Locally compact quantum groups
 3. The main theory

A. Van Daele

Department of Mathematics
University of Leuven

June 2013 / Fields Institute

Outline of lecture series

Outline of the series:

- The Haar weights on a locally compact quantum group
- The antipode of a locally compact quantum group
- The main theory
- Duality
- Miscellaneous topics

Outline of the third lecture

Outline of this third lecture:

- Introduction - with a review of some previous results
- The polar decomposition of the antipode
- Uniqueness of the Haar weights
- The main results
- Conclusions

Summary of the previous lectures

Recall the definition of a locally compact quantum group in the von Neumann algebraic setting.

Definition

A locally compact quantum group is a pair (M, Δ) of a von Neumann algebra M with a coproduct $\Delta: M \rightarrow M \otimes M$ so that there exist left and right Haar weights.

The Haar weights are faithful, normal and semi-finite. A left Haar weight φ is left invariant:

$$
(\iota \otimes \varphi) \Delta(x)=\varphi(x) 1
$$

for all positive elements $x \in M$ so that $\varphi(x)<\infty$. Similarly for a right Haar weight ψ.

Some comments:

The definition in the case of von Neumann algebras is simpler than for C^{*}-algebras:

- No need to work with multipliers.
- No need to impose extra density conditions.
- Theory of weights for von Neumann algebras is better known.

Left invariance:
Consider a locally compact group G and $M=L^{\infty}(G)$ with $\Delta(f)(p, q)=f(p q)$. Then

$$
((\iota \otimes \varphi) \Delta(f))(p)=\int f(p q) d q=\int f(q) d q
$$

and so $(\iota \otimes \varphi) \Delta(f)=\varphi(f)$.

The left and right regular representations

Formally, the left regular representation W and the right regular representation V are defined by

$$
\begin{align*}
V\left(\Lambda_{\psi}(x) \otimes \xi\right) & =\sum \wedge_{\psi}\left(x_{(1)}\right) \otimes x_{(2)} \xi \tag{1}\\
\boldsymbol{W}^{*}\left(\xi \otimes \Lambda_{\varphi}(x)\right) & =\sum x_{(1)} \xi \otimes \Lambda_{\varphi}\left(x_{(2)}\right) \tag{2}
\end{align*}
$$

These are unitary operators satisfying:
Proposition

- $\Delta(x)=V(x \otimes 1) V^{*}$
- $\Delta(x)=W^{*}(1 \otimes x) W$
- $(\iota \otimes \Delta) V=V_{12} V_{13}$
- $(\Delta \otimes \iota) W=W_{13} W_{23}$

About V and W :

$$
\begin{gathered}
((\iota \otimes\langle\cdot \xi, \eta\rangle) V) \Lambda_{\psi}(x)=\Lambda_{\psi}((\iota \otimes\langle\cdot \xi, \eta\rangle) \Delta(x)) \\
\left((\langle\cdot \xi, \eta\rangle \otimes \iota) W^{*}\right) \Lambda_{\varphi}(x)=\Lambda_{\varphi}((\langle\cdot \xi, \eta\rangle \otimes \iota) \Delta(x))
\end{gathered}
$$

Remark that by invariance:

- $(\iota \otimes \omega) \Delta(x) \in \mathfrak{N}_{\psi} \quad$ if $\quad x \in \mathfrak{N}_{\psi}$
- $(\omega \otimes \iota) \Delta(x) \in \mathfrak{N}_{\varphi} \quad$ if $\quad x \in \mathfrak{N}_{\varphi}$

The antipode

The antipode S_{0} is a closed linear map, with dense domain \mathcal{D}_{0} characterized by the following result.

Proposition

Let $\omega \in \mathcal{B}\left(\mathcal{H}_{\varphi}\right)_{*}$ and $x=(\iota \otimes \omega) W$ and $x_{1}=(\iota \otimes \bar{\omega}) W$, then $x \in \mathcal{D}_{0}$ and $x_{1}=S_{0}(x)^{*}$.

We can write this as

$$
\left(S_{0} \otimes \iota\right) W=W^{*}
$$

or as

$$
S_{0}((\iota \otimes \varphi)(\Delta(x)(1 \otimes y))=(\iota \otimes \varphi)((1 \otimes x) \Delta(y))
$$

with the right choice for the elements x and y. The operator $x \mapsto S_{0}(x)^{*}$ is implemented by the operator K, formally satisfying

$$
K\left(\Lambda_{\psi}(x)\right)=\Lambda_{\psi}\left(S_{0}(x)^{*}\right)
$$

again for suitable elements x in M.

