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Outline of the lecture series

Outline of the series:

The Haar weights on a locally compact quantum group

The antipode of a locally compact quantum group

The main theory

Duality

Miscellaneous topics

All the slides are now on the webpage:
www.alfons-vandaele.be/fields2013.

I also included the pdf files of two articles containing material
related with these lectures.
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Outline of this lecture

Outline of this last lecture:

Introduction

More formulas relating various objects

Back to C∗-algebras

Special Cases - Examples

Recent developments - Generalizations

Conclusions
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Summary of the previous lectures

In the first lecture, we have concentrated on the Haar
weights. We have seen how the modular theory of weights
is used to pass from a C∗-algebraic locally compact
quantum group to a von Neumann algebraic locally
compact quantum group.

However, we still need to consider the way back. We will
discuss this step in the present lecture.

In the middle three lectures, we have developed the main
theory. We started with the construction of the antipode
and we needed the left and the right Haar weights, not for
defining the antipode, but for proving that it was
well-defined and densely defined.

The polar decomposition of the antipode S (or rather of the
operator K that implements it) is the main result from
which many other results follow.
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Summary of the previous lectures

Again, for the construction of the dual, modular theory
plays an important role.

We learn from all this that the modular theory of weights
(i.e. the theory of left Hilbert algebras, as developed by
Tomita and Takesaki) provides the basic technical tool for
the study of locally compact quantum groups.

We have already seen the variety of objects associated with a
locally compact quantum group. And we have encountered
several formulas relating these various objects.

In this last lecture, we will begin with some more formulas and
see what the possible consequences are.
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Many objects - many formulas

With any von Neumann algebraic quantum group (M,∆) are
associated many objects:

There are the left and right Haar weights ϕ and ψ with their
associated modular data: The Hilbert spaces Hϕ and Hψ,
the modular conjugations Jϕ and Jψ, the modular operators
∇ϕ and ∇ψ and the modular automorphisms (σt) and (σ′t).
Then there are the left and the right regular
representations W and V .
There are the components in the polar decomposition of
the antipode S: The ∗-anti-isomorphism R and the scaling
group (τt), together with their implementations.
Finally, there is the modular element δ and its associated
one-parameter group δit , relating the left with the right Haar
weight.
Next, we also have the dual (M̂, ∆̂) and all the objects
associated with this dual.
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The use of a single Hilbert space

A first way to keep track of these various objects is to realize
them all within the same Hilbert space, namely Hϕ. Keep in
mind that this is like identifying L2(G) with L2(Ĝ) by means of
the Fourier transform in the case of an abelian locally compact
group.

The next stept is the observation we made before:

Proposition

If J and ∇ and Ĵ and ∇̂ are the modular conjugation and the
modular operator for the left Haar weight ϕ on M and the left
Haar weight ϕ̂ on M̂ respectively, then

R(x) = Ĵx∗Ĵ τt(x) = ∇̂itx∇̂−it for all x ∈ M (1)

R̂(y) = Jy∗J τ̂t(y) = ∇ity∇−it for all y ∈ M̂ (2)
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The implementation of the scaling group

Proposition

There is a one-parameter group of unitaries P it satisfying

P itΛϕ(x) = ν
1
2 tΛϕ(τt(x)) and P itΛϕ̂(y) = ν−

1
2 tΛϕ̂(τ̂t(y))

for all x ∈ M and y ∈ M̂.

Observe that ν is the scaling constant for M and that the
scaling constant for the dual M̂ is ν−1.

Proposition

∇it = (Ĵ δ̂it Ĵ)P it and ∇̂it = (JδitJ)P it

These are the modular operators for the left Haar weights. One
gets the modular operators for the right Haar weights by
implementation with Ĵ and J respectively.
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Some more formulas and some consequences

Proposition

We have δ̂isδit = ν−istδit δ̂is for all s, t ∈ R. Also ĴJ = ν
i
4 JĴ.

Proposition

P−2it = δit (JδitJ) δ̂it (Ĵ δ̂it Ĵ)

This formula corresponds to what is called in Hopf algebra
theory Radford’s formula for the fourth power of the antipode! It
has some nice consequences.

First it means that all data are determined essentially by
the modular conjugations J and Ĵ together with the
modular elements δ and δ̂.
If δ = 1 and δ̂ = 1, then all modular operators are trivial
and all Haar weights have to be traces. Also the scaling
group and hence the scaling constant are all trivial.
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Recall: From C∗-algebras to von Neumann algebras

Remember the following result from the first lecture:

Proposition

Assume that (A,∆) is a locally compact quantum group in the
C∗-framework. Let ϕ and ψ be a left and a right Haar weight on
A. Define M = πϕ(A)′′. Then ∆ extends to a coproduct on M.
Also the weights ϕ and ψ extend to a left and a right Haar
weight on M. So (M,∆) is a locally compact quantum group in
the von Neumann algebra framework.

