \in L \Gamma$. We define the Fuglede-Kadison determinant of a with the formula

$$
\operatorname{det}_{\Gamma}(a):=\exp \left(\int_{0}^{\infty} \log (t) d \mu_{|a|}(t)\right) \in[0, \infty]
$$

The Fuglede-Kadison determinant

Let Γ be a group and $a \in L \Gamma$. We define the Fuglede-Kadison determinant of a with the formula

$$
\operatorname{det}_{\Gamma}(a):=\exp \left(\int_{0}^{\infty} \log (t) d \mu_{|a|}(t)\right) \in[0, \infty]
$$

Alternatively:

$$
\operatorname{det}_{\Gamma}(a)=\inf _{p>0}\|a\|_{p}
$$

The Fuglede-Kadison determinant

Let Γ be a group and $a \in L \Gamma$. We define the Fuglede-Kadison determinant of a with the formula

$$
\operatorname{det}_{\Gamma}(a):=\exp \left(\int_{0}^{\infty} \log (t) d \mu_{|a|}(t)\right) \in[0, \infty]
$$

Alternatively:

$$
\operatorname{det}_{\Gamma}(a)=\inf _{p>0}\|a\|_{p}
$$

Example
$\Gamma=\mathbb{Z}$.

The Fuglede-Kadison determinant

Let Γ be a group and $a \in L \Gamma$. We define the Fuglede-Kadison determinant of a with the formula

$$
\operatorname{det}_{\Gamma}(a):=\exp \left(\int_{0}^{\infty} \log (t) d \mu_{|a|}(t)\right) \in[0, \infty]
$$

Alternatively:

$$
\operatorname{det}_{\Gamma}(a)=\inf _{p>0}\|a\|_{p}
$$

Example
$\Gamma=\mathbb{Z}$. Then $L \mathbb{Z}=L^{\infty}\left(S^{1}\right)$ via the Fourier transform

The Fuglede-Kadison determinant

Let Γ be a group and $a \in L \Gamma$. We define the Fuglede-Kadison determinant of a with the formula

$$
\operatorname{det}_{\Gamma}(a):=\exp \left(\int_{0}^{\infty} \log (t) d \mu_{|a|}(t)\right) \in[0, \infty]
$$

Alternatively:

$$
\operatorname{det}_{\Gamma}(a)=\inf _{p>0}\|a\|_{p}
$$

Example
$\Gamma=\mathbb{Z}$. Then $L \mathbb{Z}=L^{\infty}\left(S^{1}\right)$ via the Fourier transform and for $f \in L^{\infty}\left(S^{1}\right)$

The Fuglede-Kadison determinant

Let Γ be a group and $a \in L \Gamma$. We define the Fuglede-Kadison determinant of a with the formula

$$
\operatorname{det}_{\Gamma}(a):=\exp \left(\int_{0}^{\infty} \log (t) d \mu_{|a|}(t)\right) \in[0, \infty]
$$

Alternatively:

$$
\operatorname{det}_{\Gamma}(a)=\inf _{p>0}\|a\|_{p}
$$

Example
$\Gamma=\mathbb{Z}$. Then $L \mathbb{Z}=L^{\infty}\left(S^{1}\right)$ via the Fourier transform and for $f \in L^{\infty}\left(S^{1}\right)$

$$
\operatorname{det}_{\mathbb{Z}}(f)=\exp \left(\int_{S^{1}} \log |f(z)| d \lambda(z)\right)
$$

Volumes and covolumes

Hermann Minkowski (1864-1909)

Volumes and covolumes

Volumes and covolumes

Let $K \subset \ell^{\infty}(\Gamma)^{d}$ be a bounded,

Volumes and covolumes

Let $K \subset \ell^{\infty}(\Gamma)^{d}$ be a bounded, convex,

Volumes and covolumes

Let $K \subset \ell^{\infty}(\Gamma)^{d}$ be a bounded, convex, and Γ-invariant subset

Volumes and covolumes

Let $K \subset \ell^{\infty}(\Gamma)^{d}$ be a bounded, convex, and Γ-invariant subset and denote for $F \subset \Gamma$ by K_{F} the projection of F onto $\ell^{\infty}(F)^{d}$.

Volumes and covolumes

Let $K \subset \ell^{\infty}(\Gamma)^{d}$ be a bounded, convex, and Γ-invariant subset and denote for $F \subset \Gamma$ by K_{F} the projection of F onto $\ell^{\infty}(F)^{d}$. We set:

$$
\operatorname{size}(K):=\lim _{F} \operatorname{vol}\left(K_{F}\right)^{1 /|F|}
$$

Volumes and covolumes

Let $K \subset \ell^{\infty}(\Gamma)^{d}$ be a bounded, convex, and Γ-invariant subset and denote for $F \subset \Gamma$ by K_{F} the projection of F onto $\ell^{\infty}(F)^{d}$. We set:

$$
\operatorname{size}(K):=\lim _{F} \operatorname{vol}\left(K_{F}\right)^{1 /|F|}
$$

Theorem (Brunn-Minkowski)

Volumes and covolumes

Let $K \subset \ell^{\infty}(\Gamma)^{d}$ be a bounded, convex, and Γ-invariant subset and denote for $F \subset \Gamma$ by K_{F} the projection of F onto $\ell^{\infty}(F)^{d}$. We set:

$$
\operatorname{size}(K):=\lim _{F} \operatorname{vol}\left(K_{F}\right)^{1 /|F|}
$$

Theorem (Brunn-Minkowski)
$\operatorname{size}(K+L) \geq \operatorname{size}(K)+\operatorname{size}(L)$.

