Entropy, Determinants, and ℓ^2 -Torsion

Andreas Berthold Thom

University of Leipzig and Max-Planck-Institute "Mathematics in the Sciences", Leipzig

June 28, 2013 at the Fields Institute, Toronto

Conference in honor of Marc Rieffel

1. Determinants - from Gábor Szegő to Barry Simon

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

1. Determinants - from Gábor Szegő to Barry Simon

2. Volumes and covolumes

1. Determinants - from Gábor Szegő to Barry Simon

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- 2. Volumes and covolumes
- 3. Entropy of algebraic actions

1. Determinants - from Gábor Szegő to Barry Simon

・ロト ・ 日本・ 小田・ 小田・ 小田・

- 2. Volumes and covolumes
- 3. Entropy of algebraic actions
- 4. ℓ^2 -Torsion for amenable groups

- 1. Determinants from Gábor Szegő to Barry Simon
- 2. Volumes and covolumes
- 3. Entropy of algebraic actions
- 4. ℓ^2 -Torsion for amenable groups

Almost all results are obtained in joint work with Hanfeng Li.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Determinants

Gábor Szegő (1895-1985)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□ → < 個 → < Ξ → < Ξ → < Ξ → の < ⊙</p>

Let $f: S^1 \to \mathbb{R}$ be a continuous function.

Let $f \colon S^1 o \mathbb{R}$ be a continuous function. The quantity

$$M(f) = \exp\left(\int_{S^1} \log |f(z)| d\lambda(z)\right)$$

has properties of a formal determinant of f.

Let $f \colon S^1 o \mathbb{R}$ be a continuous function. The quantity

$$M(f) = \exp\left(\int_{S^1} \log |f(z)| d\lambda(z)\right)$$

has properties of a formal determinant of f.

If
$$f(z) = (z - \alpha_1)(z - \alpha_2) \cdots (z - \alpha_n)$$
 is a polynomial

Let $f \colon S^1 o \mathbb{R}$ be a continuous function. The quantity

$$M(f) = \exp\left(\int_{S^1} \log |f(z)| d\lambda(z)\right)$$

has properties of a formal determinant of f.

If $f(z) = (z - \alpha_1)(z - \alpha_2) \cdots (z - \alpha_n)$ is a polynomial, then $M(f) = \prod_{n=1}^{n} \max\{1 \mid \alpha_n\} = \prod_{n=1}^{n} \max\{1 \mid \alpha_n\}$

$$\mathcal{M}(f) = \prod_{i=1} \max\{1, |lpha_i|\} = \prod_{|lpha_i| \geq 1} |lpha_i|.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ − のへで

Let $f: S^1 \to \mathbb{R}$ be a continuous function. The quantity

$$M(f) = \exp\left(\int_{S^1} \log |f(z)| d\lambda(z)\right)$$

has properties of a formal determinant of f.

If
$$f(z) = (z - \alpha_1)(z - \alpha_2) \cdots (z - \alpha_n)$$
 is a polynomial, then
$$M(f) = \prod_{i=1}^n \max\{1, |\alpha_i|\} = \prod_{|\alpha_i| \ge 1} |\alpha_i|.$$

The number M(f) is called the Mahler measure of the function f.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

We can view f as a multiplication operator

$$M_f: L^2(S^1, \lambda) \to L^2(S^1, \lambda).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We can view f as a multiplication operator

$$M_f: L^2(S^1, \lambda) \to L^2(S^1, \lambda).$$

Consider the Fourier isomorphism $L^2(S^1, \lambda) \cong \ell^2 \mathbb{Z}$, where we view $\xi \in \ell^2 \mathbb{Z}$ as the function $\sum_{k \in \mathbb{Z}} \xi_k z^k$ on S^1 .

We can view f as a multiplication operator

$$M_f: L^2(S^1, \lambda) \to L^2(S^1, \lambda).$$

Consider the Fourier isomorphism $L^2(S^1, \lambda) \cong \ell^2 \mathbb{Z}$, where we view $\xi \in \ell^2 \mathbb{Z}$ as the function $\sum_{k \in \mathbb{Z}} \xi_k z^k$ on S^1 .

On $\ell^2\mathbb{Z}$, the operator M_f has matrix coefficients

$$M_f = \begin{pmatrix} \ddots & \ddots & \ddots & \ddots & \ddots \\ \ddots & a_0 & a_1 & a_2 & \ddots \\ \ddots & a_{-1} & a_0 & a_1 & \ddots \\ \ddots & a_{-2} & a_{-1} & a_0 & \ddots \\ \ddots & \ddots & \ddots & \ddots & \ddots \end{pmatrix},$$

We can view f as a multiplication operator

$$M_f: L^2(S^1, \lambda) \to L^2(S^1, \lambda).$$

Consider the Fourier isomorphism $L^2(S^1, \lambda) \cong \ell^2 \mathbb{Z}$, where we view $\xi \in \ell^2 \mathbb{Z}$ as the function $\sum_{k \in \mathbb{Z}} \xi_k z^k$ on S^1 .

On $\ell^2\mathbb{Z}$, the operator M_f has matrix coefficients

$$M_f = \begin{pmatrix} \ddots & \ddots & \ddots & \ddots & \ddots \\ \ddots & a_0 & a_1 & a_2 & \ddots \\ \ddots & a_{-1} & a_0 & a_1 & \ddots \\ \ddots & a_{-2} & a_{-1} & a_0 & \ddots \\ \ddots & \ddots & \ddots & \ddots & \ddots \end{pmatrix}, \quad a_k = \int_{S^1} f(z) z^{-k} d\lambda(z).$$

We consider the matrix

$$D_{f}^{(n+1)} := egin{pmatrix} a_{0} & a_{1} & \dots & a_{n-1} & a_{n} \ a_{-1} & a_{0} & a_{1} & \ddots & a_{n-1} \ dots & a_{-1} & a_{0} & \ddots & dots \ a_{-n+1} & \ddots & \ddots & \ddots & a_{1} \ a_{-n} & a_{-n+1} & \dots & a_{-1} & a_{0} \end{pmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

If $f \ge 0$, then $D_f^{(n)}$ is positive semi-definite.

Let $f: S^1 \to \mathbb{R}$ be a positive and continuous function.

Let $f: S^1 \to \mathbb{R}$ be a positive and continuous function. Then,

$$\lim_{n o\infty} \det(D_f^{(n)})^{1/n} = \exp\left(\int_{\mathcal{S}^1} \log f(z) d\lambda(z)
ight).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let $f\colon S^1\to \mathbb{R}$ be a positive and continuous function. Then,

$$\lim_{n\to\infty} \det(D_f^{(n)})^{1/n} = \exp\left(\int_{S^1} \log f(z) d\lambda(z)\right)$$

The restrictions on f have been removed over the years.

Barry Simon showed that the corresponding result holds for all $f: S^1 \to \mathbb{R}$ measurable, essentially bounded and non-negative.

