

# Locally compact quantum groups 4. The dual of a locally compact quantum group

#### A. Van Daele

Department of Mathematics University of Leuven

June 2013 / Fields Institute

(日)



### Outline of lecture series

Outline of the series:

• The Haar weights on a locally compact quantum group

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ののの

- The antipode of a locally compact quantum group
- The main theory
- Duality
- Miscellaneous topics



◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ののの

## Outline of the present lecture

Outline of this lecture:

- Introduction
- The dual pair  $(\widehat{M}, \widehat{\Delta})$
- The dual Haar weights
- Left invariance of the dual left Haar weight
- More formulas
- Conclusions

Introduction The dual Dual Haar weights Invariance More formulas Conclusions

We have a locally compact quantum group  $(M, \Delta)$  with a unique left and right Haar weight  $\varphi$  and  $\psi$ . The modular automorphism groups are denoted by  $(\sigma_t)$  and  $(\sigma'_t)$  resp. There is also the scaling group  $(\tau_t)$  and the polar decomposition of the antipode  $S = R\tau_{-\frac{1}{2}}$  where *R* is an involutive, \*-anti-isomorphism of *M* that flips the coproduct.

All these automorphism groups commute with each other. The anti-isomorphism *R* commutes with the scaling automorphisms, but not with the modular automorphisms. We have  $R \circ \sigma_t = \sigma'_{-t} \circ R$ .

The relation with the coproduct is as follows

 $\Delta(\sigma_t(\mathbf{x})) = (\tau_t \otimes \sigma_t)\Delta(\mathbf{x}) \qquad \Delta(\sigma'_t(\mathbf{x})) = (\sigma'_t \otimes \tau_{-t})\Delta(\mathbf{x}) \quad (1)$  $\Delta(\tau_t(\mathbf{x})) = (\tau_t \otimes \tau_t)\Delta(\mathbf{x}) \qquad \Delta(\tau_t(\mathbf{x})) = (\sigma_t \otimes \sigma'_{-t})\Delta(\mathbf{x}). \quad (2)$ 

(日)

Introduction The dual Dual Haar weights Invariance More formulas Conclusions

## Relative invariance of the Haar weights

We have a strictly positive number  $\nu$ , called the scaling constant, satisfying

$$\varphi \circ \tau_t = \nu^{-t} \varphi \qquad \qquad \psi \circ \tau_t = \nu^{-t} \psi$$
(3)

$$\psi \circ \sigma_t = \nu^{-t} \psi \qquad \qquad \varphi \circ \sigma'_t = \nu^t \varphi$$
 (4)

Finally, there is the modular element  $\delta$ . It is a non-singular, positive self-adjoint operator, affiliated with *M* and relating the left with the right Haar weight as  $\psi = \varphi(\delta^{\frac{1}{2}} \cdot \delta^{\frac{1}{2}})$ . This operator satisfies  $\sigma_t(\delta) = \nu^t \delta$  and  $\sigma'_t(\delta) = \nu^{-t} \delta$ . Is is invariant under the automorphisms  $(\tau_t)$  and  $R(\delta) = \delta^{-1}$ . We also have the relation  $\sigma'_t(x) = \delta^{it} \sigma_t(x) \delta^{-it}$ .

We will work further with the left regular representation W. We write  $\mathcal{H}$  for  $\mathcal{H}_{\varphi}$  and  $\Lambda$  for  $\Lambda_{\varphi}$ . Formally we have

$$W^*(\xi \otimes \Lambda(x)) = \sum x_{(1)} \xi \otimes \Lambda(x_{(2)}).$$



#### Definition

Let  $\widehat{M}$  be the  $\sigma$ -weak closure of the subspace  $\{(\omega \otimes \iota)W \mid \omega \in M_*\}$  of  $\mathcal{B}(\mathcal{H})$ .

From the pentagon equation, it follows that the space  $\{(\omega \otimes \iota)W \mid \omega \in M_*\}$  is a subalgebra of  $\mathcal{B}(\mathcal{H})$ . To show that its closure in \*-invariant, we use the formula

 $((\omega \otimes \iota)W)^* = (\omega_1 \otimes \iota)W$ 

that holds for nice elements  $\omega$  in  $M_*$  and where  $\omega_1$  is defined by  $\omega_1(x) = \omega(S(x)^*)^- = \overline{\omega}(S(x))$  when  $x \in \mathcal{D}(S)$ .