Volumes and covolumes

Let $K \subset \ell^{\infty}(\Gamma)^{d}$ be a bounded, convex, and Γ-invariant subset and denote for $F \subset \Gamma$ by K_{F} the projection of F onto $\ell^{\infty}(F)^{d}$. We set:

$$
\operatorname{size}(K):=\lim _{F} \operatorname{vol}\left(K_{F}\right)^{1 /|F|}
$$

Theorem (Brunn-Minkowski)
$\operatorname{size}(K+L) \geq \operatorname{size}(K)+\operatorname{size}(L)$.
Question

1. For $f \in \mathbb{R} \Gamma$,

Volumes and covolumes

Let $K \subset \ell^{\infty}(\Gamma)^{d}$ be a bounded, convex, and Γ-invariant subset and denote for $F \subset \Gamma$ by K_{F} the projection of F onto $\ell^{\infty}(F)^{d}$. We set:

$$
\operatorname{size}(K):=\lim _{F} \operatorname{vol}\left(K_{F}\right)^{1 /|F|}
$$

Theorem (Brunn-Minkowski)
$\operatorname{size}(K+L) \geq \operatorname{size}(K)+\operatorname{size}(L)$.
Question

1. For $f \in \mathbb{R} \Gamma$, how are the volume of K and $K f=\{x f \mid x \in K\}$ related?

Volumes and covolumes

Let $K \subset \ell^{\infty}(\Gamma)^{d}$ be a bounded, convex, and Γ-invariant subset and denote for $F \subset \Gamma$ by K_{F} the projection of F onto $\ell^{\infty}(F)^{d}$. We set:

$$
\operatorname{size}(K):=\lim _{F} \operatorname{vol}\left(K_{F}\right)^{1 /|F|}
$$

Theorem (Brunn-Minkowski)
$\operatorname{size}(K+L) \geq \operatorname{size}(K)+\operatorname{size}(L)$.
Question

1. For $f \in \mathbb{R} \Gamma$, how are the volume of K and $K f=\{x f \mid x \in K\}$ related?
2. For $f \in \mathbb{R} \Gamma$, what is the covolume of $\ell^{\infty}(\Gamma, \mathbb{Z}) \cdot f \subset \ell^{\infty}(\Gamma)$?

Volumes and covolumes

Let $K \subset \ell^{\infty}(\Gamma)^{d}$ be a bounded, convex, and Γ-invariant subset and denote for $F \subset \Gamma$ by K_{F} the projection of F onto $\ell^{\infty}(F)^{d}$. We set:

$$
\operatorname{size}(K):=\lim _{F} \operatorname{vol}\left(K_{F}\right)^{1 /|F|}
$$

Theorem (Brunn-Minkowski)
$\operatorname{size}(K+L) \geq \operatorname{size}(K)+\operatorname{size}(L)$.

Question

1. For $f \in \mathbb{R} \Gamma$, how are the volume of K and $K f=\{x f \mid x \in K\}$ related?
2. For $f \in \mathbb{R} \Gamma$, what is the covolume of $\ell^{\infty}(\Gamma, \mathbb{Z}) \cdot f \subset \ell^{\infty}(\Gamma)$?
3. For $f \in \mathbb{Z} \Gamma$, how is the covolume of $\ell^{\infty}(\Gamma, \mathbb{Z}) \cdot f$ related to the "size" of $\mathbb{Z} \Gamma / \mathbb{Z} \Gamma f$?

Minkowski's theorem

Minkowski's theorem

Theorem (T.)
Let $f \in \mathbb{Z} \Gamma$. The covolume of $\ell^{\infty}(\Gamma, \mathbb{Z}) \cdot f$ is equal to $\operatorname{det}_{\Gamma}(f)$.

Minkowski's theorem

Theorem (T.)
Let $f \in \mathbb{Z} \Gamma$. The covolume of $\ell^{\infty}(\Gamma, \mathbb{Z}) \cdot f$ is equal to $\operatorname{det}_{\Gamma}(f)$.
Theorem (Minkowski)
Let $f \in \mathbb{Z} \Gamma$ be arbitrary.

Minkowski's theorem

Theorem (T.)
Let $f \in \mathbb{Z} \Gamma$. The covolume of $\ell^{\infty}(\Gamma, \mathbb{Z}) \cdot f$ is equal to $\operatorname{det}_{\Gamma}(f)$.
Theorem (Minkowski)
Let $f \in \mathbb{Z} \Gamma$ be arbitrary. Every weakly closed, symmetric, convex subset of $\ell^{\infty}(\Gamma)$ with

$$
\operatorname{size}(K)>2 \cdot \operatorname{det}_{\Gamma}(f)
$$

Minkowski's theorem

Theorem (T.)

Let $f \in \mathbb{Z} \Gamma$. The covolume of $\ell^{\infty}(\Gamma, \mathbb{Z}) \cdot f$ is equal to $\operatorname{det}_{\Gamma}(f)$.
Theorem (Minkowski)
Let $f \in \mathbb{Z} \Gamma$ be arbitrary. Every weakly closed, symmetric, convex subset of $\ell^{\infty}(\Gamma)$ with

$$
\operatorname{size}(K)>2 \cdot \operatorname{det}_{\Gamma}(f)
$$

contains some non-zero element of $\ell^{\infty}(\Gamma, \mathbb{Z}) \cdot f$.

Approximation with Følner sets

Approximation with Følner sets

Let $F \subset \Gamma$ be a finite subset and $a \in B\left(\ell^{2} \Gamma\right)$.

Approximation with Følner sets

Let $F \subset \Gamma$ be a finite subset and $a \in B\left(\ell^{2} \Gamma\right)$. We denote by a_{F} the compression of a to $\ell^{2} F$.

Approximation with Følner sets

Let $F \subset \Gamma$ be a finite subset and $a \in B\left(\ell^{2} \Gamma\right)$. We denote by a_{F} the compression of a to $\ell^{2} F$.

Theorem (Li-T.)
Let Γ be an amenable group and $a \in L \Gamma$ positive.

Approximation with Følner sets

Let $F \subset \Gamma$ be a finite subset and $a \in B\left(\ell^{2} \Gamma\right)$. We denote by a_{F} the compression of a to $\ell^{2} F$.

