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Introduction

We have a locally compact quantum group (M,∆) with a
unique left and right Haar weight ϕ and ψ. The modular
automorphism groups are denoted by (σt) and (σ′t) resp. There
is also the scaling group (τt) and the polar decomposition of the
antipode S = Rτ

−
i
2

where R is an involutive,
∗-anti-isomorphism of M that flips the coproduct.

All these automorphism groups commute with each other. The
anti-isomorphism R commutes with the scaling automorphisms,
but not with the modular automorphisms. We have
R ◦ σt = σ′

−t ◦ R.

The relation with the coproduct is as follows

∆(σt(x)) = (τt ⊗ σt)∆(x) ∆(σ′t(x)) = (σ′t ⊗ τ−t)∆(x) (1)

∆(τt(x)) = (τt ⊗ τt)∆(x) ∆(τt(x)) = (σt ⊗ σ′
−t)∆(x). (2)
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Relative invariance of the Haar weights

We have a strictly positive number ν, called the scaling
constant, satisfying

ϕ ◦ τt = ν−tϕ ψ ◦ τt = ν−tψ (3)

ψ ◦ σt = ν−tψ ϕ ◦ σ′t = ν tϕ (4)

Finally, there is the modular element δ. It is a non-singular,
positive self-adjoint operator, affiliated with M and relating the
left with the right Haar weight as ψ = ϕ(δ

1
2 · δ

1
2 ). This operator

satisfies σt(δ) = ν tδ and σ′t(δ) = ν−tδ. Is is invariant under the
automorphisms (τt) and R(δ) = δ−1. We also have the relation
σ′t(x) = δitσt(x)δ−it .

We will work further with the left regular representation W . We
write H for Hϕ and Λ for Λϕ. Formally we have

W ∗(ξ ⊗ Λ(x)) =
∑

x(1)ξ ⊗ Λ(x(2)).
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The dual (M̂, ∆̂)

First we define the dual von Neumann algebra M̂.

Definition

Let M̂ be the σ-weak closure of the subspace
{(ω ⊗ ι)W | ω ∈ M∗} of B(H).

From the pentagon equation, it follows that the space
{(ω ⊗ ι)W | ω ∈ M∗} is a subalgebra of B(H). To show that its
closure in ∗-invariant, we use the formula

((ω ⊗ ι)W )∗ = (ω1 ⊗ ι)W

that holds for nice elements ω in M∗ and where ω1 is defined by
ω1(x) = ω(S(x)∗)− = ω(S(x)) when x ∈ D(S).

Proposition

M̂ is a von Neumann algebra and W ∈ M ⊗ M̂.
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Topologies on a von Neumann algebra

Let M act on H.
The weak operator topology on M is the weakest topology
making the linear maps x 7→ 〈xξ, η〉 continuous for all
ξ, η ∈ H.
The σ-weak topology is the weakest topology making the
linear maps

x 7→
∑

〈xξi , ηi〉

continuous whenever
∑

‖ξi‖‖ηi‖ <∞.
These two topologies coincide on bounded sets.

The space of σ-weakly continuous functionals on M is denoted
by M∗ and called the predual of M. The dual of M∗ is M.

There are various other topologies on a von Neumann algebra,
all weaker than the norm topology, and stronger than the weak
operator topology.
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The Pentagon equation

We have

∆(x) = W ∗(1 ⊗ x)W

(∆⊗ ι)W = W13W23

If we combine this with the fact that M is the left leg of W , we
can summarize these two formulas and find

W13W23 = W ∗

12W23W12.

Rewriting it, we find the so-called Pentagon equation
W12W13W23 = W23W12. Now apply ω ⊗ ω′ ⊗ ι and we find that
the space

{(ω ⊗ ι)W | ω ∈ M∗}

is a subalgebra of B(H).
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The norm closure of {(ω ⊗ ι)W | ω ∈ M∗}

In general, {(ω ⊗ ι)W | ω ∈ M∗} is not ∗-invariant. We have that

((ω ⊗ ι)W )∗ = (ω1 ⊗ ι)W

provided ω1(x) = ω(S(x)).

