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Introduction

Recall the definition of a groupoid.

Definition

A groupoid is a set G with a multiplication that is not necessarily
everywhere defined. The product pq of two elements p, q ∈ G
is only defined when the so-called source s(p) of p is the same
as the target t(q) of q. The source and target are maps from
the groupoid to the set of units, denoted as G0. Often this set is
identified as a subset of G. We then have

ps(p) = p and t(p)p = p

for all p ∈ G. The multiplication is associative in the obvious
sense. Moreover, for any element p in G there is an inverse p−1

satisfying pp−1 = t(p) and p−1p = s(p). So we have e.g.

pp−1p = p and p−1pp−1 = p−1.
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Introduction
Some trivial examples

Here are the basic (trivial) examples.

Example

Any group is a groupoid. In this case s(p) = t(p) = e for any
element p where e is the identity in G. There is only one unit,
namely the unit of the group.

Next, we have the other extreme.

Example

Take any set X and let G = X × X. Define qp = (z, x) if
q = (z, y) and p = (y , x). Then G is a groupoid. The set G0 of
units is X , the source and the target of (y , x) are respectively x
and y. The inverse of (y , x) is (x , y). The unit set G0 is
imbedded in G via the map x 7→ (x , x).

These examples are (in a way) special cases of the following.
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Introduction
The action groupoid

Proposition

Let X be a set and H a group. Assume that H acts on X from
the left. We use hx for the action of an element h ∈ H on an
element x ∈ X. Define

G = {(y , h, x) | x , y ∈ X satisfying y = hx}.

Then G is a groupoid when the product qp of two elements
q = (z, k , y) and p = (y ′, h, x) is only defined if y = y ′ and then
given by qp = (z, k , y)(y , h, x) := (z, kh, x).

The set G0 of units is X itself. We have s(p) = x and t(p) = y if
p = (y , h, x) and we have p−1 = (x , h−1, y). The units are
identified as a subset of G by the map x 7→ (x , e, x) where e is
the identity in the group H.
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Introduction
The associated weak multiplier Hopf algebras

We start with a groupoid G. Let K (G) be the algebra of complex
functions with finite support on G and pointwise operations. We
define a coproduct ∆ on K (G) by ∆(f )(p, q) = f (pq) for
p, q ∈ G if pq is defined and ∆(f )(p, q) = 0 otherwise.

Proposition

The pair (K (G),∆) is a weak multiplier Hopf algebra.

It is also possible to look at the dual. This is the groupoid
algebra CG with the coproduct ∆ defined by ∆(λp) = λp ⊗ λp

for all p ∈ G where p 7→ λp denotes the canonical imbedding of
G in CG. Again the pair (CG,∆) is a weak multiplier Hopf
algebra. It is the dual of (K (G),∆).

Remark that K (G) does not have an identity if G is infinite. Also
CG will not be unital if the set of units is infinite.
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Multiplier Hopf algebras

Recall the definition of a multiplier Hopf algebra.

Definition

Suppose that

A is an algebra with a non-degenerate product,

∆ : A → M(A ⊗ A) is a coproduct,

the canonical maps T1 and T2, defined by

T1(a ⊗ b) = ∆(a)(1 ⊗ b) and T2(a ⊗ b) = (a ⊗ 1)∆(b)

are bijective maps from A ⊗ A to A ⊗ A.

Then (A,∆) is a multiplier Hopf algebra.

For a weak multiplier Hopf algebra, the canonical maps are no
longer assumed to be bijective.
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Weak multiplier Hopf algebras

Definition (preliminary)

A pair (A,∆) will be a weak multiplier Hopf algebra if:

A is an idempotent algebra with a non-degenerate product.

∆ : A → M(A ⊗ A) is a full coproduct with a counit.

There is multiplier E ∈ M(A ⊗ A) determining the ranges of
the canonical maps T1 and T2 (playing the role of ∆(1)).

The kernels of the canonical maps are also determined by
E in a specific way.

Theorem

There is a unique antipode S giving ’generalized inverses’ of
the canonical maps. It is a linear map S : A → M(A) and it is
both an anti-algebra and an anti-coalgebra map.
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The main definition

Definition

A pair (A,∆) will be a weak multiplier Hopf algebra if:

A is an idempotent algebra with a non-degenerate product.