Let $f\colon S^1\to \mathbb{R}$ be a positive and continuous function. Then,

$$\lim_{n o \infty} \det(D_f^{(n)})^{1/n} = \exp\left(\int_{S^1} \log f(z) d\lambda(z)
ight).$$

The restrictions on f have been removed over the years.

Barry Simon showed that the corresponding result holds for all $f: S^1 \to \mathbb{R}$ measurable, essentially bounded and non-negative.

AIM: We want to generalize Simon's result to a non-commutative setting.

Let $f\colon S^1\to \mathbb{R}$ be a positive and continuous function. Then,

$$\lim_{n o \infty} \det(D_f^{(n)})^{1/n} = \exp\left(\int_{\mathcal{S}^1} \log f(z) d\lambda(z)
ight).$$

The restrictions on f have been removed over the years.

Barry Simon showed that the corresponding result holds for all $f: S^1 \to \mathbb{R}$ measurable, essentially bounded and non-negative.

AIM: We want to generalize Simon's result to a non-commutative setting. This possibility was suggested by Deninger 2005.

(4日) (個) (目) (目) (目) (の)

Definition

A group Γ is called amenable if for every finite set ${\it S} \subset \Gamma$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition

A group Γ is called amenable if for every finite set $S\subset \Gamma$ and every $\varepsilon>0,$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition

A group Γ is called amenable if for every finite set $S \subset \Gamma$ and every $\varepsilon > 0$, there exists a finite set $F \subset \Gamma$,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Definition

A group Γ is called amenable if for every finite set $S \subset \Gamma$ and every $\varepsilon > 0$, there exists a finite set $F \subset \Gamma$, such that

 $|SF| < (1+\varepsilon)|F|.$

Definition

A group Γ is called amenable if for every finite set $S \subset \Gamma$ and every $\varepsilon > 0$, there exists a finite set $F \subset \Gamma$, such that

$$|SF| < (1 + \varepsilon)|F|.$$

The set F is called a (S, ε) -Følner set.

Definition

A group Γ is called amenable if for every finite set $S \subset \Gamma$ and every $\varepsilon > 0$, there exists a finite set $F \subset \Gamma$, such that

$$|SF| < (1 + \varepsilon)|F|.$$

The set F is called a (S, ε) -Følner set.

Example

The groups \mathbb{Z}^d are easily seen to be amenable. Nilpotent and solvable groups are amenable.

Definition

A group Γ is called amenable if for every finite set $S \subset \Gamma$ and every $\varepsilon > 0$, there exists a finite set $F \subset \Gamma$, such that

```
|SF| < (1+\varepsilon)|F|.
```

The set F is called a (S, ε) -Følner set.

Example

The groups \mathbb{Z}^d are easily seen to be amenable. Nilpotent and solvable groups are amenable.

For a function φ defined on all finite subsets of Γ ,

Definition

A group Γ is called amenable if for every finite set $S \subset \Gamma$ and every $\varepsilon > 0$, there exists a finite set $F \subset \Gamma$, such that

$$|SF| < (1 + \varepsilon)|F|.$$

The set F is called a (S, ε) -Følner set.

Example

The groups \mathbb{Z}^d are easily seen to be amenable. Nilpotent and solvable groups are amenable.

For a function φ defined on all finite subsets of Γ , we write

$$\lim_{F\to\infty}\varphi(F)$$

to denote the limit of φ as F becomes more and more invariant.

The group von Neumann algebra

The group von Neumann algebra

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Let Γ be a group.
Let Γ be a group. Then $\ell^2\Gamma$ denotes the Hilbert space with orthonormal basis $\{\delta_g \mid g \in \Gamma\}$,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Let Γ be a group. Then $\ell^2\Gamma$ denotes the Hilbert space with orthonormal basis $\{\delta_g \mid g \in \Gamma\}$, and let $\lambda \colon \Gamma \to U(\ell^2\Gamma)$ denote the left-regular representation

$$\lambda(g)\delta_h = \delta_{gh}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let Γ be a group. Then $\ell^2\Gamma$ denotes the Hilbert space with orthonormal basis $\{\delta_g \mid g \in \Gamma\}$, and let $\lambda \colon \Gamma \to U(\ell^2\Gamma)$ denote the left-regular representation

$$\lambda(g)\delta_h = \delta_{gh}.$$

We define the group von Neumann algebra of Γ

$$L\Gamma := \overline{\operatorname{span}\{\lambda(g) \mid g \in \Gamma\}}^{SOT}$$

Let Γ be a group. Then $\ell^2\Gamma$ denotes the Hilbert space with orthonormal basis $\{\delta_g \mid g \in \Gamma\}$, and let $\lambda \colon \Gamma \to U(\ell^2\Gamma)$ denote the left-regular representation

$$\lambda(g)\delta_h = \delta_{gh}.$$

We define the group von Neumann algebra of Γ

$$L\Gamma := \overline{\operatorname{span}\{\lambda(g) \mid g \in \Gamma\}}^{SOT}$$

and note that $\tau\colon \mathit{L}\Gamma\to\mathbb{C}$ given by

$$\tau(a) := \langle a \delta_e, \delta_e \rangle$$

Let Γ be a group. Then $\ell^2\Gamma$ denotes the Hilbert space with orthonormal basis $\{\delta_g \mid g \in \Gamma\}$, and let $\lambda \colon \Gamma \to U(\ell^2\Gamma)$ denote the left-regular representation

$$\lambda(g)\delta_h = \delta_{gh}.$$

We define the group von Neumann algebra of Γ

$$L\Gamma := \overline{\operatorname{span}\{\lambda(g) \mid g \in \Gamma\}}^{SOT}$$

and note that $\tau\colon \mathit{L}\Gamma\to\mathbb{C}$ given by

$$\tau(a) := \langle a \delta_e, \delta_e \rangle$$

defines a unital, positive, faithful trace on $L\Gamma$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

For each self-adjoint element $a \in L\Gamma$,

For each self-adjoint element $a \in L\Gamma$, we define the *spectral* measure of a to be the unique probability measure on \mathbb{R} ,

For each self-adjoint element $a \in L\Gamma$, we define the *spectral* measure of a to be the unique probability measure on \mathbb{R} , such that

$$au({\it p}({\it a})) = \int_{\mathbb{R}} {\it p}(t) d\mu_{{\it a}}(t)$$

for all polynomials $p \in \mathbb{C}[t]$.

For each self-adjoint element $a \in L\Gamma$, we define the *spectral* measure of a to be the unique probability measure on \mathbb{R} , such that

$$au(p(a)) = \int_{\mathbb{R}} p(t) d\mu_a(t)$$

for all polynomials $p \in \mathbb{C}[t]$.

It is a basic fact that $a\geq 0$ if and only if the support of μ_a is in $\mathbb{R}_{\geq 0}$

For each self-adjoint element $a \in L\Gamma$, we define the *spectral* measure of a to be the unique probability measure on \mathbb{R} , such that

$$au(p(a)) = \int_{\mathbb{R}} p(t) d\mu_{a}(t)$$

for all polynomials $p \in \mathbb{C}[t]$.