Theorem (Li-T.)
Let Γ be an amenable group and $a \in L \Gamma$ positive. Then,

$$
\operatorname{det}_{\Gamma}(a)=\lim _{F \rightarrow \infty} \operatorname{det}\left(a_{F}\right)^{\frac{1}{|F|}} .
$$

Approximation with Følner sets

Let $F \subset \Gamma$ be a finite subset and $a \in B\left(\ell^{2} \Gamma\right)$. We denote by a_{F} the compression of a to $\ell^{2} F$.

Theorem (Li-T.)
Let Γ be an amenable group and $a \in L \Gamma$ positive. Then,

$$
\operatorname{det}_{\Gamma}(a)=\lim _{F \rightarrow \infty} \operatorname{det}\left(a_{F}\right)^{\frac{1}{|F|}}
$$

This was conjectured by Deninger and only known in special cases and for strictly positive elements in $L \Gamma$.

Ingredients of the proof

Lemma (Gantmacher-Kreĭn)
Let X and Y be finite sets.

Ingredients of the proof

Lemma (Gantmacher-Kreĭn)
Let X and Y be finite sets. Let $g \in B\left(\ell^{2}(X \cup Y)\right)$ be positive and invertible.

Ingredients of the proof

Lemma (Gantmacher-Kreĭn)
Let X and Y be finite sets. Let $g \in B\left(\ell^{2}(X \cup Y)\right)$ be positive and invertible. Then:

$$
\operatorname{det}\left(g_{X \cup Y}\right) \cdot \operatorname{det}\left(g_{X \cap Y}\right) \leq \operatorname{det}\left(g_{X}\right) \cdot \operatorname{det}\left(g_{Y}\right)
$$

Ingredients of the proof

Lemma (Gantmacher-Kreĭn)
Let X and Y be finite sets. Let $g \in B\left(\ell^{2}(X \cup Y)\right)$ be positive and invertible. Then:

$$
\operatorname{det}\left(g_{X \cup Y}\right) \cdot \operatorname{det}\left(g_{X \cap Y}\right) \leq \operatorname{det}\left(g_{X}\right) \cdot \operatorname{det}\left(g_{Y}\right)
$$

Lemma (Moulin Ollagnier)

Let φ be a \mathbb{R}-valued function defined on finite subsets of Γ, such that

Ingredients of the proof

Lemma (Gantmacher-Kreĭn)
Let X and Y be finite sets. Let $g \in B\left(\ell^{2}(X \cup Y)\right)$ be positive and invertible. Then:

$$
\operatorname{det}\left(g_{X \cup Y}\right) \cdot \operatorname{det}\left(g_{X \cap Y}\right) \leq \operatorname{det}\left(g_{X}\right) \cdot \operatorname{det}\left(g_{Y}\right)
$$

Lemma (Moulin Ollagnier)

Let φ be a \mathbb{R}-valued function defined on finite subsets of Γ, such that

1. $\varphi(\emptyset)=0$ and $\varphi(F s)=\varphi(F)$ for all F and $s \in \Gamma$,

Ingredients of the proof

Lemma (Gantmacher-Kreĭn)
Let X and Y be finite sets. Let $g \in B\left(\ell^{2}(X \cup Y)\right)$ be positive and invertible. Then:

$$
\operatorname{det}\left(g_{X \cup Y}\right) \cdot \operatorname{det}\left(g_{X \cap Y}\right) \leq \operatorname{det}\left(g_{X}\right) \cdot \operatorname{det}\left(g_{Y}\right)
$$

Lemma (Moulin Ollagnier)

Let φ be a \mathbb{R}-valued function defined on finite subsets of Γ, such that

1. $\varphi(\emptyset)=0$ and $\varphi(F s)=\varphi(F)$ for all F and $s \in \Gamma$,
2. $\varphi\left(F_{1} \cup F_{2}\right)+\varphi\left(F_{1} \cap F_{2}\right) \leq \varphi\left(F_{1}\right)+\varphi\left(F_{2}\right)$ for all F_{1}, F_{2}.

Ingredients of the proof

Lemma (Gantmacher-Kreĭn)
Let X and Y be finite sets. Let $g \in B\left(\ell^{2}(X \cup Y)\right)$ be positive and invertible. Then:

$$
\operatorname{det}\left(g_{X \cup Y}\right) \cdot \operatorname{det}\left(g_{X \cap Y}\right) \leq \operatorname{det}\left(g_{X}\right) \cdot \operatorname{det}\left(g_{Y}\right)
$$

Lemma (Moulin Ollagnier)

Let φ be a \mathbb{R}-valued function defined on finite subsets of Γ, such that

$$
\begin{aligned}
& \text { 1. } \varphi(\emptyset)=0 \text { and } \varphi(F s)=\varphi(F) \text { for all } F \text { and } s \in \Gamma \text {, } \\
& \text { 2. } \varphi\left(F_{1} \cup F_{2}\right)+\varphi\left(F_{1} \cap F_{2}\right) \leq \varphi\left(F_{1}\right)+\varphi\left(F_{2}\right) \text { for all } F_{1}, F_{2} \text {. }
\end{aligned}
$$

Then

$$
\lim _{F} \frac{\varphi(F)}{|F|}=\inf _{F} \frac{\varphi(F)}{|F|}
$$

Entropy

Andrei Kolmogorov (1903-1987)

Shannon entropy

Shannon entropy

Let (X, μ) be a standard probability measure space

Shannon entropy

Let (X, μ) be a standard probability measure space and $P=\left\{P_{1}, \ldots, P_{n}\right\}$ be a finite partition of X.

Shannon entropy

Let (X, μ) be a standard probability measure space and $P=\left\{P_{1}, \ldots, P_{n}\right\}$ be a finite partition of X. The Shannon entropy of P is defined to be

$$
H(P)=-\sum_{i=1}^{n} \mu\left(P_{i}\right) \log \mu\left(P_{i}\right)
$$

Shannon entropy

Let (X, μ) be a standard probability measure space and $P=\left\{P_{1}, \ldots, P_{n}\right\}$ be a finite partition of X. The Shannon entropy of P is defined to be

$$
H(P)=-\sum_{i=1}^{n} \mu\left(P_{i}\right) \log \mu\left(P_{i}\right)
$$

$H(P)$ is the expected amount of information (counted in bits) an observer obtains when it is revealed that a random point belongs to some set in the partition.