∆ : A → M(A ⊗ A) is a full coproduct with a counit.

There is an idempotent multiplier E ∈ M(A ⊗ A) so that

∆(A)(1 ⊗ A) = E(A ⊗ A) and (A ⊗ 1)∆(A) = (A ⊗ A)E

and

(ι⊗∆)(E) = (E ⊗ 1)(1 ⊗ E) = (1 ⊗ E)(E ⊗ 1).

The kernels of the canonical maps are given by the ranges
of the idempotents 1− F1 and 1− F2 respectively where F1

and F2 are obtained as follows.
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The main definition
The idempotent elements F1 and F2

Let (A,∆) and E in M(A ⊗ A) be as before.

Proposition

There exists a right multiplier F1 of A ⊗ Aop and a left multiplier
F2 of Aop ⊗ A, uniquely determined by

E13(F1 ⊗ 1) = E13(1 ⊗ E) and (1 ⊗ F2)E13 = (E ⊗ 1)E13.

Remark

These idempotents F1 and F2 define idempotent maps G1

and G2 from A ⊗ A to itself by

G1(a ⊗ b) = (a ⊗ 1)F1(1 ⊗ b)

G2(a ⊗ b) = (a ⊗ 1)F2(1 ⊗ b).

We have T1 ◦ (1 − G1) = 0 and T2 ◦ (1 − G2) = 0.
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Existence of the antipode

Definition

A generalized inverse R1 of T1 is a linear map from A ⊗ A to
itself so that T1R1T1 = T1 and R1T1R1 = R1. Similarly for T2.

These generalized inverses are completely determined by a
choice of projections on the ranges and on the kernels.

Proposition

There exists a unique linear map S from A to M(A), such that
the maps R1 and R2 given by

R1(a ⊗ b) =
∑

(a) a(1) ⊗ S(a(2))b

R2(a ⊗ b) =
∑

(b) aS(b(1))⊗ b(2)

are generalized inverses of the canonical maps T1 and T2.
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Properties of the antipode

Remark

First, we obtain maps S1 and S2 giving R1 and R2

respectively. The fact that S1 and S2 actually coincide is a
consequence of the formulas giving the idempotents F1

and F2 in terms of E. This is a remarkable fact.

We have
∑

(a) a(1)S(a(2))a(3) = a
∑

(a) S(a(1))a(2)S(a(3)) = S(a).

If the map S is bijective from A to itself, we call the weak
multiplier Hopf algebra regular. This happens, as in the
case of multiplier Hopf algebras, precisely if flipping the
coproduct on A (or the multiplication in A) still yields a
weak multiplier Hopf algebra.
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The source and target maps

Recall that in a groupoid, the product pq of two elements p, q is
defined if the source s(p) is equal to the target t(p). They are
thought of as elements in G and we have the formulas

s(p) = p−1p and t(p) = pp−1

for all p ∈ G.

Definition

Assume that (A,∆) is a weak multiplier Hopf algebra with
antipode S.The source and target maps εs and εt are defined
as

εs(a) =
∑

S(a(1))a(2) and εt(a) =
∑

a(1)S(a(2)).
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The source and target algebras

The source and target maps, map into the source and target
algebras As and At . They are defined as follows.

Definition

Let E be the canonical idempotent of the weak multiplier Hopf
algebra (A,∆). Then we denote

As = {y ∈ M(A) | ∆(y) = E(1 ⊗ y)}.

At = {x ∈ M(A) | ∆(x) = (x ⊗ 1)E}.

Remark

The spaces εs(A) and εt(A) are subalgebras of As and At

respectively. In fact, we can show that As and At are the
multiplier algebras of εs(A) and εt(A).

The algebras As and At (or rather εs(A) and εt(A)) are the
’left’ and the ’right’ leg of E and E ∈ M(εs(A)⊗ εt(A)).
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The canonical maps between balanced tensor
products - the map T1

Consider the map T1 from A ⊗ A to itself. We know that the
range is E(A ⊗ A) and that the kernel is (A ⊗ 1)(1 − F1)(1 ⊗ A).

Proposition

Define A ⊗s A as the quotient of A ⊗ A by the subspace
spanned by ay ⊗ a′ − a ⊗ ya′ where a, a′ ∈ A and y ∈ εs(A).
Define A ⊗ℓ A as the quotient of A ⊗ A by the subspace
spanned by ya ⊗ a′ − a ⊗ S(y)a′. The map T1, defined from
A ⊗s A to A ⊗ℓ A is a bijection.