It is a basic fact that $a \ge 0$ if and only if the support of μ_a is in $\mathbb{R}_{\ge 0}$ and ker (a) = 0 if and only if $\mu_a(\{0\}) = 0$.

For each self-adjoint element $a \in L\Gamma$, we define the *spectral* measure of a to be the unique probability measure on \mathbb{R} , such that

$$au(p(a)) = \int_{\mathbb{R}} p(t) d\mu_{a}(t)$$

for all polynomials $p \in \mathbb{C}[t]$.

It is a basic fact that $a \ge 0$ if and only if the support of μ_a is in $\mathbb{R}_{\ge 0}$ and ker (a) = 0 if and only if $\mu_a(\{0\}) = 0$.

We can think about μ_a as the distribution of eigenvalues of the operator $a \in B(\ell^2 \Gamma)$.

(ロ)、(型)、(E)、(E)、 E) の(の)

Let Γ be a group and $a \in L\Gamma$.

Let Γ be a group and $a \in L\Gamma$. We define the Fuglede-Kadison determinant of a with the formula

$${
m det}_{\sf \Gamma}({\it a}):=\exp\left(\int_0^\infty {\it log}(t)d\mu_{|{\it a}|}(t)
ight)\in [0,\infty].$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let Γ be a group and $a \in L\Gamma$. We define the Fuglede-Kadison determinant of a with the formula

$${
m det}_{\sf \Gamma}({\it a}):=\exp\left(\int_0^\infty {\it log}(t)d\mu_{|{\it a}|}(t)
ight)\in [0,\infty].$$

Alternatively:

$$\det_{\Gamma}(a) = \inf_{p>0} \|a\|_p.$$

Let Γ be a group and $a \in L\Gamma$. We define the Fuglede-Kadison determinant of a with the formula

$${
m det}_{\sf \Gamma}({\it a}):=\exp\left(\int_0^\infty {\it log}(t)d\mu_{|{\it a}|}(t)
ight)\in [0,\infty].$$

Alternatively:

$$\det_{\Gamma}(a) = \inf_{p>0} \|a\|_p.$$

Example

 $\Gamma = \mathbb{Z}.$

Let Γ be a group and $a \in L\Gamma$. We define the Fuglede-Kadison determinant of a with the formula

$$\det_{\mathsf{\Gamma}}(\mathsf{a}) := \exp\left(\int_0^\infty \log(t) d\mu_{|\mathsf{a}|}(t)
ight) \in [0,\infty].$$

Alternatively:

$$\det_{\Gamma}(a) = \inf_{p>0} \|a\|_p.$$

Example

 $\Gamma=\mathbb{Z}.$ Then $L\mathbb{Z}=L^\infty(S^1)$ via the Fourier transform

Let Γ be a group and $a \in L\Gamma$. We define the Fuglede-Kadison determinant of a with the formula

$${
m det}_{\sf \Gamma}({\it a}):=\exp\left(\int_0^\infty {\it log}(t)d\mu_{|{\it a}|}(t)
ight)\in [0,\infty].$$

Alternatively:

$$\det_{\mathsf{\Gamma}}(a) = \inf_{p>0} \|a\|_p.$$

Example

 $\Gamma=\mathbb{Z}.$ Then $L\mathbb{Z}=L^\infty(S^1)$ via the Fourier transform and for $f\in L^\infty(S^1)$

Let Γ be a group and $a \in L\Gamma$. We define the Fuglede-Kadison determinant of a with the formula

$${
m det}_{\sf \Gamma}({\it a}):=\exp\left(\int_0^\infty {\it log}(t)d\mu_{|{\it a}|}(t)
ight)\in [0,\infty].$$

Alternatively:

$$\det_{\mathsf{\Gamma}}(a) = \inf_{p>0} \|a\|_p.$$

Example

 $\Gamma = \mathbb{Z}$. Then $L\mathbb{Z} = L^\infty(S^1)$ via the Fourier transform and for $f \in L^\infty(S^1)$

$$\det_{\mathbb{Z}}(f) = \exp\left(\int_{S^1} \log |f(z)| d\lambda(z)\right).$$

Hermann Minkowski (1864-1909)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let $K \subset \ell^{\infty}(\Gamma)^d$ be a bounded,

Let $K \subset \ell^{\infty}(\Gamma)^d$ be a bounded, convex,

Let $K \subset \ell^{\infty}(\Gamma)^d$ be a bounded, convex, and Γ -invariant subset

(ロ)、(型)、(E)、(E)、 E) の(の)

Let $K \subset \ell^{\infty}(\Gamma)^d$ be a bounded, convex, and Γ -invariant subset and denote for $F \subset \Gamma$ by K_F the projection of F onto $\ell^{\infty}(F)^d$.

Let $K \subset \ell^{\infty}(\Gamma)^d$ be a bounded, convex, and Γ -invariant subset and denote for $F \subset \Gamma$ by K_F the projection of F onto $\ell^{\infty}(F)^d$. We set:

$$\operatorname{size}(K) := \lim_{F} \operatorname{vol}(K_F)^{1/|F|}$$

Let $K \subset \ell^{\infty}(\Gamma)^d$ be a bounded, convex, and Γ -invariant subset and denote for $F \subset \Gamma$ by K_F the projection of F onto $\ell^{\infty}(F)^d$. We set:

```
\operatorname{size}(K) := \lim_{F} \operatorname{vol}(K_F)^{1/|F|}.
```

Theorem (Brunn-Minkowski)

Let $K \subset \ell^{\infty}(\Gamma)^d$ be a bounded, convex, and Γ -invariant subset and denote for $F \subset \Gamma$ by K_F the projection of F onto $\ell^{\infty}(F)^d$. We set:

```
\operatorname{size}(K) := \lim_{F} \operatorname{vol}(K_F)^{1/|F|}.
```

Theorem (Brunn-Minkowski) $size(K + L) \ge size(K) + size(L)$.