Remark that

$$
\left(\iota \otimes\left\langle\cdot \wedge_{\varphi}(x), \Lambda_{\varphi}(y)\right\rangle\right) W^{*}=(\iota \otimes \varphi)\left(\left(1 \otimes y^{*}\right) \Delta(x)\right)
$$

and hence, we can rewrite the formula $\left(S_{0} \otimes \iota\right) W=W^{*}$ as

$$
S_{0}\left((\iota \otimes \varphi)\left(\Delta\left(y^{*}\right)(1 \otimes x)\right)=(\iota \otimes \varphi)\left(\left(1 \otimes y^{*}\right) \Delta(x)\right)\right.
$$

Formula with two left regular representations

Let φ_{1} and φ_{2} be two left Haar weights on (M, Δ). Denote the associated left regular representations by W_{1} and W_{2}.

Notation

Denote by T_{r} the closure of the $\operatorname{map} \Lambda_{\varphi_{1}}(x) \mapsto \Lambda_{\varphi_{2}}\left(x^{*}\right)$, defined for $x \in \mathfrak{N}_{\varphi_{1}} \cap \mathfrak{N}_{\varphi_{2}}^{*}$.

Then one can show, (by a careful argument):

Proposition

$$
\left(K \otimes T_{r}\right) W_{1}=W_{2}^{*}\left(K \otimes T_{r}\right)
$$

Remark that $K \otimes T_{r}$ is a closed, unbounded operator from (a dense domain in) $\mathcal{H}_{\psi} \otimes \mathcal{H}_{\varphi_{1}}$ to $\mathcal{H}_{\psi} \otimes \mathcal{H}_{\varphi_{2}}$ and that W_{1} and W_{2} are unitaries on $\mathcal{H}_{\psi} \otimes \mathcal{H}_{\varphi_{1}}$ and $\mathcal{H}_{\psi} \otimes \mathcal{H}_{\varphi_{2}}$ respectively.

About the preclosedness of the map $\Lambda_{\varphi_{1}}(x) \mapsto \Lambda_{\varphi_{2}}\left(x^{*}\right)$.
Consider the case $\varphi_{1}=\varphi_{2}=\varphi$.
Take right bounded elements ξ, η.

$$
\begin{aligned}
\left\langle\pi^{\prime}(\xi)^{*} \eta, \Lambda_{\varphi}\left(x^{*}\right)\right\rangle & =\left\langle\eta, \pi^{\prime}(\xi) \Lambda_{\varphi}\left(x^{*}\right)\right\rangle=\left\langle\eta, x^{*} \xi\right\rangle \\
\left\langle\pi^{\prime}(\eta)^{*} \xi, \Lambda_{\varphi}(x)\right\rangle & =\left\langle\xi, \pi^{\prime}(\eta) \Lambda_{\varphi}(x)\right\rangle=\langle\xi, x \eta\rangle
\end{aligned}
$$

and so

$$
\left\langle\pi^{\prime}(\xi)^{*} \eta, \Lambda_{\varphi}\left(x^{*}\right)\right\rangle=\left\langle\Lambda_{\varphi}(x), \pi^{\prime}(\eta)^{*} \xi\right\rangle
$$

The case with two different left Haar weights is treated with a 2×2 matrix trick.

Polar decompositions

We now consider the case where φ_{1} and φ_{2} are the same left Haar weight φ. We use T for the operator T_{r} in this case. And W for the left regular representation.

Notation

We use $K=L^{\frac{1}{2}}$ and $T=J \nabla^{\frac{1}{2}}$ for the polar decompositions of the operators K on \mathcal{H}_{ψ} and T on \mathcal{H}_{φ}.

Remark that the last one is generally written as $S=J \Delta^{\frac{1}{2}}$ but we have to use an other notation for obvious reasons. The following is then an immediate consequence of the formula $(K \otimes T) W=W^{*}(K \otimes T):$

Proposition

- $(I \otimes J) W(I \otimes J)=W^{*}$
- $\left(L^{i t} \otimes \nabla^{i t}\right) W\left(L^{-i t} \otimes \nabla^{-i t}\right)=W$ for all $t \in \mathbb{R}$.