The proof is based on

∆(ay)(1 ⊗ a′) = ∆(a)(1 ⊗ ya′) for a, a′ ∈ A and y ∈ εs(A),

mF1 =
∑

E(1)S(E(2)) = 1 and the left leg of F1 is in εs(A),∑
S(E(1))E(2) = 1.
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The canonical maps between balanced tensor
products - the map T2

Consider the map T2 from A ⊗ A to itself. We know that the
range is (A ⊗ A)E and that the kernel is (A ⊗ 1)(1 − F2)(1 ⊗ A).

Proposition

Define A ⊗t A as the quotient of A ⊗ A by the subspace
spanned by ax ⊗ a′ − a ⊗ xa′ where a, a′ ∈ A and x ∈ εt(A).
Define A ⊗r A as the quotient of A ⊗ A by the subspace
spanned by aS(x)⊗ a′ − a ⊗ a′x. The map T2, defined from
A ⊗t A to A ⊗r A is a bijection.

The proof is based on

(ax ⊗ 1)∆(a′) = (a ⊗ 1)∆(xa′) for a, a′ ∈ A and x ∈ εt(A),

mF2 =
∑

S(E(1))E(2) = 1 and the right leg of F2 is in εt(A),∑
E(1)S(E(2)) = 1.
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The concept of a multiplier Hopf algebroid

The basic ingredients are a triple (A,B,C) where A is a
non-degenerate idempotent algebra, B and C are commuting
subalgebras, sitting nicely in M(A), together with two
anti-isomorphisms SB : B → C and SC : C → B. Then the
balanced tensor products A⊗s A, A⊗ℓ A, A⊗t A and A⊗r A can
be defined as before.

Now, a multiplier Hopf algebroid is, roughly speaking, given by
a pair of coproducts ∆B and ∆C so that the associated maps
T1 and T2 given by

T1(a⊗b) = ∆B(a)(1⊗ c) and T2(a⊗b) = (a⊗1)∆C(b)

are bijective between the appropriate balanced tensor
products.

In other words, one forgets where these maps came from.
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More precise definitions

Consider again the balanced tensor product A ⊗ℓ A. We have
ya ⊗ a′ = a ⊗ SB(y)a′ in A ⊗ℓ A when y ∈ B. We let A act from
the right by multiplication in each of the two factors.

Notation

Denote by A⊗ℓA the extended module. Elements z in A⊗ℓA
have the property (by definition) that

z(a ⊗ 1) and z(1 ⊗ a)

belong to A ⊗ℓ A for all a ∈ A. Next we consider the subspace
of elements z in A⊗ℓA satisfying

z(y ⊗ 1) = z(1 ⊗ SB(y)) for all y ∈ B.

This subspace is an algebra and it is denoted as Lreg(AB × A).
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The left and the right coproducts

Definition

A left coproduct is a homomorphism ∆B : A → Lreg(AB × A)
satisfying

∆B(yay ′) = (1 ⊗ y)∆B(a)(1 ⊗ y ′) (1)

∆B(xax ′) = (x ⊗ 1)∆B(a)(x
′ ⊗ 1) (2)

whenever a ∈ A, y , y ∈ B and x , x ′ ∈ C.

Similarly a right coproduct is defined as a homomorphism from
A to an algebra Lreg(A ×C A) sitting in the extended module of
A ⊗r A. We have the associated canonical maps

T1(a ⊗ a′) = ∆B(a)(1 ⊗ a′) and T2(a ⊗ a′) = (a ⊗ 1)∆C(a
′).

They are maps from A ⊗s A to A ⊗ℓ A and from A ⊗t A to A ⊗r A
respectively. They are assumed to be bijective.
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Coassociativity of the coproducts

First there are the assumptions of coassociativity of the left and
the right coproduct. For the left coproduct, it is expressed as

(∆B⊗ι)(∆B(a)(1⊗c′))(c⊗1⊗1) = (ι⊗∆B)(∆B(a)(c⊗1))(1⊗1⊗c′)

One needs a form of regularity of ∆B and furthermore, one has
to check that all these maps are well-defined on the various
balanced tensor products!