Let $K \subset \ell^{\infty}(\Gamma)^d$ be a bounded, convex, and Γ -invariant subset and denote for $F \subset \Gamma$ by K_F the projection of F onto $\ell^{\infty}(F)^d$. We set:

```
\operatorname{size}(K) := \lim_{F} \operatorname{vol}(K_F)^{1/|F|}.
```

```
Theorem (Brunn-Minkowski)
size(K + L) \geq size(K) + size(L).
Question
```

1. For $f \in \mathbb{R}\Gamma$,

Let $K \subset \ell^{\infty}(\Gamma)^d$ be a bounded, convex, and Γ -invariant subset and denote for $F \subset \Gamma$ by K_F the projection of F onto $\ell^{\infty}(F)^d$. We set:

```
\operatorname{size}(K) := \lim_{F} \operatorname{vol}(K_F)^{1/|F|}.
```

```
Theorem (Brunn-Minkowski)
size(K + L) \geq size(K) + size(L).
```

Question

1. For $f \in \mathbb{R}\Gamma$, how are the volume of K and $Kf = \{xf \mid x \in K\}$ related?

Let $K \subset \ell^{\infty}(\Gamma)^d$ be a bounded, convex, and Γ -invariant subset and denote for $F \subset \Gamma$ by K_F the projection of F onto $\ell^{\infty}(F)^d$. We set:

```
\operatorname{size}(K) := \lim_{F} \operatorname{vol}(K_F)^{1/|F|}.
```

```
Theorem (Brunn-Minkowski)
size(K + L) \geq size(K) + size(L).
```

Question

1. For $f \in \mathbb{R}\Gamma$, how are the volume of K and $Kf = \{xf \mid x \in K\}$ related?

2. For $f \in \mathbb{R}\Gamma$, what is the covolume of $\ell^{\infty}(\Gamma, \mathbb{Z}) \cdot f \subset \ell^{\infty}(\Gamma)$?

Let $K \subset \ell^{\infty}(\Gamma)^d$ be a bounded, convex, and Γ -invariant subset and denote for $F \subset \Gamma$ by K_F the projection of F onto $\ell^{\infty}(F)^d$. We set:

```
\operatorname{size}(K) := \lim_{F} \operatorname{vol}(K_F)^{1/|F|}.
```

```
Theorem (Brunn-Minkowski) size(K + L) \ge size(K) + size(L).
```

Question

- 1. For $f \in \mathbb{R}\Gamma$, how are the volume of K and $Kf = \{xf \mid x \in K\}$ related?
- 2. For $f \in \mathbb{R}\Gamma$, what is the covolume of $\ell^{\infty}(\Gamma, \mathbb{Z}) \cdot f \subset \ell^{\infty}(\Gamma)$?
- For f ∈ ZΓ, how is the covolume of l[∞](Γ, Z) · f related to the "size" of ZΓ/ZΓf?

Minkowski's theorem

Minkowski's theorem

Theorem (T.) Let $f \in \mathbb{Z}\Gamma$. The covolume of $\ell^{\infty}(\Gamma, \mathbb{Z}) \cdot f$ is equal to $\det_{\Gamma}(f)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Minkowski's theorem

Theorem (T.) Let $f \in \mathbb{Z}\Gamma$. The covolume of $\ell^{\infty}(\Gamma, \mathbb{Z}) \cdot f$ is equal to $\det_{\Gamma}(f)$. Theorem (Minkowski) Let $f \in \mathbb{Z}\Gamma$ be arbitrary.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <
Minkowski's theorem

Theorem (T.) Let $f \in \mathbb{Z}\Gamma$. The covolume of $\ell^{\infty}(\Gamma, \mathbb{Z}) \cdot f$ is equal to $\det_{\Gamma}(f)$. Theorem (Minkowski) Let $f \in \mathbb{Z}\Gamma$ be arbitrary. Every weakly closed, symmetric, convex subset of $\ell^{\infty}(\Gamma)$ with

 $\operatorname{size}(K) > 2 \cdot \operatorname{det}_{\Gamma}(f)$

Minkowski's theorem

Theorem (T.) Let $f \in \mathbb{Z}\Gamma$. The covolume of $\ell^{\infty}(\Gamma, \mathbb{Z}) \cdot f$ is equal to $\det_{\Gamma}(f)$. Theorem (Minkowski) Let $f \in \mathbb{Z}\Gamma$ be arbitrary. Every weakly closed, symmetric, convex

subset of $\ell^{\infty}(\Gamma)$ with

 $\operatorname{size}(K) > 2 \cdot \operatorname{det}_{\Gamma}(f)$

contains some non-zero element of $\ell^{\infty}(\Gamma, \mathbb{Z}) \cdot f$.

Let $F \subset \Gamma$ be a finite subset and $a \in B(\ell^2 \Gamma)$.

Let $F \subset \Gamma$ be a finite subset and $a \in B(\ell^2 \Gamma)$. We denote by a_F the compression of a to $\ell^2 F$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let $F \subset \Gamma$ be a finite subset and $a \in B(\ell^2 \Gamma)$. We denote by a_F the compression of a to $\ell^2 F$.

Theorem (Li-T.)

Let Γ be an amenable group and $a \in L\Gamma$ positive.

Let $F \subset \Gamma$ be a finite subset and $a \in B(\ell^2 \Gamma)$. We denote by a_F the compression of a to $\ell^2 F$.

Theorem (Li-T.)

Let Γ be an amenable group and $a\in L\Gamma$ positive. Then,

$$\det_{\Gamma}(a) = \lim_{F \to \infty} \det(a_F)^{\frac{1}{|F|}}.$$

Let $F \subset \Gamma$ be a finite subset and $a \in B(\ell^2 \Gamma)$. We denote by a_F the compression of a to $\ell^2 F$.

Theorem (Li-T.)

Let Γ be an amenable group and $a\in L\Gamma$ positive. Then,

$$\det_{\mathsf{\Gamma}}(a) = \lim_{F \to \infty} \det(a_F)^{\frac{1}{|F|}}.$$

This was conjectured by Deninger and only known in special cases and for strictly positive elements in $L\Gamma$.

Lemma (Gantmacher-Kreĭn) Let X and Y be finite sets.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lemma (Gantmacher-Kreĭn)

Let X and Y be finite sets. Let $g \in B(\ell^2(X \cup Y))$ be positive and invertible.

Lemma (Gantmacher-Kreĭn)

Let X and Y be finite sets. Let $g \in B(\ell^2(X \cup Y))$ be positive and invertible. Then:

 $\det(g_{X\cup Y}) \cdot \det(g_{X\cap Y}) \leq \det(g_X) \cdot \det(g_Y).$

Lemma (Gantmacher-Kreĭn)

Let X and Y be finite sets. Let $g \in B(\ell^2(X \cup Y))$ be positive and invertible. Then:

$$\det(g_{X\cup Y}) \cdot \det(g_{X\cap Y}) \leq \det(g_X) \cdot \det(g_Y).$$

Lemma (Moulin Ollagnier)

Let φ be a \mathbb{R} -valued function defined on finite subsets of Γ , such that

Lemma (Gantmacher-Kreĭn)

Let X and Y be finite sets. Let $g \in B(\ell^2(X \cup Y))$ be positive and invertible. Then:

$$\det(g_{X\cup Y}) \cdot \det(g_{X\cap Y}) \leq \det(g_X) \cdot \det(g_Y).$$

Lemma (Moulin Ollagnier)

Let φ be a \mathbb{R} -valued function defined on finite subsets of Γ , such that

1.
$$\varphi(\emptyset) = 0$$
 and $\varphi(Fs) = \varphi(F)$ for all F and $s \in \Gamma$,

Lemma (Gantmacher-Kreĭn)

Let X and Y be finite sets. Let $g \in B(\ell^2(X \cup Y))$ be positive and invertible. Then:

$$\det(g_{X\cup Y}) \cdot \det(g_{X\cap Y}) \leq \det(g_X) \cdot \det(g_Y).$$

Lemma (Moulin Ollagnier)

Let φ be a \mathbb{R} -valued function defined on finite subsets of Γ , such that

1.
$$\varphi(\emptyset) = 0$$
 and $\varphi(Fs) = \varphi(F)$ for all F and $s \in \Gamma$,

2.
$$\varphi(F_1 \cup F_2) + \varphi(F_1 \cap F_2) \leq \varphi(F_1) + \varphi(F_2)$$
 for all F_1, F_2 .