#### Proposition

 $\widehat{M}$  is a von Neumann algebra and  $W \in M \otimes \widehat{M}$ .



# Topologies on a von Neumann algebra

#### Let M act on $\mathcal{H}$ .

- The weak operator topology on *M* is the weakest topology making the linear maps *x* → ⟨*x*ξ, η⟩ continuous for all ξ, η ∈ *H*.
- The *σ*-weak topology is the weakest topology making the linear maps

$$\mathbf{x}\mapsto \sum \langle \mathbf{x}\xi_i,\eta_i
angle$$

continuous whenever  $\sum \|\xi_i\| \|\eta_i\| < \infty$ .

These two topologies coincide on bounded sets.

The space of  $\sigma$ -weakly continuous functionals on *M* is denoted by  $M_*$  and called the predual of *M*. The dual of  $M_*$  is *M*.

There are various other topologies on a von Neumann algebra, all weaker than the norm topology, and stronger than the weak operator topology.

## The Pentagon equation

We have

- $\Delta(x) = W^*(1 \otimes x)W$
- $(\Delta \otimes \iota)W = W_{13}W_{23}$

If we combine this with the fact that M is the left leg of W, we can summarize these two formulas and find

 $W_{13}W_{23} = W_{12}^*W_{23}W_{12}.$ 

Rewriting it, we find the so-called Pentagon equation  $W_{12}W_{13}W_{23} = W_{23}W_{12}$ . Now apply  $\omega \otimes \omega' \otimes \iota$  and we find that the space

 $\{(\omega \otimes \iota) W \mid \omega \in M_*\}$ 

is a subalgebra of  $\mathcal{B}(\mathcal{H})$ .

# Introduction The dual Dual Haar weights Invariance More formulas Conclusions The norm closure of $\{(\omega \otimes \iota)W \mid \omega \in M_*\}$

In general,  $\{(\omega \otimes \iota)W \mid \omega \in M_*\}$  is not \*-invariant. We have that

 $((\omega \otimes \iota)W)^* = (\omega_1 \otimes \iota)W$ 

provided  $\omega_1(\mathbf{x}) = \overline{\omega}(\mathbf{S}(\mathbf{x})).$ 

We can produce enough such functionals by taking integrals

$$\mathbf{x}\mapsto\int f(t)\omega( au_t(\mathbf{x}))\,dt$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

with the appropriate choice of functions *f*. Recall that  $S = R\tau_{-\frac{i}{2}}$ .

# The dual coproduct $\widehat{\Delta}$ on $\widehat{M}$

#### Proposition

For all  $y \in \widehat{M}$  we have  $W(y \otimes 1)W^* \in \widehat{M} \otimes \widehat{M}$ . If we define  $\widehat{\Delta}(y) = \chi W(y \otimes 1)W^*$ 

where  $\chi$  is the flip,  $\widehat{\Delta}$  is a coproduct on  $\widehat{M}$ 

All this is an easy consequence of the Pentagon equation for W, now written as

$$W_{23}W_{12}W_{23}^* = W_{12}W_{13}$$

and the fact that  $W \in M \otimes \widehat{M}$ . The use of the flip map is just a convention.

This is the easy part of the construction. The more difficult step is the construction of the dual Haar weights.



# Construction of a left Hilbert algebra

To construct the dual left Haar weight  $\widehat{\varphi}$  on  $(\widehat{M}, \widehat{\Delta})$ , we need a left Hilbert algebra.

#### Definition

Let  $\widehat{\mathfrak{N}}$  be the set of elements  $y \in \widehat{M}$  so that there is a  $\omega \in M_*$ and a vector  $\xi \in \mathcal{H}$  satisfying

 $\omega(\mathbf{x}^*) = \langle \xi, \Lambda(\mathbf{x}) \rangle$  for all  $\mathbf{x} \in \mathfrak{N}_{\varphi}$  and  $\mathbf{y} = (\omega \otimes \iota) W$ .