Shannon entropy

Let (X, μ) be a standard probability measure space and $P=\left\{P_{1}, \ldots, P_{n}\right\}$ be a finite partition of X. The Shannon entropy of P is defined to be

$$
H(P)=-\sum_{i=1}^{n} \mu\left(P_{i}\right) \log \mu\left(P_{i}\right)
$$

$H(P)$ is the expected amount of information (counted in bits) an observer obtains when it is revealed that a random point belongs to some set in the partition.
Example
Consider the partition $[0,1]=[0,1 / 4) \cup[1 / 4,1 / 2) \cup[1 / 2,1]$.

Shannon entropy

Let (X, μ) be a standard probability measure space and $P=\left\{P_{1}, \ldots, P_{n}\right\}$ be a finite partition of X. The Shannon entropy of P is defined to be

$$
H(P)=-\sum_{i=1}^{n} \mu\left(P_{i}\right) \log \mu\left(P_{i}\right)
$$

$H(P)$ is the expected amount of information (counted in bits) an observer obtains when it is revealed that a random point belongs to some set in the partition.

Example

Consider the partition $[0,1]=[0,1 / 4) \cup[1 / 4,1 / 2) \cup[1 / 2,1]$. For points in $[1 / 2,1]$ one bit is revealed, whereas for points in $[0,1 / 2)$, two bits are revealed. Hence, $H=3 / 2$; using $\log =\log _{2}$.

Kolmogorov entropy

Let (X, μ) be a probability measure space and $P=\left\{P_{1}, \ldots, P_{n}\right\}$ be a finite partition of X.

Kolmogorov entropy

Let (X, μ) be a probability measure space and $P=\left\{P_{1}, \ldots, P_{n}\right\}$ be a finite partition of X. Let Γ act on (X, μ) by measure preserving transformations.

Kolmogorov entropy

Let (X, μ) be a probability measure space and $P=\left\{P_{1}, \ldots, P_{n}\right\}$ be a finite partition of X. Let Γ act on (X, μ) by measure preserving transformations. For $g \in \Gamma$, we denote by P^{g} the partition $\left\{g^{-1} P_{1}, \ldots, g^{-1} P_{n}\right\}$.

Kolmogorov entropy

Let (X, μ) be a probability measure space and $P=\left\{P_{1}, \ldots, P_{n}\right\}$ be a finite partition of X. Let Γ act on (X, μ) by measure preserving transformations. For $g \in \Gamma$, we denote by P^{g} the partition $\left\{g^{-1} P_{1}, \ldots, g^{-1} P_{n}\right\}$. For $F \subset \Gamma$ finite, we set

$$
P^{F}=\bigvee_{g \in F} P^{g}
$$

Kolmogorov entropy

Let (X, μ) be a probability measure space and $P=\left\{P_{1}, \ldots, P_{n}\right\}$ be a finite partition of X. Let Γ act on (X, μ) by measure preserving transformations. For $g \in \Gamma$, we denote by P^{g} the partition $\left\{g^{-1} P_{1}, \ldots, g^{-1} P_{n}\right\}$. For $F \subset \Gamma$ finite, we set

$$
P^{F}=\bigvee_{g \in F} P^{g}
$$

We define:

$$
h(\Gamma \curvearrowright X, P):=\lim _{F \rightarrow \infty} \frac{H\left(P^{F}\right)}{|F|}
$$

Kolmogorov entropy

Let (X, μ) be a probability measure space and $P=\left\{P_{1}, \ldots, P_{n}\right\}$ be a finite partition of X. Let Γ act on (X, μ) by measure preserving transformations. For $g \in \Gamma$, we denote by P^{g} the partition $\left\{g^{-1} P_{1}, \ldots, g^{-1} P_{n}\right\}$. For $F \subset \Gamma$ finite, we set

$$
P^{F}=\bigvee_{g \in F} P^{g}
$$

We define:

$$
h(\Gamma \curvearrowright X, P):=\lim _{F \rightarrow \infty} \frac{H\left(P^{F}\right)}{|F|}
$$

We set:

$$
h(\Gamma \curvearrowright X):=\sup _{P} h(\Gamma \curvearrowright X, P)
$$

Kolmogorov entropy

Let (X, μ) be a probability measure space and $P=\left\{P_{1}, \ldots, P_{n}\right\}$ be a finite partition of X. Let Γ act on (X, μ) by measure preserving transformations. For $g \in \Gamma$, we denote by P^{g} the partition $\left\{g^{-1} P_{1}, \ldots, g^{-1} P_{n}\right\}$. For $F \subset \Gamma$ finite, we set

$$
P^{F}=\bigvee_{g \in F} P^{g}
$$

We define:

$$
h(\Gamma \curvearrowright X, P):=\lim _{F \rightarrow \infty} \frac{H\left(P^{F}\right)}{|F|}
$$

We set:

$$
h(\Gamma \curvearrowright X):=\sup _{P} h(\Gamma \curvearrowright X, P)
$$

Kolmogorov showed that one P is enough if P is generating.

Algebraic actions

Let Γ be an amenable group and M be a left countable $\mathbb{Z} \Gamma$-module.

Algebraic actions

Let Γ be an amenable group and M be a left countable $\mathbb{Z} \Gamma$-module. The Pontrjagin dual of M is denoted by \widehat{M}.

Algebraic actions

Let Γ be an amenable group and M be a left countable $\mathbb{Z} \Gamma$-module. The Pontrjagin dual of M is denoted by \widehat{M}. It is a compact abelian group, and Γ acts on it preserving the Haar measure.