Lemma (Gantmacher-Kreĭn)

Let X and Y be finite sets. Let $g \in B(\ell^2(X \cup Y))$ be positive and invertible. Then:

$$\det(g_{X\cup Y}) \cdot \det(g_{X\cap Y}) \leq \det(g_X) \cdot \det(g_Y).$$

Lemma (Moulin Ollagnier)

Let φ be a \mathbb{R} -valued function defined on finite subsets of Γ , such that

1.
$$\varphi(\emptyset) = 0$$
 and $\varphi(Fs) = \varphi(F)$ for all F and $s \in \Gamma$,

2. $\varphi(F_1 \cup F_2) + \varphi(F_1 \cap F_2) \leq \varphi(F_1) + \varphi(F_2)$ for all F_1, F_2 .

Then

$$\lim_{F} \frac{\varphi(F)}{|F|} = \inf_{F} \frac{\varphi(F)}{|F|}.$$

Entropy

Andrei Kolmogorov (1903-1987)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let (X, μ) be a standard probability measure space

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Let (X, μ) be a standard probability measure space and $P = \{P_1, \dots, P_n\}$ be a finite partition of X.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let (X, μ) be a standard probability measure space and $P = \{P_1, \ldots, P_n\}$ be a finite partition of X. The Shannon entropy of P is defined to be

$$H(P) = -\sum_{i=1}^{n} \mu(P_i) \log \mu(P_i).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let (X, μ) be a standard probability measure space and $P = \{P_1, \ldots, P_n\}$ be a finite partition of X. The Shannon entropy of P is defined to be

$$H(P) = -\sum_{i=1}^n \mu(P_i) \log \mu(P_i).$$

H(P) is the expected amount of information (counted in bits) an observer obtains when it is revealed that a random point belongs to some set in the partition.

Let (X, μ) be a standard probability measure space and $P = \{P_1, \ldots, P_n\}$ be a finite partition of X. The Shannon entropy of P is defined to be

$$H(P) = -\sum_{i=1}^{n} \mu(P_i) \log \mu(P_i).$$

H(P) is the expected amount of information (counted in bits) an observer obtains when it is revealed that a random point belongs to some set in the partition.

Example

Consider the partition $[0,1] = [0,1/4) \cup [1/4,1/2) \cup [1/2,1].$

Let (X, μ) be a standard probability measure space and $P = \{P_1, \ldots, P_n\}$ be a finite partition of X. The Shannon entropy of P is defined to be

$$H(P) = -\sum_{i=1}^{n} \mu(P_i) \log \mu(P_i).$$

H(P) is the expected amount of information (counted in bits) an observer obtains when it is revealed that a random point belongs to some set in the partition.

Example

Consider the partition $[0,1] = [0,1/4) \cup [1/4,1/2) \cup [1/2,1]$. For points in [1/2,1] one bit is revealed, whereas for points in [0,1/2), two bits are revealed. Hence, H = 3/2; using log = log₂.

Let (X, μ) be a probability measure space and $P = \{P_1, \dots, P_n\}$ be a finite partition of X.

Let (X, μ) be a probability measure space and $P = \{P_1, \ldots, P_n\}$ be a finite partition of X. Let Γ act on (X, μ) by measure preserving transformations.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let (X, μ) be a probability measure space and $P = \{P_1, \ldots, P_n\}$ be a finite partition of X. Let Γ act on (X, μ) by measure preserving transformations. For $g \in \Gamma$, we denote by P^g the partition $\{g^{-1}P_1, \ldots, g^{-1}P_n\}$.

Let (X, μ) be a probability measure space and $P = \{P_1, \ldots, P_n\}$ be a finite partition of X. Let Γ act on (X, μ) by measure preserving transformations. For $g \in \Gamma$, we denote by P^g the partition $\{g^{-1}P_1, \ldots, g^{-1}P_n\}$. For $F \subset \Gamma$ finite, we set

$$P^F = \bigvee_{g \in F} P^g$$

Let (X, μ) be a probability measure space and $P = \{P_1, \ldots, P_n\}$ be a finite partition of X. Let Γ act on (X, μ) by measure preserving transformations. For $g \in \Gamma$, we denote by P^g the partition $\{g^{-1}P_1, \ldots, g^{-1}P_n\}$. For $F \subset \Gamma$ finite, we set

$$P^F = \bigvee_{g \in F} P^g$$

We define:

$$h(\Gamma \frown X, P) := \lim_{F \to \infty} \frac{H(P^F)}{|F|}.$$

Let (X, μ) be a probability measure space and $P = \{P_1, \ldots, P_n\}$ be a finite partition of X. Let Γ act on (X, μ) by measure preserving transformations. For $g \in \Gamma$, we denote by P^g the partition $\{g^{-1}P_1, \ldots, g^{-1}P_n\}$. For $F \subset \Gamma$ finite, we set

$$P^F = \bigvee_{g \in F} P^g$$

We define:

$$h(\Gamma \frown X, P) := \lim_{F \to \infty} \frac{H(P^F)}{|F|}.$$

We set:

$$h(\Gamma \frown X) := \sup_{P} h(\Gamma \frown X, P).$$

Let (X, μ) be a probability measure space and $P = \{P_1, \ldots, P_n\}$ be a finite partition of X. Let Γ act on (X, μ) by measure preserving transformations. For $g \in \Gamma$, we denote by P^g the partition $\{g^{-1}P_1, \ldots, g^{-1}P_n\}$. For $F \subset \Gamma$ finite, we set

$$P^F = \bigvee_{g \in F} P^g$$

We define:

$$h(\Gamma \frown X, P) := \lim_{F \to \infty} \frac{H(P^F)}{|F|}.$$

We set:

$$h(\Gamma \frown X) := \sup_{P} h(\Gamma \frown X, P).$$

Kolmogorov showed that one P is enough if P is generating.

Let Γ be an amenable group and M be a left countable $\mathbb{Z}\Gamma$ -module.