We set  $\widehat{\Lambda}(y) = \xi$ .

Observe that, given *y*, the element  $\omega$  and the vector  $\xi$  are unique, if they exist. Also  $\widehat{\Lambda}$  is linear and injective.

What is the possible motivation for such a definition?



The Fourier transform  $\hat{z}$  of an element z is defined as the linear functional  $\omega = \varphi(\cdot z)$  (provided this makes sense). Now, it is known from the algebraic theory that the multiplicative unitary W is essentially the duality. So, formally, we have  $\hat{z} = (\omega \otimes \iota)W$  when  $\omega = \varphi(\cdot z)$ . The 'spaces'  $L^2(G)$  and  $L^2(\hat{G})$  are identified which means (again formally) that we want  $\Lambda_{\hat{\varphi}}(\hat{z}) = \Lambda_{\varphi}(z)$ . This formula is rewritten as

 $\langle \Lambda_{\widehat{arphi}}(\widehat{m{z}}), \Lambda_{arphi}(m{x}) 
angle = \langle \Lambda_{arphi}(m{z}), \Lambda_{arphi}(m{x}) 
angle = arphi(m{x}^*m{z}) = \omega(m{x}^*)$ 

whenever  $\mathbf{x} \in \mathcal{N}_{\varphi}$ .

We get the formulas from the previous definition with  $y = \hat{z}$  and  $\xi = \Lambda_{\widehat{\varphi}}(\widehat{z})$ .

First we need to show that  $\widehat{\Lambda}(\widehat{\mathfrak{N}} \cap \widehat{\mathfrak{N}}^*)$  is dense in  $\mathcal{H}$ .

#### Proposition

Let  $\xi, \eta \in \mathcal{H}$  and assume that  $\eta$  is right bounded. Let  $\omega = \langle \cdot \xi, \eta \rangle$  and  $\mathbf{y} = (\omega \otimes \iota) W$ . Then  $\mathbf{y} \in \widehat{\mathfrak{N}}$  and  $\widehat{\Lambda}(\mathbf{y}) = \pi'(\eta)^* \xi$ . In particular, the space  $\widehat{\Lambda}(\widehat{\mathfrak{N}})$  is dense in  $\mathcal{H}$  and also  $\widehat{\mathfrak{N}}$  is  $\sigma$ -weakly dense in  $\widehat{M}$ .

Doing this construction a little more careful, we find the density of  $\widehat{\Lambda}(\widehat{\mathfrak{N}} \cap \widehat{\mathfrak{N}}^*)$  in  $\mathcal{H}$  and of  $\widehat{\mathfrak{N}} \cap \widehat{\mathfrak{N}}^*$  in  $\widehat{\mathcal{M}}$ .

The following will provide the multiplication.

#### Proposition

Let  $\omega, \omega_1 \in M_*$  and  $y = (\omega \otimes \iota)W$  and  $y_1 = (\omega_1 \otimes \iota)W$ . If  $y \in \widehat{\mathfrak{N}}$ , then also  $y_1y \in \widehat{\mathfrak{N}}$  and  $\widehat{\Lambda}(y_1y) = y_1\widehat{\Lambda}(y)$ .



Assume that  $\xi$  is any vector in the Hilbert space  $\mathcal{H}$  and that  $\eta$  is right bounded. Then

 $\langle \pi'(\eta)^* \xi, \Lambda(\mathbf{x}) \rangle = \langle \xi, \pi'(\eta) \Lambda(\mathbf{x}) \rangle = \langle \xi, \mathbf{x} \eta \rangle$ 

and we see that y, defined as  $y = (\omega \otimes \iota)W$  where  $\omega = \langle \cdot \xi, \eta \rangle$ will satisfy  $\widehat{\Lambda}(y) = \pi'(\eta)^* \xi$ .