Remember that we did not need the density conditions saying
that

(ω ⊗ ι)∆(a) and (ι⊗ ω)∆(a)

each span a dense subspace of A.
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Back: From von Neumann algebras to C∗-algebras

Here is the reverse procedure.

Proposition

Let (M,∆) be a locally compact quantum group in the von
Neumann algebraic framework. Let ϕ and ψ be the left and the
right Haar weight. Let A be the norm closure of the space
(ι⊗ ω)W where W is the left regular representation and
ω ∈ B(Hϕ)∗. Then A is a dense C∗-subalgebra of M. The
restriction of ∆ to A is a coproduct on A satisfying the stronger
density conditions. That is

∆(A)(1 ⊗ A) and ∆(A)(A ⊗ 1)

are dense in A ⊗ A. The restrictions of ϕ and ψ to A are a left
and a right Haar weight on (A,∆). Hence, (A,∆) is a locally
compact quantum group in the C∗-algebraic sense.
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Recovering the original C∗-algebraic quantum group

There are two obvious results to verify.

Suppose we start with (A,∆) and pass to the von Neumann
algebra extension πϕ(A)′′. If we go back to the C∗-framework,
we want to recover the original pair. This is essentially a
consequence of the result saying that the norm closure of the
space

{(ι⊗ ω)W | ω ∈ B(Hϕ)∗}

is the same as the norm closure of the space

sp{(ι⊗ ω)∆(a) | a ∈ A, ω ∈ A∗}.

This results has been proven for the σ-weak closures but one
can check that the argument works for the norm closures as
well.

Here we need to assume the density conditions in order to have
that this last space is equal to the original C∗-algebra.
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The next step is restricting the various data (like the modular
automorphism groups, the scaling group, ...) from the von
Neumann algebra M to the C∗-subalgebra A. Fortunately, this
is all very straightforward.

The main reason why all this can be done, is a consequence of
the fact that many formulas can be written with the operators
implementing them. We give an example.

Example

Start from the formula ∆(σt(x)) = (τt ⊗ σt)∆(x). The
automorphisms (σt) are implemented by the unitary operators
∇it . From this we obtain that

(τt ⊗ ι)W = (1 ⊗∇−it)W (1 ⊗∇it)

for all t . It follows from this formula that the scaling group τt

leaves the C∗-algebra invariant and that t 7→ τt(a) is norm
continuous for all a ∈ A.
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The other loop

We also have to verify the other loop. This is the easier case.

If we start with a von Neumann algebraic quantum group, pass
to the dense C∗-algebra containing it and if we then go back,
we should arrive at the original case.

Again, this part is very straightforward. Indeed, if we start with
the von Neumann algebra M, we know that the C∗-algebra A is
defined as the norm closure of {(ι⊗ ω)W | ω ∈ B(H)∗}. But as
M is the σ-weak closure of this space, we see that A is
generating M. And of course the original coproduct on M will be
recovered if we first restrict it to A and then extend it again to M.

This shows that the two approaches are indeed equivalent to
one another.
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Examples

There are the basic examples C0(G) and C∗

r (G) for any
locally compact group G. For these examples, many of the
data are too trivial to illustrate the rich theory.

Lately, there has been a lot of research about special
cases of compact quantum groups. These are the ones
where the underlying C∗-algebra has an identity and where
the Haar weights are finite. For these examples, we
necessarily have ϕ = ψ and δ = 1. The scaling group may
be non-trivial, but the scaling constant ν will be 1.

Most interesting, from a theoretical point of view, are those
examples where non of the objects are trivial, or trivially
related with each other.

To construct such examples with greater complexity, is in
general quite involved.
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Examples

Many of these examples start with a relatively simple Hopf
∗-algebra that is lifted to an operator algebra setting. This often
causes serious problems (by the use of unbounded operators
as generators).

Consider e.g. the relation ab = λba of self-adjoint elements in a
∗-algebra. Necessarily we have that λ is a complex number of
modulus 1. It is non-trivial to find self-adjoint operators
satisfying such commutation relations. Moreover, a coproduct
give by ∆(a) = a ⊗ a and ∆(b) = a ⊗ b + b ⊗ 1 presents major
difficulties when one tries to lift it to the operators.
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The bicrossproduct construction

Here is an other example:

Consider a locally compact group G with two closed subgroups
H and K . Assume that the map (h, k) 7→ hk is a
homeomorphism from the Cartesian product H × K to G.

Notation
For any two elements h ∈ H and k ∈ K , there is a unique way
to write hk as a product k ′h′ with h′ ∈ H and k ′ ∈ K . We will
use h ⊲ k for k ′ and h ⊳ k for h′. We get a left action of the group
H on the set K and a right action of the group K on the set H.
These actions are related in a very specific way.