Let Γ be an amenable group and M be a left countable $\mathbb{Z}\Gamma$ -module. The Pontrjagin dual of M is denoted by \widehat{M} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let Γ be an amenable group and M be a left countable $\mathbb{Z}\Gamma$ -module. The Pontrjagin dual of M is denoted by \widehat{M} . It is a compact abelian group, and Γ acts on it preserving the Haar measure.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let Γ be an amenable group and M be a left countable $\mathbb{Z}\Gamma$ -module. The Pontrjagin dual of M is denoted by \widehat{M} . It is a compact abelian group, and Γ acts on it preserving the Haar measure.

Question

What can one say about $h(\Gamma \frown \widehat{M})$?

Let Γ be an amenable group and M be a left countable $\mathbb{Z}\Gamma$ -module. The Pontrjagin dual of M is denoted by \widehat{M} . It is a compact abelian group, and Γ acts on it preserving the Haar measure.

Question

What can one say about $h(\Gamma \frown \widehat{M})$?

This is already very interesting for $M = \mathbb{Z}\Gamma/\mathbb{Z}\Gamma f$ for some $f \in \mathbb{Z}\Gamma$.

Let Γ be an amenable group and M be a left countable $\mathbb{Z}\Gamma$ -module. The Pontrjagin dual of M is denoted by \widehat{M} . It is a compact abelian group, and Γ acts on it preserving the Haar measure.

Question

What can one say about $h(\Gamma \frown \widehat{M})$?

This is already very interesting for $M = \mathbb{Z}\Gamma/\mathbb{Z}\Gamma f$ for some $f \in \mathbb{Z}\Gamma$. The correponding action is denoted by $\Gamma \curvearrowright X_f$ and called *principal algebraic action*.
Algebraic actions

Let Γ be an amenable group and M be a left countable $\mathbb{Z}\Gamma$ -module. The Pontrjagin dual of M is denoted by \widehat{M} . It is a compact abelian group, and Γ acts on it preserving the Haar measure.

Question

What can one say about $h(\Gamma \frown \widehat{M})$?

This is already very interesting for $M = \mathbb{Z}\Gamma/\mathbb{Z}\Gamma f$ for some $f \in \mathbb{Z}\Gamma$. The correponding action is denoted by $\Gamma \curvearrowright X_f$ and called *principal algebraic action*. This question has a long history for $\Gamma = \mathbb{Z}^d$.

Algebraic actions

Let Γ be an amenable group and M be a left countable $\mathbb{Z}\Gamma$ -module. The Pontrjagin dual of M is denoted by \widehat{M} . It is a compact abelian group, and Γ acts on it preserving the Haar measure.

Question

What can one say about $h(\Gamma \frown \widehat{M})$?

This is already very interesting for $M = \mathbb{Z}\Gamma/\mathbb{Z}\Gamma f$ for some $f \in \mathbb{Z}\Gamma$. The correponding action is denoted by $\Gamma \curvearrowright X_f$ and called *principal algebraic action*. This question has a long history for $\Gamma = \mathbb{Z}^d$.

A programme to study the question above for principal algebraic actions in the non-commutative case was started by Deninger in 2005.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへの

Theorem (Li-T.) Let $f \in \mathbb{Z}\Gamma$ be a non-zero divisor. Then

 $h(\Gamma \frown X_f) = \log \det_{\Gamma}(f).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theorem (Li-T.) Let $f \in \mathbb{Z}\Gamma$ be a non-zero divisor. Then

$$h(\Gamma \frown X_f) = \log \det_{\Gamma}(f).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

This was shown for

Theorem (Li-T.) Let $f \in \mathbb{Z}\Gamma$ be a non-zero divisor. Then

$$h(\Gamma \frown X_f) = \log \det_{\Gamma}(f).$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

This was shown for

- F = ℤ by Yuzvinskiĭ,
- $\Gamma = \mathbb{Z}^d$ by Lind-Schmidt-Ward,

Theorem (Li-T.) Let $f \in \mathbb{Z}\Gamma$ be a non-zero divisor. Then

$$h(\Gamma \curvearrowright X_f) = \log \det_{\Gamma}(f).$$

This was shown for

- F = ℤ by Yuzvinskiĭ,
- $\Gamma = \mathbb{Z}^d$ by Lind-Schmidt-Ward,
- for general Γ (with additional constraints) by Deninger und Deninger-Schmidt if f is invertible in l¹Γ, and

Theorem (Li-T.) Let $f \in \mathbb{Z}\Gamma$ be a non-zero divisor. Then

$$h(\Gamma \curvearrowright X_f) = \log \det_{\Gamma}(f).$$

This was shown for

- F = ℤ by Yuzvinskiĭ,
- $\Gamma = \mathbb{Z}^d$ by Lind-Schmidt-Ward,
- for general Γ (with additional constraints) by Deninger und Deninger-Schmidt if f is invertible in l¹Γ, and

• by Li in general if f is invertible in $L\Gamma$.

<□▶ < @▶ < @▶ < @▶ < @▶ < @ > @ < のQ @</p>

For any positive $g \in L\Gamma$, $F \subset \Gamma$ finite, and $\kappa > 0$,

For any positive $g \in L\Gamma$, $F \subset \Gamma$ finite, and $\kappa > 0$, we denote by $D_{g,F,\kappa}$ the product of the eigenvalues of g_F in the interval $(0,\kappa]$ counted with multiplicity.

For any positive $g \in L\Gamma$, $F \subset \Gamma$ finite, and $\kappa > 0$, we denote by $D_{g,F,\kappa}$ the product of the eigenvalues of g_F in the interval $(0,\kappa]$ counted with multiplicity.

Proposition

Let $g \in L\Gamma$ be positive such that $\det_{\Gamma} g > 0$. Let $\lambda > 1$. Then there exists $0 < \kappa < \min(1, ||g||)$ such that

$$\limsup_{F} (D_{g,F,\kappa})^{-\frac{1}{|F|}} \leq \lambda.$$

For any positive $g \in L\Gamma$, $F \subset \Gamma$ finite, and $\kappa > 0$, we denote by $D_{g,F,\kappa}$ the product of the eigenvalues of g_F in the interval $(0,\kappa]$ counted with multiplicity.

Proposition

Let $g \in L\Gamma$ be positive such that $\det_{\Gamma} g > 0$. Let $\lambda > 1$. Then there exists $0 < \kappa < \min(1, ||g||)$ such that

$$\limsup_{F} (D_{g,F,\kappa})^{-\frac{1}{|F|}} \leq \lambda.$$

Refined techniques from:

H. Li. Compact group automorphisms, addition formulas and Fuglede-Kadison determinants. Ann. of Math. **176** (2012), no. 1, 303-347.

$$\ell^2$$
-Torsion

Michael Atiyah (1920-)

Classification of lens spaces

The use of ℓ^2 -torsion for the finite group $\mathbb{Z}/m\mathbb{Z}$ is classical.