We can produce enough such functionals by taking integrals

x 7→

∫
f (t)ω(τt(x)) dt

with the appropriate choice of functions f . Recall that
S = Rτ

−
i
2
.



Introduction The dual Dual Haar weights Invariance More formulas Conclusions

The dual coproduct ∆̂ on M̂

Proposition

For all y ∈ M̂ we have W (y ⊗ 1)W ∗ ∈ M̂ ⊗ M̂. If we define

∆̂(y) = χW (y ⊗ 1)W ∗

where χ is the flip, ∆̂ is a coproduct on M̂

All this is an easy consequence of the Pentagon equation for
W , now written as

W23W12W ∗

23 = W12W13

and the fact that W ∈ M ⊗ M̂. The use of the flip map is just a
convention.

This is the easy part of the construction. The more difficult step
is the construction of the dual Haar weights.
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Construction of a left Hilbert algebra

To construct the dual left Haar weight ϕ̂ on (M̂, ∆̂), we need a
left Hilbert algebra.

Definition

Let N̂ be the set of elements y ∈ M̂ so that there is a ω ∈ M∗

and a vector ξ ∈ H satisfying

ω(x∗) = 〈ξ,Λ(x)〉 for all x ∈ Nϕ and y = (ω ⊗ ι)W .

We set Λ̂(y) = ξ.

Observe that, given y , the element ω and the vector ξ are
unique, if they exist. Also Λ̂ is linear and injective.

What is the possible motivation for such a definition?
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Motivation of this definition

The Fourier transform ẑ of an element z is defined as the linear
functional ω = ϕ( · z) (provided this makes sense). Now, it is
known from the algebraic theory that the multiplicative unitary
W is essentially the duality. So, formally, we have ẑ = (ω ⊗ ι)W
when ω = ϕ( · z). The ’spaces’ L2(G) and L2(Ĝ) are identified
which means (again formally) that we want Λϕ̂(ẑ) = Λϕ(z). This
formula is rewritten as

〈Λϕ̂(ẑ),Λϕ(x)〉 = 〈Λϕ(z),Λϕ(x)〉 = ϕ(x∗z) = ω(x∗)

whenever x ∈ Nϕ.

We get the formulas from the previous definition with y = ẑ and
ξ = Λϕ̂(ẑ).
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The ∗- algebra N̂ ∩ N̂
∗

First we need to show that Λ̂(N̂ ∩ N̂
∗) is dense in H.

Proposition

Let ξ, η ∈ H and assume that η is right bounded. Let
ω = 〈 · ξ, η〉 and y = (ω ⊗ ι)W. Then y ∈ N̂ and Λ̂(y) = π′(η)∗ξ.
In particular, the space Λ̂(N̂) is dense in H and also N̂ is
σ-weakly dense in M̂.

Doing this construction a little more careful, we find the density
of Λ̂(N̂ ∩ N̂

∗) in H and of N̂ ∩ N̂
∗ in M̂.

The following will provide the multiplication.

Proposition

Let ω, ω1 ∈ M∗ and y = (ω ⊗ ι)W and y1 = (ω1 ⊗ ι)W. If y ∈ N̂,
then also y1y ∈ N̂ and Λ̂(y1y) = y1Λ̂(y).
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Assume that ξ is any vector in the Hilbert space H and that η is
right bounded. Then

〈π′(η)∗ξ,Λ(x)〉 = 〈ξ, π′(η)Λ(x)〉 = 〈ξ, xη〉

and we see that y , defined as y = (ω ⊗ ι)W where ω = 〈 · ξ, η〉
will satisfy Λ̂(y) = π′(η)∗ξ.
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The left Hilbert algebra Λ̂(N̂ ∩ N̂∗)

Proposition

Let A = Λ̂(N̂ ∩ N̂∗). We can equip A with the ∗-algebra
structure inherited from N̂ ∩ N̂

∗. If we denote y by π(ξ) when
y ∈ N̂ ∩ N̂

∗ and ξ = Λ̂(y), then we have:

A and A2 are dense in H,

π(ξ) is continuous for all ξ ∈ A,

π is a ∗-representation of A,

The ∗-operation on A, denoted as ξ 7→ ξ♯, is preclosed.