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ののの

# The left Hilbert algebra $\widehat{\Lambda}(\widehat{\mathfrak{N}} \cap \widehat{\mathfrak{N}}^*)$

#### Proposition

Let  $\mathfrak{A} = \widehat{\Lambda}(\widehat{\mathfrak{N}} \cap \widehat{\mathfrak{N}}^*)$ . We can equip  $\mathfrak{A}$  with the \*-algebra structure inherited from  $\widehat{\mathfrak{N}} \cap \widehat{\mathfrak{N}}^*$ . If we denote y by  $\pi(\xi)$  when  $y \in \widehat{\mathfrak{N}} \cap \widehat{\mathfrak{N}}^*$  and  $\xi = \widehat{\Lambda}(y)$ , then we have:

- $\mathfrak{A}$  and  $\mathfrak{A}^2$  are dense in  $\mathcal{H}$ ,
- $\pi(\xi)$  is continuous for all  $\xi \in \mathfrak{A}$ ,
- $\pi$  is a \*-representation of  $\mathfrak{A}$ ,
- The \*-operation on  $\mathfrak{A}$ , denoted as  $\xi \mapsto \xi^{\sharp}$ , is preclosed.

#### Theorem

There exists a normal faithful semi-finite weight  $\widehat{\varphi}$  on  $\widehat{M}$  such that the G.N.S.-representation can be realized in  $\mathcal{H}$ , satisfying  $\widehat{\mathfrak{N}} \subseteq \mathfrak{N}_{\widehat{\varphi}}$  and such that the canonical map  $\Lambda_{\widehat{\varphi}}$  is the closure of  $\widehat{\Lambda}$  on  $\widehat{\mathfrak{N}}$ .

# Left invariance of the dual left Haar weight

#### Proposition

Define the unitary  $\widehat{W} = \Sigma W^* \Sigma$  on  $\mathcal{H} \otimes \mathcal{H}$ . We use  $\Sigma$  for the flip operator on  $\mathcal{H} \otimes \mathcal{H}$ . Then  $(\omega \otimes \iota)\widehat{\Delta}(\mathbf{y}) \in \mathfrak{N}_{\widehat{\varphi}}$  and

$$((\omega \otimes \iota)\widehat{W}^*) \Lambda_{\widehat{\varphi}}(y) = \Lambda_{\widehat{\varphi}}((\omega \otimes \iota)\widehat{\Delta}(y))$$

whenever  $\mathbf{y} \in \mathfrak{N}_{\widehat{\varphi}}$  and  $\omega \in \mathcal{B}(\mathcal{H})_*$ .

The proof is rather straightforward. At the end one uses that  $\Lambda_{\widehat{\varphi}}$  on  $\mathfrak{N}_{\widehat{\varphi}}$  is the closure of  $\widehat{\Lambda}$  on  $\widehat{\mathfrak{N}}$ .

#### Theorem

The weight  $\widehat{\varphi}$  is left invariant on  $(\widehat{M}, \widehat{\Delta})$ .

Recall the formula  $(I \otimes J)W(I \otimes J) = W^*$  where J is the modular conjugation associated with the original left Haar weight  $\varphi$  on  $(M, \Delta)$ .

#### Proposition

Define  $\widehat{R}$  on  $\widehat{M}$  by  $\widehat{R}(y) = Jy^*J$ . Then  $\widehat{R}$  is an involutive \*-anti-automorphism of  $\widehat{M}$  that flips the coproduct  $\widehat{\Delta}$ .

We can now define  $\widehat{\psi}$  on  $(\widehat{M}, \widehat{\Delta})$  by  $\widehat{\psi} = \widehat{\varphi} \circ \widehat{R}$ . This will be a right invariant weight. Hence we find that  $(\widehat{M}, \widehat{\Delta})$  is a locally compact quantum group. It is called the dual of  $(M, \Delta)$ .

It is not hard to show that the dual of  $(\widehat{M}, \widehat{\Delta})$  is canonically isomorphic with the original locally compact quantum group $(M, \Delta)$ .

We have lots of operators and other objects, related with a locally compact quantum group  $(M, \Delta)$  and its dual  $(\widehat{M}, \widehat{\Delta})$ .

Due to the relative invariance of the Haar weights, the automorphism groups are implemented by unitaries.