Algebraic actions

Let Γ be an amenable group and M be a left countable $\mathbb{Z} \Gamma$-module. The Pontrjagin dual of M is denoted by \widehat{M}. It is a compact abelian group, and Γ acts on it preserving the Haar measure.
Question
What can one say about $h(\Gamma \curvearrowright \widehat{M})$?

Algebraic actions

Let Γ be an amenable group and M be a left countable $\mathbb{Z} \Gamma$-module. The Pontrjagin dual of M is denoted by \widehat{M}. It is a compact abelian group, and Γ acts on it preserving the Haar measure.
Question
What can one say about $h(\Gamma \curvearrowright \widehat{M})$?
This is already very interesting for $M=\mathbb{Z} \Gamma / \mathbb{Z} \Gamma f$ for some $f \in \mathbb{Z} \Gamma$.

Algebraic actions

Let Γ be an amenable group and M be a left countable $\mathbb{Z} \Gamma$-module. The Pontrjagin dual of M is denoted by \widehat{M}. It is a compact abelian group, and Γ acts on it preserving the Haar measure.
Question
What can one say about $h(\Gamma \curvearrowright \widehat{M})$?
This is already very interesting for $M=\mathbb{Z} \Gamma / \mathbb{Z} \Gamma f$ for some $f \in \mathbb{Z} \Gamma$. The correponding action is denoted by $\Gamma \curvearrowright X_{f}$ and called principal algebraic action.

Algebraic actions

Let Γ be an amenable group and M be a left countable $\mathbb{Z} \Gamma$-module. The Pontrjagin dual of M is denoted by \widehat{M}. It is a compact abelian group, and Γ acts on it preserving the Haar measure.
Question
What can one say about $h(\Gamma \curvearrowright \widehat{M})$?
This is already very interesting for $M=\mathbb{Z} \Gamma / \mathbb{Z} \Gamma f$ for some $f \in \mathbb{Z} \Gamma$. The correponding action is denoted by $\Gamma \curvearrowright X_{f}$ and called principal algebraic action. This question has a long history for $\Gamma=\mathbb{Z}^{d}$.

Algebraic actions

Let Γ be an amenable group and M be a left countable $\mathbb{Z} \Gamma$-module. The Pontrjagin dual of M is denoted by \widehat{M}. It is a compact abelian group, and Γ acts on it preserving the Haar measure.

Question

What can one say about $h(\Gamma \curvearrowright \widehat{M})$?
This is already very interesting for $M=\mathbb{Z} \Gamma / \mathbb{Z} \Gamma f$ for some $f \in \mathbb{Z} \Gamma$. The correponding action is denoted by $\Gamma \curvearrowright X_{f}$ and called principal algebraic action. This question has a long history for $\Gamma=\mathbb{Z}^{d}$.
A programme to study the question above for principal algebraic actions in the non-commutative case was started by Deninger in 2005.

The entropy-determinant formula

The entropy-determinant formula

Theorem (Li-T.)
Let $f \in \mathbb{Z} \Gamma$ be a non-zero divisor. Then

$$
h\left(\Gamma \curvearrowright X_{f}\right)=\log \operatorname{det}_{\Gamma}(f) .
$$

The entropy-determinant formula

Theorem (Li-T.)
Let $f \in \mathbb{Z} \Gamma$ be a non-zero divisor. Then

$$
h\left(\Gamma \curvearrowright X_{f}\right)=\log \operatorname{det}_{\Gamma}(f) .
$$

This was shown for

- $\Gamma=\mathbb{Z}$ by Yuzvinskiĭ,

The entropy-determinant formula

Theorem (Li-T.)
Let $f \in \mathbb{Z} \Gamma$ be a non-zero divisor. Then

$$
h\left(\Gamma \curvearrowright X_{f}\right)=\log \operatorname{det}_{\Gamma}(f)
$$

This was shown for

- $\Gamma=\mathbb{Z}$ by Yuzvinskiĭ,
- $\Gamma=\mathbb{Z}^{d}$ by Lind-Schmidt-Ward,

The entropy-determinant formula

Theorem (Li-T.)
Let $f \in \mathbb{Z} \Gamma$ be a non-zero divisor. Then

$$
h\left(\Gamma \curvearrowright X_{f}\right)=\log \operatorname{det}_{\Gamma}(f)
$$

This was shown for

- $\Gamma=\mathbb{Z}$ by Yuzvinskiĭ,
- $\Gamma=\mathbb{Z}^{d}$ by Lind-Schmidt-Ward,
- for general Γ (with additional constraints) by Deninger und Deninger-Schmidt if f is invertible in $\ell^{1} \Gamma$, and

The entropy-determinant formula

Theorem (Li-T.)
Let $f \in \mathbb{Z} \Gamma$ be a non-zero divisor. Then

$$
h\left(\Gamma \curvearrowright X_{f}\right)=\log \operatorname{det}_{\Gamma}(f)
$$

This was shown for

- $\Gamma=\mathbb{Z}$ by Yuzvinskiĭ,
- $\Gamma=\mathbb{Z}^{d}$ by Lind-Schmidt-Ward,
- for general Γ (with additional constraints) by Deninger und Deninger-Schmidt if f is invertible in $\ell^{1} \Gamma$, and
- by Li in general if f is invertible in $L \Gamma$.

Ingredients of the proof

Ingredients of the proof

For any positive $g \in L \Gamma, F \subset \Gamma$ finite, and $\kappa>0$,

Ingredients of the proof

For any positive $g \in L \Gamma, F \subset \Gamma$ finite, and $\kappa>0$, we denote by $D_{g, F, \kappa}$ the product of the eigenvalues of g_{F} in the interval $(0, \kappa]$ counted with multiplicity.