Classification of lens spaces

The use of ℓ^2 -torsion for the finite group $\mathbb{Z}/m\mathbb{Z}$ is classical. Definition (Tietze (1908))

The lens spaces are the closed oriented 3-dimensional manifolds

$$L(m,n) = \left\{ (a,b) \in \mathbb{C}^2 ||a|^2 + |b|^2 = 1
ight\} / (a,b) \sim (\zeta a, \zeta nb),$$

with $\zeta = \exp(\frac{2\pi i}{m})$ a primitive *m*-th root of unity, and *m*, *n* coprime.

Classification of lens spaces

The use of ℓ^2 -torsion for the finite group $\mathbb{Z}/m\mathbb{Z}$ is classical. Definition (Tietze (1908))

The lens spaces are the closed oriented 3-dimensional manifolds

$$L(m,n) = \{(a,b) \in \mathbb{C}^2 ||a|^2 + |b|^2 = 1\} / (a,b) \sim (\zeta a, \zeta nb),$$

with $\zeta = \exp(\frac{2\pi i}{m})$ a primitive *m*-th root of unity, and *m*, *n* coprime. Theorem (Franz, Rueff and Whitehead (1940))

- 1. L(m, n) is homotopy equivalent to L(m, n') iff $n \equiv \pm n'r^2 \mod m$ for some $r \in \mathbb{Z}/m\mathbb{Z}$.
- 2. L(m, n) is homeomorphic to L(m, n') iff $n \equiv \pm n'r^2 \mod m$ for $r \equiv 1$ or $r \equiv n \mod m$.

Let Γ be an amenable group and M be a left $\mathbb{Z}\Gamma$ -module.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Let Γ be an amenable group and M be a left $\mathbb{Z}\Gamma$ -module. We say that M is of type FL, if there exists an exact sequence

$$0 \to \mathbb{Z}\Gamma^{n_k} \xrightarrow{d_k} \cdots \xrightarrow{d_1} \mathbb{Z}\Gamma^{n_0} \to M \to 0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let Γ be an amenable group and M be a left $\mathbb{Z}\Gamma$ -module. We say that M is of type FL, if there exists an exact sequence

$$0 \to \mathbb{Z}\Gamma^{n_k} \xrightarrow{d_k} \cdots \xrightarrow{d_1} \mathbb{Z}\Gamma^{n_0} \to M \to 0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We define $\Delta_i := d_i^* d_i + d_{i+1} d_{i+1}^* \colon \mathbb{Z}\Gamma^{n_i} \to \mathbb{Z}\Gamma^{n_i}$.

Let Γ be an amenable group and M be a left $\mathbb{Z}\Gamma$ -module. We say that M is of type FL, if there exists an exact sequence

$$0 \to \mathbb{Z}\Gamma^{n_k} \xrightarrow{d_k} \cdots \xrightarrow{d_1} \mathbb{Z}\Gamma^{n_0} \to M \to 0.$$

We define $\Delta_i := d_i^* d_i + d_{i+1} d_{i+1}^* \colon \mathbb{Z}\Gamma^{n_i} \to \mathbb{Z}\Gamma^{n_i}$.

An primary numerical invariant of M is its Euler characteristic

$$\chi(M) := \sum_{i=0}^k (-1)^i n_i.$$

Let Γ be an amenable group and M be a left $\mathbb{Z}\Gamma$ -module. We say that M is of type FL, if there exists an exact sequence

$$0 \to \mathbb{Z}\Gamma^{n_k} \xrightarrow{d_k} \cdots \xrightarrow{d_1} \mathbb{Z}\Gamma^{n_0} \to M \to 0.$$

We define $\Delta_i := d_i^* d_i + d_{i+1} d_{i+1}^* \colon \mathbb{Z}\Gamma^{n_i} \to \mathbb{Z}\Gamma^{n_i}$.

An primary numerical invariant of M is its Euler characteristic

$$\chi(M) := \sum_{i=0}^k (-1)^i n_i.$$

If the Euler characteristic vanishes, a secondary invariant can be defined.

Let Γ be an amenable group and M be a left $\mathbb{Z}\Gamma$ -module. We say that M is of type FL, if there exists an exact sequence

$$0 \to \mathbb{Z}\Gamma^{n_k} \xrightarrow{d_k} \cdots \xrightarrow{d_1} \mathbb{Z}\Gamma^{n_0} \to M \to 0.$$

We define $\Delta_i := d_i^* d_i + d_{i+1} d_{i+1}^* \colon \mathbb{Z}\Gamma^{n_i} \to \mathbb{Z}\Gamma^{n_i}$.

An primary numerical invariant of M is its Euler characteristic

$$\chi(M):=\sum_{i=0}^k (-1)^i n_i.$$

If the Euler characteristic vanishes, a secondary invariant can be defined. We define the ℓ^2 -torsion of M to be:

$$\rho^{(2)}(M) := -\frac{1}{2} \sum_{i=0}^k (-1)^i \cdot i \cdot \log \operatorname{det}_{\Gamma}(\Delta_i).$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Theorem (Li-T.)

Let Γ be an amenable group. Let M be a $\mathbb{Z}\Gamma$ -module of type FL with $\chi(M) = 0$. Then,

$$h(\Gamma \curvearrowright \widehat{M}) = \rho^{(2)}(M).$$

Theorem (Li-T.)

Let Γ be an amenable group. Let M be a $\mathbb{Z}\Gamma$ -module of type FL with $\chi(M) = 0$. Then,

$$h(\Gamma \frown \widehat{M}) = \rho^{(2)}(M).$$

If $\chi(M) \neq 0$, then $h(\Gamma \frown \widehat{M}) = \infty$.

Theorem (Li-T.)

Let Γ be an amenable group. Let M be a $\mathbb{Z}\Gamma$ -module of type FL with $\chi(M) = 0$. Then,

$$h(\Gamma \frown \widehat{M}) = \rho^{(2)}(M).$$

If $\chi(M) \neq 0$, then $h(\Gamma \frown \widehat{M}) = \infty$.

Remark

We can now turn everything around and define the torsion of countable $\mathbb{Z}\Gamma$ -module (no matter if it is of type FL or not) to be the entropy of the natural Γ -action on its Pontrjagin dual.

Theorem (Li-T.)

Let Γ be an amenable group. Let M be a $\mathbb{Z}\Gamma$ -module of type FL with $\chi(M) = 0$. Then,

$$h(\Gamma \frown \widehat{M}) = \rho^{(2)}(M).$$

If $\chi(M) \neq 0$, then $h(\Gamma \frown \widehat{M}) = \infty$.

Remark

We can now turn everything around and define the torsion of countable $\mathbb{Z}\Gamma$ -module (no matter if it is of type FL or not) to be the entropy of the natural Γ -action on its Pontrjagin dual.

$$\rho(M) := h(\Gamma \frown \widehat{M}).$$

$\ell^2\text{-torsion}$ of amenable groups

Let Γ be an amenable group.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let Γ be an amenable group. The group Γ has a finite classifying space $B\Gamma$ if and only if the trivial $\mathbb{Z}\Gamma$ -module \mathbb{Z} is of type FL.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let Γ be an amenable group. The group Γ has a finite classifying space $B\Gamma$ if and only if the trivial $\mathbb{Z}\Gamma$ -module \mathbb{Z} is of type FL. The ℓ^2 -torsion of the trivial $\mathbb{Z}\Gamma$ -module \mathbb{Z} is called the ℓ^2 -torsion of the group Γ .