Some density results

The following results should have been considered earlier. The two results are proven together.

Proposition

Let φ be any left Haar weight and W the associated regular representation. Then

$$
\left\{(\iota \otimes \omega) W \mid \omega \in \mathcal{B}\left(\mathcal{H}_{\varphi}\right)_{*}\right\}
$$

is σ-weakly dense in M

Proposition

The spaces

$$
\begin{align*}
& \operatorname{sp}\left\{(\iota \otimes \omega) \Delta(x) \mid x \in M, \omega \in M_{*}\right\} \tag{3}\\
& \operatorname{sp}\left\{(\omega \otimes \iota) \Delta(x) \mid x \in M, \omega \in M_{*}\right\} \tag{4}
\end{align*}
$$

are σ-weakly dense in M.

The scaling and modular automorphisms

We have the modular automorphisms on M given by $\sigma_{t}: x \mapsto \nabla^{i t} x \nabla^{-i t}$. But we also have the scaling group.

Definition

We define $R: M \rightarrow M$ by $R(x)=\left|x^{*}\right|$ and $\tau_{t}: M \rightarrow M$ by $\tau_{t}(x)=L^{i t} x L^{-i t}$ for all $t \in \mathbb{R}$.

Definition

The polar decomposition of the antipode is $S=R \tau_{-\frac{i}{2}}$ where $\tau_{-\frac{i}{2}}$ is the analytic extension of $\left(\tau_{t}\right)$ to the point $-\frac{i}{2}$.

One may have to redefine S by this formula. Still, we have $(\iota \otimes \omega) W \in \mathcal{D}(S)$ and

$$
S((\iota \otimes \omega) W)=(\iota \otimes \omega) W^{*} .
$$

The first important consequences

If we combine these results with the earlier formulas

- $\Delta(x)=W^{*}(1 \otimes x) W$ and
- $(\Delta \otimes \iota) W=W_{13} W_{23}$,
we find the following important formulas:

Proposition

For all $x \in M$ and $t \in \mathbb{R}$ we have:

- $\Delta\left(\sigma_{t}^{\varphi}(x)\right)=\left(\tau_{t} \otimes \sigma_{t}^{\varphi}\right) \Delta(x)$,
- $\Delta\left(\tau_{t}(x)\right)=\left(\tau_{t} \otimes \tau_{t}\right) \Delta(x)$,
- $\Delta(R(x))=(R \otimes R) \Delta^{\prime}(x)$ where Δ^{\prime} is obtained from Δ by applying the flip.

Uniqueness of the Haar weights

Consider two left invariant weights φ_{1} and φ_{2} with associated data. Recall the operator T_{r}, defined as the closure of the map $\Lambda_{\varphi_{1}}(x) \mapsto \Lambda_{\varphi_{2}}\left(x^{*}\right)$ where $x \in \mathfrak{N}_{\varphi_{1}} \cap \mathfrak{N}_{\varphi_{2}}^{*}$. Recall that

$$
\left(K \otimes T_{r}\right) W_{1}=W_{2}^{*}\left(K \otimes T_{r}\right) .
$$

Proposition

Let $T_{r}=J_{r} \nabla_{r}^{\frac{1}{2}}$ denote the polar decomposition of T_{r}. Let $u_{t}=\nabla_{1}^{i t} \nabla_{r}^{-i t}$. Then

$$
\left(1 \otimes u_{t}\right) W_{1}\left(1 \otimes u_{t}^{*}\right)=W_{1}
$$

The proof follows from the two formulas

- $\left(L^{i t} \otimes \nabla_{1}^{i t}\right) W_{1}\left(L^{-i t} \otimes \nabla_{1}^{-i t}\right)=W_{1}$
- $\left(L^{i t} \otimes \nabla_{r}^{i t}\right) W_{1}\left(L^{-i t} \otimes \nabla_{r}^{-i t}\right)=W_{1}$

Uniqueness of the Haar weights

Proposition

If $x \in M$ and $\Delta(x)=1 \otimes x$ then x is a scalar multiple of 1 .
If a right Haar weight ψ would be bounded, one could obtain $\psi(x) 1=\psi(1) x$ and the result would follow. The idea also works in general, but one has to be more careful.