#### Proposition

There exist continuous one-parameter groups of unitaries  $(u_t)$ ,  $(v_t)$  and  $(w_t)$  on  $\mathcal{H}$  given by

- $u_t \Lambda_{\varphi}(\mathbf{x}) = \Lambda_{\varphi}(\sigma_t(\mathbf{x}))$
- $v_t \Lambda_{\varphi}(\mathbf{x}) = \nu^{\frac{1}{2}t} \Lambda_{\varphi}(\tau_t(\mathbf{x}))$
- $W_t \Lambda_{\varphi}(\mathbf{x}) = \nu^{-\frac{1}{2}t} \Lambda_{\varphi}(\sigma'_t(\mathbf{x}))$

when  $\mathbf{x} \in \mathfrak{N}_{\varphi}$ . They all commute and implement the associated automorphism groups.

We also have the one parameter groups  $(\delta^{it})$  and  $(\delta^{it})$ .

| Introduction | The dual | Dual Haar weights | Invariance | More formulas | Conclusions |
|--------------|----------|-------------------|------------|---------------|-------------|
|              |          |                   |            |               |             |

#### Proposition

The modular conjugation  $\widehat{\mathbf{J}}$  and the modular operator  $\widehat{\nabla}$  for the dual left Haar weight  $\widehat{\varphi}$  are given by

$$\widehat{J}\Lambda_{\varphi}(\mathbf{x}) = \Lambda_{\varphi}(\mathbf{R}(\mathbf{x})^* \delta^{\frac{1}{2}})$$
(5)

$$\widehat{\nabla}^{it} \Lambda_{\varphi}(\mathbf{x}) = \Lambda_{\varphi}(\tau_t(\mathbf{x})\delta^{-it})$$
(6)

where  $\mathbf{x} \in \mathfrak{N}_{\varphi}$ .

#### Proposition

$$R(x) = \widehat{J}x^*\widehat{J} \qquad \tau_t(x) = \widehat{\nabla}^{it}x\widehat{\nabla}^{-it} \quad \text{for all } x \in M \qquad (7)$$
  
$$\widehat{R}(y) = Jy^*J \qquad \widehat{\tau}_t(y) = \nabla^{it}y\nabla^{-it} \quad \text{for all } y \in \widehat{M} \qquad (8)$$

| Introduction | The dual | Dual Haar weights | Invariance | More formulas | Conclusions |
|--------------|----------|-------------------|------------|---------------|-------------|
|              |          |                   |            |               |             |

# Proposition We have • $\widehat{\Delta}(\widehat{\delta^{it}}) = \widehat{\delta^{it}} \otimes \widehat{\delta^{it}}$ for all t. • $\Delta(\delta^{it}) = \delta^{it} \otimes \delta^{it}$ for all t.

Remark that the second formula is proven by duality, from the first one.

Proposition •  $\nabla^{it} = (\widehat{J}\widehat{\delta}^{it}\widehat{J}) P^{it}$ •  $\widehat{\nabla}^{it} = (J\delta^{it}J) P^{it}$ 

We have written  $P^{it}$  for  $v^{it}$ , introduced earlier. We get similar formulas for the modular operators of the right Haar weights.



- We have associated a dual locally compact quantum group  $(\widehat{\Delta}, \widehat{M})$  to any locally compact quantum group  $(M, \Delta)$ .
- We obtained many formulas connecting the multitude of objects that come with such a pair of quantum groups.
- However, we seem to have forgotten to go back to the C\*-algebras.
- This is one of the topics we plan to treat in the last lecture.

(日) (日) (日) (日) (日) (日) (日)



- G. Pedersen: C\*-algebras and their automorphism groups (1979).
- M. Takesaki: Theory of Operator Algebras II (2001).
- J. Kustermans & S. Vaes: Locally compact quantum groups. Ann. Sci. Éc. Norm. Sup. (2000).
- J. Kustermans & S. Vaes: Locally compact quantum groups in the von Neumann algebra setting. Math. Scand. (2003).
- A. Van Daele: Locally compact quantum groups: The von Neumann algebra versus the C\*-algebra approach.
   Preprint KU Leuven (2005). Bulletin of Kerala Mathematics Association (2006).
- A. Van Daele: Locally compact quantum groups. A von Neumann algebra approach. Preprint University of Leuven (2006). Arxiv: math/0602212v1 [math.OA].