Ingredients of the proof

For any positive $g \in L \Gamma, F \subset \Gamma$ finite, and $\kappa>0$, we denote by $D_{g, F, \kappa}$ the product of the eigenvalues of g_{F} in the interval $(0, \kappa]$ counted with multiplicity.
Proposition
Let $g \in L \Gamma$ be positive such that $\operatorname{det}_{\Gamma} g>0$. Let $\lambda>1$. Then there exists $0<\kappa<\min (1,\|g\|)$ such that

$$
\underset{F}{\limsup }\left(D_{g, F, \kappa}\right)^{-\frac{1}{|F|}} \leq \lambda
$$

Ingredients of the proof

For any positive $g \in L \Gamma, F \subset \Gamma$ finite, and $\kappa>0$, we denote by $D_{g, F, \kappa}$ the product of the eigenvalues of g_{F} in the interval $(0, \kappa]$ counted with multiplicity.

Proposition

Let $g \in L \Gamma$ be positive such that $\operatorname{det}_{\Gamma} g>0$. Let $\lambda>1$. Then there exists $0<\kappa<\min (1,\|g\|)$ such that

$$
\underset{F}{\lim \sup }\left(D_{g, F, \kappa}\right)^{-\frac{1}{|F|}} \leq \lambda
$$

Refined techniques from:
H. Li. Compact group automorphisms, addition formulas and

Fuglede-Kadison determinants. Ann. of Math. 176 (2012), no. 1, 303-347.

ℓ^{2}-Torsion

Michael Atiyah (1920-)

Classification of lens spaces

The use of ℓ^{2}-torsion for the finite group $\mathbb{Z} / m \mathbb{Z}$ is classical.

Classification of lens spaces

The use of ℓ^{2}-torsion for the finite group $\mathbb{Z} / m \mathbb{Z}$ is classical.
Definition (Tietze (1908))
The lens spaces are the closed oriented 3-dimensional manifolds

$$
L(m, n)=\left\{\left.(a, b) \in \mathbb{C}^{2}| | a\right|^{2}+|b|^{2}=1\right\} /(a, b) \sim(\zeta a, \zeta n b),
$$

with $\zeta=\exp \left(\frac{2 \pi i}{m}\right)$ a primitive m-th root of unity, and m, n coprime.

Classification of lens spaces

The use of ℓ^{2}-torsion for the finite group $\mathbb{Z} / m \mathbb{Z}$ is classical.
Definition (Tietze (1908))
The lens spaces are the closed oriented 3-dimensional manifolds

$$
L(m, n)=\left\{\left.(a, b) \in \mathbb{C}^{2}| | a\right|^{2}+|b|^{2}=1\right\} /(a, b) \sim(\zeta a, \zeta n b),
$$

with $\zeta=\exp \left(\frac{2 \pi i}{m}\right)$ a primitive m-th root of unity, and m, n coprime.
Theorem (Franz, Rueff and Whitehead (1940))

1. $L(m, n)$ is homotopy equivalent to $L\left(m, n^{\prime}\right)$ iff $n \equiv \pm n^{\prime} r^{2}$ $\bmod m$ for some $r \in \mathbb{Z} / m \mathbb{Z}$.
2. $L(m, n)$ is homeomorphic to $L\left(m, n^{\prime}\right)$ iff $n \equiv \pm n^{\prime} r^{2} \bmod m$ for $r \equiv 1$ or $r \equiv n \bmod m$.

ℓ^{2}-torsion

Let Γ be an amenable group and M be a left $\mathbb{Z} \Gamma$-module.

ℓ^{2}-torsion

Let Γ be an amenable group and M be a left $\mathbb{Z} \Gamma$-module. We say that M is of type FL, if there exists an exact sequence

$$
0 \rightarrow \mathbb{Z} \Gamma^{n_{k}} \xrightarrow{d_{k}} \cdots \xrightarrow{d_{1}} \mathbb{Z} \Gamma^{n_{0}} \rightarrow M \rightarrow 0
$$

ℓ^{2}-torsion

Let Γ be an amenable group and M be a left $\mathbb{Z} \Gamma$-module. We say that M is of type FL, if there exists an exact sequence

$$
0 \rightarrow \mathbb{Z} \Gamma^{n_{k}} \xrightarrow{d_{k}} \cdots \xrightarrow{d_{1}} \mathbb{Z} \Gamma^{n_{0}} \rightarrow M \rightarrow 0
$$

We define $\Delta_{i}:=d_{i}^{*} d_{i}+d_{i+1} d_{i+1}^{*}: \mathbb{Z} \Gamma^{n_{i}} \rightarrow \mathbb{Z} \Gamma^{n_{i}}$.

ℓ^{2}-torsion

Let Γ be an amenable group and M be a left $\mathbb{Z} \Gamma$-module. We say that M is of type $F L$, if there exists an exact sequence

$$
0 \rightarrow \mathbb{Z} \Gamma^{n_{k}} \xrightarrow{d_{k}} \cdots \xrightarrow{d_{1}} \mathbb{Z} \Gamma^{n_{0}} \rightarrow M \rightarrow 0
$$

We define $\Delta_{i}:=d_{i}^{*} d_{i}+d_{i+1} d_{i+1}^{*}: \mathbb{Z} \Gamma^{n_{i}} \rightarrow \mathbb{Z} \Gamma^{n_{i}}$.
An primary numerical invariant of M is its Euler characteristic

$$
\chi(M):=\sum_{i=0}^{k}(-1)^{i} n_{i} .
$$

ℓ^{2}-torsion

Let Γ be an amenable group and M be a left $\mathbb{Z} \Gamma$-module. We say that M is of type $F L$, if there exists an exact sequence

$$
0 \rightarrow \mathbb{Z} \Gamma^{n_{k}} \xrightarrow{d_{k}} \cdots \xrightarrow{d_{1}} \mathbb{Z} \Gamma^{n_{0}} \rightarrow M \rightarrow 0
$$

We define $\Delta_{i}:=d_{i}^{*} d_{i}+d_{i+1} d_{i+1}^{*}: \mathbb{Z} \Gamma^{n_{i}} \rightarrow \mathbb{Z} \Gamma^{n_{i}}$.
An primary numerical invariant of M is its Euler characteristic

$$
\chi(M):=\sum_{i=0}^{k}(-1)^{i} n_{i} .
$$

If the Euler characteristic vanishes, a secondary invariant can be defined.