Theorem

There exists a normal faithful semi-finite weight ϕ̂ on M̂ such
that the G.N.S.-representation can be realized in H, satisfying
N̂ ⊆ Nϕ̂ and such that the canonical map Λϕ̂ is the closure of Λ̂
on N̂.
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Left invariance of the dual left Haar weight

Proposition

Define the unitary Ŵ = ΣW ∗Σ on H⊗H. We use Σ for the flip
operator on H⊗H. Then (ω ⊗ ι)∆̂(y) ∈ Nϕ̂ and

((ω ⊗ ι)Ŵ ∗)Λϕ̂(y) = Λϕ̂((ω ⊗ ι)∆̂(y))

whenever y ∈ Nϕ̂ and ω ∈ B(H)∗.

The proof is rather straightforward. At the end one uses that Λϕ̂

on Nϕ̂ is the closure of Λ̂ on N̂.

Theorem

The weight ϕ̂ is left invariant on (M̂, ∆̂).
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The dual right Haar weight

Recall the formula (I ⊗ J)W (I ⊗ J) = W ∗ where J is the
modular conjugation associated with the original left Haar
weight ϕ on (M,∆).

Proposition

Define R̂ on M̂ by R̂(y) = Jy∗J. Then R̂ is an involutive
∗-anti-automorphism of M̂ that flips the coproduct ∆̂.

We can now define ψ̂ on (M̂, ∆̂) by ψ̂ = ϕ̂ ◦ R̂. This will be a
right invariant weight. Hence we find that (M̂, ∆̂) is a locally
compact quantum group. It is called the dual of (M,∆).

It is not hard to show that the dual of (M̂, ∆̂) is canonically
isomorphic with the original locally compact quantum
group(M,∆).
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More formulas

We have lots of operators and other objects, related with a
locally compact quantum group (M,∆) and its dual (M̂, ∆̂).

Due to the relative invariance of the Haar weights, the
automorphism groups are implemented by unitaries.

Proposition

There exist continuous one-parameter groups of unitaries (ut),
(vt) and (wt) on H given by

utΛϕ(x) = Λϕ(σt(x))

vtΛϕ(x) = ν
1
2 tΛϕ(τt(x))

wtΛϕ(x) = ν−
1
2 tΛϕ(σ

′

t(x))

when x ∈ Nϕ. They all commute and implement the associated
automorphism groups.

We also have the one parameter groups (δit) and (δ̂it).
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Proposition

The modular conjugation Ĵ and the modular operator ∇̂ for the
dual left Haar weight ϕ̂ are given by

ĴΛϕ(x) = Λϕ(R(x)∗δ
1
2 ) (5)

∇̂itΛϕ(x) = Λϕ(τt(x)δ−it) (6)

where x ∈ Nϕ.

Proposition

R(x) = Ĵx∗Ĵ τt(x) = ∇̂itx∇̂−it for all x ∈ M (7)

R̂(y) = Jy∗J τ̂t(y) = ∇ity∇−it for all y ∈ M̂ (8)
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Proposition

We have

∆̂(δ̂it) = δ̂it ⊗ δ̂it for all t .

∆(δit) = δit ⊗ δit for all t .

Remark that the second formula is proven by duality, from the
first one.

Proposition

∇it = (Ĵ δ̂it Ĵ)P it

∇̂it = (JδitJ)P it

We have written P it for v it , introduced earlier. We get similar
formulas for the modular operators of the right Haar weights.
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Conclusions

We have associated a dual locally compact quantum group
(∆̂, M̂) to any locally compact quantum group (M,∆).

We obtained many formulas connecting the multitude of
objects that come with such a pair of quantum groups.

However, we seem to have forgotten to go back to the
C∗-algebras.

This is one of the topics we plan to treat in the last lecture.
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