Theorem

The Haar weights on a locally compact quantum group are unique (up to a scalar).

As we found $\left(1 \otimes u_{t}\right) W_{1}\left(1 \otimes u_{t}^{*}\right)=W_{1}$, we get $\Delta\left(u_{t}\right)=1 \otimes u_{t}$ for all t. Hence, these unitaries are multiples of 1 and this implies that φ_{2} is a scalar multiple of φ_{1}.

Formulas involving the automorphism groups

Denote by $\left(\sigma_{t}\right)$ and $\left(\sigma_{t}^{\prime}\right)$ the modular automorphisms of the left and the right Haar weight. Denote by $\left(\tau_{t}\right)$ the scaling automorphisms.

Proposition

All these automorphisms mutually commute. Moreover $R\left(\tau_{t}(x)\right)=\tau_{t}(R(x))$ and $R\left(\sigma_{t}(x)\right)=\sigma_{-t}^{\prime}(R(x))$ for all x.

Proposition

For all $x \in M$ it holds:

- $\Delta\left(\sigma_{t}(x)\right)=\left(\tau_{t} \otimes \sigma_{t}\right) \Delta(x)$,
- $\Delta\left(\sigma_{t}^{\prime}(x)\right)=\left(\sigma_{t}^{\prime} \otimes \tau_{-t}\right) \Delta(x)$,
- $\Delta\left(\tau_{t}(x)\right)=\left(\tau_{t} \otimes \tau_{t}\right) \Delta(x)$,
- $\Delta\left(\tau_{t}(x)\right)=\left(\sigma_{t} \otimes \sigma_{-t}^{\prime}\right) \Delta(x)$.

Relative invariance of the Haar weights

If we combine these results with the uniqueness of the Haar weights, we find:

Proposition

There exists a strictly positive number ν so that

- $\varphi \circ \tau_{t}=\nu^{-t} \varphi$,
- $\psi \circ \tau_{t}=\nu^{-t} \psi$,
- $\psi \circ \sigma_{t}=\nu^{-t} \psi$,
- $\varphi \circ \sigma_{t}^{\prime}=\nu^{t} \varphi$, for all $t \in \mathbb{R}$.

The modular element

We finish with the modular element, relating the left with the right Haar weight.

Proposition

There exists a unique, non-singular, positive self-adjoint operator δ, affiliated with M such that $\psi=\varphi\left(\delta^{\frac{1}{2}} \cdot \delta^{\frac{1}{2}}\right)$. This operator satisfies $\sigma_{t}(\delta)=\nu^{t} \delta$ and $\sigma_{t}^{\prime}(\delta)=\nu^{-t} \delta$. It is invariant under the automorphisms $\left(\tau_{t}\right)$ and $R(\delta)=\delta^{-1}$. We also have the relation $\sigma_{t}^{\prime}(x)=\delta^{i t} \sigma_{t}(x) \delta^{-i t}$.

For the proof one uses that ψ is relatively invariant under the modular automorphisms of φ. One also has the formula $\Delta(\delta)=\delta \otimes \delta$, but that seems more difficult to obtain.

Conclusions

- In the first lecture, we passed form C^{*}-algebras to von Neumann algebras.
- In the second lecture, we studied the regular representations and the antipode.
- In this lecture we used the polar decomposition of the operator K, implementing the antipode.
- And relative modular theory to obtain uniqueness of the Haar weights.
- Then the rest of the theory with the main formulas follows quickly.
- The next lecture is devoted to the study of the dual.

References

- G. Pedersen: C^{*}-algebras and their automorphism groups (1979).
- M. Takesaki: Theory of Operator Algebras II (2001).
- J. Kustermans \& S. Vaes: Locally compact quantum groups. Ann. Sci. Éc. Norm. Sup. (2000).
- J. Kustermans \& S. Vaes: Locally compact quantum groups in the von Neumann algebra setting. Math. Scand. (2003).
- A. Van Daele: Locally compact quantum groups: The von Neumann algebra versus the C^{*}-algebra approach. Preprint KU Leuven (2005). Bulletin of Kerala Mathematics Association (2006).
- A. Van Daele: Locally compact quantum groups. A von Neumann algebra approach. Preprint University of Leuven (2006). Arxiv: math/0602212v1 [math.OA].