ℓ^{2}-torsion

Let Γ be an amenable group and M be a left $\mathbb{Z} \Gamma$-module. We say that M is of type $F L$, if there exists an exact sequence

$$
0 \rightarrow \mathbb{Z} \Gamma^{n_{k}} \xrightarrow{d_{k}} \cdots \xrightarrow{d_{1}} \mathbb{Z} \Gamma^{n_{0}} \rightarrow M \rightarrow 0
$$

We define $\Delta_{i}:=d_{i}^{*} d_{i}+d_{i+1} d_{i+1}^{*}: \mathbb{Z} \Gamma^{n_{i}} \rightarrow \mathbb{Z} \Gamma^{n_{i}}$.
An primary numerical invariant of M is its Euler characteristic

$$
\chi(M):=\sum_{i=0}^{k}(-1)^{i} n_{i}
$$

If the Euler characteristic vanishes, a secondary invariant can be defined. We define the ℓ^{2}-torsion of M to be:

$$
\rho^{(2)}(M):=-\frac{1}{2} \sum_{i=0}^{k}(-1)^{i} \cdot i \cdot \log \operatorname{det}_{\Gamma}\left(\Delta_{i}\right)
$$

Entropy for algebraic actions

Entropy for algebraic actions

Theorem (Li-T.)
Let Γ be an amenable group. Let M be a $\mathbb{Z} \Gamma$-module of type $F L$ with $\chi(M)=0$. Then,

$$
h(\Gamma \curvearrowright \widehat{M})=\rho^{(2)}(M)
$$

Entropy for algebraic actions

Theorem (Li-T.)
Let Γ be an amenable group. Let M be a $\mathbb{Z} \Gamma$-module of type $F L$ with $\chi(M)=0$. Then,

$$
h(\Gamma \curvearrowright \widehat{M})=\rho^{(2)}(M)
$$

If $\chi(M) \neq 0$, then $h(\Gamma \curvearrowright \widehat{M})=\infty$.

Entropy for algebraic actions

Theorem (Li-T.)
Let Γ be an amenable group. Let M be a $\mathbb{Z} \Gamma$-module of type $F L$ with $\chi(M)=0$. Then,

$$
h(\Gamma \curvearrowright \widehat{M})=\rho^{(2)}(M)
$$

If $\chi(M) \neq 0$, then $h(\Gamma \curvearrowright \widehat{M})=\infty$.
Remark
We can now turn everything around and define the torsion of countable $\mathbb{Z} \Gamma$-module (no matter if it is of type FL or not) to be the entropy of the natural Γ-action on its Pontrjagin dual.

Entropy for algebraic actions

Theorem (Li-T.)
Let Γ be an amenable group. Let M be a $\mathbb{Z} \Gamma$-module of type $F L$ with $\chi(M)=0$. Then,

$$
h(\Gamma \curvearrowright \widehat{M})=\rho^{(2)}(M)
$$

If $\chi(M) \neq 0$, then $h(\Gamma \curvearrowright \widehat{M})=\infty$.
Remark
We can now turn everything around and define the torsion of countable $\mathbb{Z} \Gamma$-module (no matter if it is of type FL or not) to be the entropy of the natural Γ-action on its Pontrjagin dual.

$$
\rho(M):=h(\Gamma \curvearrowright \widehat{M}) .
$$

ℓ^{2}-torsion of amenable groups

Let Γ be an amenable group.

ℓ^{2}-torsion of amenable groups

Let Γ be an amenable group. The group Γ has a finite classifying space $B \Gamma$ if and only if the trivial $\mathbb{Z} \Gamma$-module \mathbb{Z} is of type FL .

ℓ^{2}-torsion of amenable groups

Let Γ be an amenable group. The group Γ has a finite classifying space $B \Gamma$ if and only if the trivial $\mathbb{Z} \Gamma$-module \mathbb{Z} is of type $F L$. The ℓ^{2}-torsion of the trivial $\mathbb{Z} \Gamma$-module \mathbb{Z} is called the ℓ^{2}-torsion of the group Γ.

ℓ^{2}-torsion of amenable groups

Let Γ be an amenable group. The group Γ has a finite classifying space $B \Gamma$ if and only if the trivial $\mathbb{Z} \Gamma$-module \mathbb{Z} is of type $F L$. The ℓ^{2}-torsion of the trivial $\mathbb{Z} \Gamma$-module \mathbb{Z} is called the ℓ^{2}-torsion of the group Γ. Note that trivially $h(\Gamma \curvearrowright \widehat{\mathbb{Z}})=0$.

ℓ^{2}-torsion of amenable groups

Let Γ be an amenable group. The group Γ has a finite classifying space $B \Gamma$ if and only if the trivial $\mathbb{Z} \Gamma$-module \mathbb{Z} is of type FL . The ℓ^{2}-torsion of the trivial $\mathbb{Z} \Gamma$-module \mathbb{Z} is called the ℓ^{2}-torsion of the group Γ. Note that trivially $h(\Gamma \curvearrowright \widehat{\mathbb{Z}})=0$. Hence,
Corollary (Li-T.)
Let Γ be an amenable group with a finite classifying space. Then, its ℓ^{2}-torsion vanishes.

ℓ^{2}-torsion of amenable groups

Let Γ be an amenable group. The group Γ has a finite classifying space $B \Gamma$ if and only if the trivial $\mathbb{Z} \Gamma$-module \mathbb{Z} is of type $F L$. The ℓ^{2}-torsion of the trivial $\mathbb{Z} \Gamma$-module \mathbb{Z} is called the ℓ^{2}-torsion of the group Γ. Note that trivially $h(\Gamma \curvearrowright \widehat{\mathbb{Z}})=0$. Hence,
Corollary (Li-T.)
Let Γ be an amenable group with a finite classifying space. Then, its ℓ^{2}-torsion vanishes.
This was conjectured by Lück.