We have a similar form of coassociativity of the right coproduct
∆C .

We also have to relate the two coproducts, but we can not say
that they are equal as they map to different spaces. Instead, we
have another form of coassociativity

(c⊗1⊗1)(∆C⊗ι)(∆B(a)(1⊗c′)) = (ι⊗∆B)((c⊗1)∆C(a))(1⊗1⊗c′)
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The counital maps

On a regular multiplier Hopf algebroid, we have a left and a
right counit.

Definition

A left counit is a linear map εB : A → B such that

εB(ya) = yεB(a) and εB(S(y)a) = εB(a)y

and so that
(εB ⊗ ι)(∆B(a)(1 ⊗ c)) = ac

with the identification B ⊗ A → A given by y ⊗ a 7→ S(y)a.

One again has to be careful and verify that the maps behave
properly with respect to the module actions.

Similarly a right counit is defined.
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The antipode

Definition

An antipode is an anti-isomorphism from A to A. It has to
coincide with the maps SB and SC given on B and on C resp.
And it satisfies the expected formulas

m(ι⊗ S)((c ⊗ 1)∆C(a)) = cSB(εB(a)) (3)

m(S ⊗ ι)((∆B(a)(1 ⊗ c)) = SC(εC(a))c (4)

And here again, one has to verify that the maps and formulas
are compatible with the various module actions.
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An example

Let B and C be two non-degenerate and idempotent algebras.
Assume that SB : B → C and SC : C → B are
anti-isomorphisms.

Proposition

Define A = C ⊗ B and identify B and C as subalgebras of
M(A). Then define ∆B : A → A⊗ℓA by ∆B(cb) = c ⊗ b for
b ∈ B and c ∈ C. Similarly, define ∆C : A → A⊗r A. Then
(A,B,C,SB,SC ,∆B,∆C) is a multiplier Hopf algebroid. The
counital maps are given by

εB(bc) = bS−1
B (c) and εC(bc) = S−1

C (b)c.

The antipode is given by S(cb) = SB(b)SC(c).

The proof is straightforward.
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An example

If this multiplier Hopf algebroid comes from a weak multiplier
Hopf algebra, there will be an idempotent E ∈ M(B ⊗ C) and
the coproduct ∆ on C ⊗ B will be given by
∆(c ⊗ b) = c ⊗ E ⊗ b. It will also follow that the underlying
algebras B and C are separable Frobenius. In particular, there
will be a faithful linear functional on B.

Therefore, if we want to find an example of a multiplier Hopf
algebroid, not coming from a weak multiplier Hopf algebra, we
just have to find an algebra B with no faithful functional. We
then can take for C the algebra B with the opposite product.
This turns out to be possible, even for algebras with an identity.
Remember that a unital algebra is automatically idempotent
and non-degenerate.
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Example

Consider any vector space V and make it into an algebra by
defining the product of any two elements equal to 0. Let B = Ṽ ,
the algebra obtained by adding an identity. So, any element in
B is of the form v + λ1 for v ∈ V and λ ∈ C. And the product of
two elements is given as

(v + λ1)(w + µ1) = µv + λw + (λµ)1.

Any linear functional on B is of the form v + λ1 7→ f (v) + tλ
where f is a linear functional on V and t a complex number. If
now a = v with f (v) = 0, then f (ab) = 0 for all b ∈ B. Hence
there is no faithful linear functional on B. Because the algebra
has an identity, it is non-degenerate and idempotent. If we take
for C the opposite algebra, and for SB and SC the identity
maps, we can construct a multiplier Hopf algebroid. It will not
come from a weak multiplier Hopf algebra.
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Conclusions

First we have the notion of a (multiplier) Hopf algebra. Any
group gives rise to a dual pair of multiplier Hopf algebras. If
the group is finite, we have Hopf algebras.
Next there is the notion of a weak (multiplier) Hopf algebra.
Any groupoid gives a dual pair of weak multiplier Hopf
algebras. If the groupoid is finite, we have weak Hopf
algebras.
Passing to view the canonical maps between balanced
tensor products, we arrive at the notion of a (multiplier)
Hopf algebroid.
This is a more general theory, better suited as a concept of
a quantum groupoid.
The case of a multiplier Hopf *-algebroid with positive
integrals should provide a link with the measured quantum
groupoids.
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