Let Γ be an amenable group. The group Γ has a finite classifying space $B\Gamma$ if and only if the trivial $\mathbb{Z}\Gamma$ -module \mathbb{Z} is of type FL. The ℓ^2 -torsion of the trivial $\mathbb{Z}\Gamma$ -module \mathbb{Z} is called the ℓ^2 -torsion of the group Γ . Note that trivially $h(\Gamma \curvearrowright \widehat{\mathbb{Z}}) = 0$.

Let Γ be an amenable group. The group Γ has a finite classifying space $B\Gamma$ if and only if the trivial $\mathbb{Z}\Gamma$ -module \mathbb{Z} is of type FL. The ℓ^2 -torsion of the trivial $\mathbb{Z}\Gamma$ -module \mathbb{Z} is called the ℓ^2 -torsion of the group Γ . Note that trivially $h(\Gamma \curvearrowright \widehat{\mathbb{Z}}) = 0$. Hence,

Corollary (Li-T.)

Let Γ be an amenable group with a finite classifying space. Then, its ℓ^2 -torsion vanishes.

Let Γ be an amenable group. The group Γ has a finite classifying space $B\Gamma$ if and only if the trivial $\mathbb{Z}\Gamma$ -module \mathbb{Z} is of type FL. The ℓ^2 -torsion of the trivial $\mathbb{Z}\Gamma$ -module \mathbb{Z} is called the ℓ^2 -torsion of the group Γ . Note that trivially $h(\Gamma \curvearrowright \widehat{\mathbb{Z}}) = 0$. Hence,

Corollary (Li-T.)

Let Γ be an amenable group with a finite classifying space. Then, its ℓ^2 -torsion vanishes.

This was conjectured by Lück.

The Milnor-Turaev formula

Let Γ be an amenable group and let C_* be a chain complex of finitely generated $\mathbb{Z}\Gamma$ -modules of finite length.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?
Let Γ be an amenable group and let C_* be a chain complex of finitely generated $\mathbb{Z}\Gamma$ -modules of finite length. We also assume that C_* is ℓ^2 -acyclic,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let Γ be an amenable group and let C_* be a chain complex of finitely generated $\mathbb{Z}\Gamma$ -modules of finite length. We also assume that C_* is ℓ^2 -acyclic, which says morally that $L\Gamma \otimes_{\mathbb{Z}\Gamma} C_*$ is acyclic.

Let Γ be an amenable group and let C_* be a chain complex of finitely generated $\mathbb{Z}\Gamma$ -modules of finite length. We also assume that C_* is ℓ^2 -acyclic, which says morally that $L\Gamma \otimes_{\mathbb{Z}\Gamma} C_*$ is acyclic. We can now define the ℓ^2 -torsion of C_* as before

$$ho^{(2)}(\mathcal{C}_*):=-rac{1}{2}\sum_{i=0}^k (-1)^i\cdot i\cdot \log \operatorname{det}_{\Gamma}(\Delta_i)\in \mathbb{R}$$

One can show that $\rho^{(2)}(C_*)$ depends on C_* only up to homotopy equivalence of chain complexes.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

One can show that $\rho^{(2)}(C_*)$ depends on C_* only up to homotopy equivalence of chain complexes. It is natural to try to express $\rho^{(2)}(C_*)$ in terms of the homology of C_* .

One can show that $\rho^{(2)}(C_*)$ depends on C_* only up to homotopy equivalence of chain complexes. It is natural to try to express $\rho^{(2)}(C_*)$ in terms of the homology of C_* .

Theorem (Li-T.)

$$\rho^{(2)}(C_*) = \sum_{i \in \mathbb{Z}} (-1)^i \rho(H_i(C_*))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

One can show that $\rho^{(2)}(C_*)$ depends on C_* only up to homotopy equivalence of chain complexes. It is natural to try to express $\rho^{(2)}(C_*)$ in terms of the homology of C_* .

Theorem (Li-T.)

$$\rho^{(2)}(C_*) = \sum_{i \in \mathbb{Z}} (-1)^i \rho(H_i(C_*))$$

Remark

For $G = \{e\}$ or $G = \mathbb{Z}^d$, this a consequence of the classical Milnor-Turaev formula; and related to formulas for the Alexander polynomial.

It has been observed already by Yuzvinskiĭ that the entropy of an algebraic action has contributions corresponding to primes.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

It has been observed already by Yuzvinskiĭ that the entropy of an algebraic action has contributions corresponding to primes. We can set $\rho_{\infty}(M) := \rho(\mathbb{Q} \otimes_{\mathbb{Z}} M)$

It has been observed already by Yuzvinskiĭ that the entropy of an algebraic action has contributions corresponding to primes. We can set $\rho_{\infty}(M) := \rho(\mathbb{Q} \otimes_{\mathbb{Z}} M)$ and

$$\rho_{\boldsymbol{\rho}}(\boldsymbol{M}) := \rho(\operatorname{Tor}(\mu_{\boldsymbol{\rho}}, \boldsymbol{M})) - \rho(\mu_{\boldsymbol{\rho}} \otimes_{\mathbb{Z}} \boldsymbol{M}),$$

where $\mu_p = \mathbb{Z}[1/p]/\mathbb{Z}$.

It has been observed already by Yuzvinskiĭ that the entropy of an algebraic action has contributions corresponding to primes. We can set $\rho_{\infty}(M) := \rho(\mathbb{Q} \otimes_{\mathbb{Z}} M)$ and

$$\rho_{\boldsymbol{\rho}}(\boldsymbol{M}) := \rho(\operatorname{Tor}(\mu_{\boldsymbol{\rho}}, \boldsymbol{M})) - \rho(\mu_{\boldsymbol{\rho}} \otimes_{\mathbb{Z}} \boldsymbol{M}),$$

where $\mu_p = \mathbb{Z}[1/p]/\mathbb{Z}$. Lemma (Chung-T.) If $\rho(M) < \infty$, then $\rho_p(M) \ge 0$.

Theorem (Chung-T.)

Let M be a $\mathbb{Z}\Gamma$ -module with finite torsion. Then, we have

$$\rho(M) = \rho_{\infty}(M) + \sum_{p} \rho_{p}(M).$$
(1)

Moreover, for any exact sequence $0\to M'\to M\to M''\to 0$ of $\mathbb{Z}\Gamma$ -modules with finite torsion, we have

$$\rho_p(M) = \rho_p(M') + \rho_p(M'')$$

for any prime p, and

$$\rho_{\infty}(M) = \rho_{\infty}(M') + \rho_{\infty}(M'').$$

Thank you for your attention.

.