We can associate two C∗-algebras in duality as follows.
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The bicrossproduct construction

Definition

Consider the C∗-algebra C0(K ) and let H act on it by
(f ⊳ h)(k) = f (h ⊲ k). Similarly consider the C∗-algebra C0(H)
and let K act on it by (k ⊲ f )(h) = f (h ⊳ k). Let A be the reduced
crossed product of C0(K ) with this right action of H and let B be
the reduced crossed product of C0(H) with this left action of K .
Each of these algebras has the space Cc(H,K ) as a dense
∗-subalgebra A0 and B0 (with different products).

Proposition

The product in A0 is given by

(f1f2)(h, k) =
∫

H
f1(u, (u

−1h) ⊲ k)f2(u
−1h, k) du

and the involution by f ∗(h, k) = δH(h−1)f (h−1, h ⊲ k).
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We can define a pairing on these subalgebras by the formula:

Theorem

For f ∈ A0 and g ∈ B0 we define

〈f , g〉 =
∫∫

H×K
f (h, k)g(h, k) dh dk

where we integrate over the left Haar measures on H and K .
There exists coproducts on the C∗-algebras A and B, induced
by the products via this pairing. They give a dual pair of locally
compact quantum groups.

The right Haar weight on A is given by ψ(f ) =
∫

K f (e, k)d r k for
f ∈ A0 where e is the identity in H and where we integrate over
the right Haar measure over K .

With these formulas, we have enough information to calculate
all data.
Unfortunately, the scaling group is trivial for this example.
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Almost matched pairs

Consider the ax + b-group. It is the group G of 2 × 2- matrices
(

a b
0 1

)

where a, b ∈ R and with a > 0. We can consider two subgroups
H and K given by matrices of the form

(
a a − 1
0 1

)
and

(
1 b
0 1

)

respectively. We do not get a genuine matched pair as the map
(h, k) 7→ hk is a homeomorphism from H × K to an open and
dense (but proper) subset of G. Still, the bicrossproduct
construction is possible as a locally compact quantum group.
We can get examples this way where the scaling group is
non-trivial. However, the scaling constant will still be trivial.
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Recent developments - Generalizations

There are several directions with recent developments.

Let me focus on just one generalization: Locally compact
quantum groupoids.

The first step towards this theory is the following notion.

Definition

A weak Hopf algebra is a pair (A,∆) of a unital algebra A with a
coproduct ∆ : A → A ⊗ A that is not necessarily unital.
However, the idempotent E , defined as ∆(1) in A ⊗ A has to
satisfy certain properties. It is assumed that there is a counit
and an antipode. The axioms for the counit are as for Hopf
algebras, but the axioms for the antipode are different.



Introduction More relations Back to C*-algebras Examples Recent developments Conclusions

Weak multiplier Hopf algebras

There is a generalization of this concept to the non-unital case.

The algebra A is no longer assumed to be unital.

The coproduct ∆ maps A to M(A ⊗ A).

There is an idempotent E ∈ M(A ⊗ A) satisfying certain
conditions, making it unique. After extending the coproduct
to M(A) we have ∆(1) = E .

There is a counit satisfying the usual conditions.

And there is an antipode satisfying the same conditions as
for weak Hopf algebras.

This gives a weak multiplier Hopf algebra. Basic examples
come from a (discrete) groupoid.

Also integrals (these are like the Haar weights in the case of a
locally compact quantum group) are studied. A special case is
that of a weak multiplier Hopf ∗-algebra with positive integrals.
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Locally compact quantum groupoids

One can proceed in two directions.
One can start with such a weak multiplier Hopf ∗-algebra
with positive integrals and lift this structure to an operator
algebraic framework. This is too restrictive.
One can start with a weak multiplier Hopf ∗-algebra with
positive integrals and first pass to a Hopf algebroid
formulation. This is done by considering the canonical
maps

a ⊗ b 7→ ∆(a)(1 ⊗ b) and a ⊗ b 7→ (a ⊗ 1)∆(b)

as bijective maps between appropriate balanced tensor
products. And then further lifting to an operator algebra
approach.

This should eventually lead to a theory of locally compact
quantum groupoids, very much as the theory of locally compact
quantum groups as presented in this series of lectures.
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Conclusions

We have treated the theory of locally compact quantum
groups.
It is not so important from which set of axioms you start.
The final objects are the same.
This is in particular true for the two basic approaches: The
C∗-algebraic approach and the von Neumann algebraic
approach. They yield the same objects and the
approaches are equivalent with each other.
In the general theory, one has to assume the existence of
the Haar weights. This is not nice from a theoretical point
of view. However, in examples, the Haar weights are
mostly immediately available.
There are now plenty of non-trivial examples.
The focus of the present research in the field is on
compact quantum groups in one direction and on locally
compact quantum groupoids in another direction.
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