The Milnor-Turaev formula

The Milnor-Turaev formula

Let Γ be an amenable group and let C_{*} be a chain complex of finitely generated $\mathbb{Z} \Gamma$-modules of finite length.

The Milnor-Turaev formula

Let Γ be an amenable group and let C_{*} be a chain complex of finitely generated $\mathbb{Z} \Gamma$-modules of finite length. We also assume that C_{*} is ℓ^{2}-acyclic,

The Milnor-Turaev formula

Let Γ be an amenable group and let C_{*} be a chain complex of finitely generated $\mathbb{Z} \Gamma$-modules of finite length. We also assume that C_{*} is ℓ^{2}-acyclic, which says morally that $L \Gamma \otimes_{\mathbb{Z} \Gamma} C_{*}$ is acyclic.

The Milnor-Turaev formula

Let Γ be an amenable group and let C_{*} be a chain complex of finitely generated $\mathbb{Z} \Gamma$-modules of finite length. We also assume that C_{*} is ℓ^{2}-acyclic, which says morally that $L \Gamma \otimes_{\mathbb{Z} \Gamma} C_{*}$ is acyclic. We can now define the ℓ^{2}-torsion of C_{*} as before

$$
\rho^{(2)}\left(C_{*}\right):=-\frac{1}{2} \sum_{i=0}^{k}(-1)^{i} \cdot i \cdot \log \operatorname{det}_{\Gamma}\left(\Delta_{i}\right) \in \mathbb{R}
$$

The Milnor-Turaev formula

One can show that $\rho^{(2)}\left(C_{*}\right)$ depends on C_{*} only up to homotopy equivalence of chain complexes.

The Milnor-Turaev formula

One can show that $\rho^{(2)}\left(C_{*}\right)$ depends on C_{*} only up to homotopy equivalence of chain complexes. It is natural to try to express $\rho^{(2)}\left(C_{*}\right)$ in terms of the homology of C_{*}.

The Milnor-Turaev formula

One can show that $\rho^{(2)}\left(C_{*}\right)$ depends on C_{*} only up to homotopy equivalence of chain complexes. It is natural to try to express $\rho^{(2)}\left(C_{*}\right)$ in terms of the homology of C_{*}.
Theorem (Li-T.)

$$
\rho^{(2)}\left(C_{*}\right)=\sum_{i \in \mathbb{Z}}(-1)^{i} \rho\left(H_{i}\left(C_{*}\right)\right)
$$

The Milnor-Turaev formula

One can show that $\rho^{(2)}\left(C_{*}\right)$ depends on C_{*} only up to homotopy equivalence of chain complexes. It is natural to try to express $\rho^{(2)}\left(C_{*}\right)$ in terms of the homology of C_{*}.
Theorem (Li-T.)

$$
\rho^{(2)}\left(C_{*}\right)=\sum_{i \in \mathbb{Z}}(-1)^{i} \rho\left(H_{i}\left(C_{*}\right)\right)
$$

Remark
For $G=\{e\}$ or $G=\mathbb{Z}^{d}$, this a consequence of the classical Milnor-Turaev formula; and related to formulas for the Alexander polynomial.

The torsion of general $\mathbb{Z} \Gamma$-modules

It has been observed already by Yuzvinskiĭ that the entropy of an algebraic action has contributions corresponding to primes.

The torsion of general $\mathbb{Z} \Gamma$-modules

It has been observed already by Yuzvinskiĭ that the entropy of an algebraic action has contributions corresponding to primes. We can set $\rho_{\infty}(M):=\rho\left(\mathbb{Q} \otimes_{\mathbb{Z}} M\right)$

The torsion of general $\mathbb{Z} \Gamma$-modules

It has been observed already by Yuzvinskiĭ that the entropy of an algebraic action has contributions corresponding to primes. We can set $\rho_{\infty}(M):=\rho\left(\mathbb{Q} \otimes_{\mathbb{Z}} M\right)$ and

$$
\rho_{p}(M):=\rho\left(\operatorname{Tor}\left(\mu_{p}, M\right)\right)-\rho\left(\mu_{p} \otimes_{\mathbb{Z}} M\right)
$$

where $\mu_{p}=\mathbb{Z}[1 / p] / \mathbb{Z}$.

The torsion of general $\mathbb{Z} \Gamma$-modules

It has been observed already by Yuzvinskiĭ that the entropy of an algebraic action has contributions corresponding to primes. We can set $\rho_{\infty}(M):=\rho\left(\mathbb{Q} \otimes_{\mathbb{Z}} M\right)$ and

$$
\rho_{p}(M):=\rho\left(\operatorname{Tor}\left(\mu_{p}, M\right)\right)-\rho\left(\mu_{p} \otimes_{\mathbb{Z}} M\right)
$$

where $\mu_{p}=\mathbb{Z}[1 / p] / \mathbb{Z}$.
Lemma (Chung-T.)
If $\rho(M)<\infty$, then $\rho_{p}(M) \geq 0$.

The torsion of general $\mathbb{Z} \Gamma$-modules

Theorem (Chung-T.)
Let M be a $\mathbb{Z} \Gamma$-module with finite torsion. Then, we have

$$
\begin{equation*}
\rho(M)=\rho_{\infty}(M)+\sum_{p} \rho_{p}(M) . \tag{1}
\end{equation*}
$$

Moreover, for any exact sequence $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ of $\mathbb{Z} \Gamma$-modules with finite torsion, we have

$$
\rho_{p}(M)=\rho_{p}\left(M^{\prime}\right)+\rho_{p}\left(M^{\prime \prime}\right)
$$

for any prime p, and

$$
\rho_{\infty}(M)=\rho_{\infty}\left(M^{\prime}\right)+\rho_{\infty}\left(M^{\prime \prime}\right)
$$

Thank you for your attention.

