
Logic, Automata,
Games, and Algorithms

Moshe Y. Vardi

Rice University

Two Separate Paradigms in
Mathematical Logic

• Paradigm I : Logic – declarative formalism

– Specify properties of mathematical objects,
e.g., (∀x, y, x)(mult(x, y, z) ↔ mult(y, x, z)) –
commutativity.

• Paradigm II : Machines – imperative formalism

– Specify computations, e.g., Turing machines,
finite-state machines, etc.

Surprising Phenomenon : Intimate connection
between logic and machines – topic of this talk.

1

Nondeterministic Finite Automata

A = (Σ, S, S0, ρ, F)

• Alphabet: Σ

• States: S

• Initial states: S0 ⊆ S

• Nondeterministic transition function:
ρ : S × Σ → 2S

• Accepting states: F ⊆ S

Input word : a0, a1, . . . , an−1

Run : s0, s1, . . . , sn
• s0 ∈ S0

• si+1 ∈ ρ(si, ai) for i ≥ 0
Acceptance : sn ∈ F
Recognition : L(A) – words accepted by A.

Example : - •
6

� �
0

1-
�

0
•��

��

6

� �
1

– ends with 1’s

Fact : NFAs define the class Reg of regular
languages.

2

Logic of Finite Words

View finite word w = a0, . . . , an−1 over alphabet
Σ as a mathematical structure:
• Domain: 0, . . . , n− 1
• Binary relations: <,≤
• Unary relations: {Pa : a ∈ Σ}

First-Order Logic (FO) :

• Unary atomic formulas: Pa(x) (a ∈ Σ)

• Binary atomic formulas: x < y, x ≤ y

Example : (∃x)((∀y)(¬(x < y)) ∧ Pa(x)) – last letter
is a.

Monadic Second-Order Logic (MSO) :

• Monadic second-order quantifier: ∃Q

• New unary atomic formulas: Q(x)

3

NFA vs. MSO

Theorem [Büchi, Elgot, Trakhtenbrot, 1957-8
(independently)]: MSO ≡ NFA
• Both MSO and NFA define the class Reg.

Proof : Effective

• From NFA to MSO (A 7→ ϕA)

– Existence of run – existential monadic quantification

– Proper transitions and acceptance - first-order
formula

• From MSO to NFA (ϕ 7→ Aϕ): closure of NFAs
under

– Union – disjunction

– Projection – existential quantification

– Complementation – negation

4

NFA Complementation

Run Forest of A on w:

• Roots: elements of S0.

• Children of s at level i: elements of ρ(s, ai).

• Rejection: no leaf is accepting.

Key Observation : collapse forest into a DAG – at
most one copy of a state at a level; width of DAG is
|S|.

Subset Construction Rabin-Scott, 1959:
• Ac = (Σ, 2S, {S0}, ρ

c, F c)
• F c = {T : T ∩ F = ∅}
• ρc(T, a) =

⋃
t∈T ρ(t, a)

• L(Ac) = Σ∗ − L(A)

5

Complementation Blow-Up

A = (Σ, S, S0, ρ, F), |S| = n
Ac = (Σ, 2S, {S0}, ρ

c, F c)

Blow-Up : 2n upper bound

Can we do better?

Lower Bound : 2n

Sakoda-Sipser 1978, Birget 1993

Ln = (0 + 1)∗1(0 + 1)n−10(0 + 1)∗

• Ln is easy for NFA
• Ln is hard for NFA

6

NFA Nonemptiness

Nonemptiness : L(A) 6= ∅

Nonemptiness Problem : Decide if given A is
nonempty.

Directed Graph GA = (S,E) of NFA A =
(Σ, S, S0, ρ, F):
• Nodes: S
• Edges: E = {(s, t) : t ∈ ρ(s, a) for some a ∈
Σ}

Lemma : A is nonempty iff there is a path inGA from
S0 to F .

• Decidable in time linear in size of A, using
breadth-first search or depth-first search.

7

MSO Satisfiability – Finite Words

Satisfiability : models(ψ) 6= ∅

Satisfiability Problem : Decide if given ψ is
satisfiable.

Lemma : ψ is satisfiable iff Aψ is nonnempty.

Corollary : MSO satisfiability is decidable.

• Translate ψ to Aψ.

• Check nonemptiness of Aψ.

Complexity :

• Upper Bound: Nonelementary Growth

2·
·
·
2n

(tower of height O(n))

• Lower Bound [Stockmeyer, 1974]: Satisfiability of
FO over finite words is nonelementary (no bounded-
height tower).

8

Automata on Infinite Words

Büchi Automaton, 1962: A = (Σ, S, S0, ρ, F)

• Σ: finite alphabet

• S: finite state set

• S0 ⊆ S: initial state set

• ρ : S × Σ → 2S: transition function

• F ⊆ S: accepting state set

Input: w = a0, a1 . . .
Run: r = s0, s1 . . .
• s0 ∈ S0

• si+1 ∈ ρ(si, ai)
Acceptance: run visits F infinitely often.

Fact : NBAs define the class ω-Reg of ω-regular
languages.

9

Examples

((0 + 1)∗1)ω:

- •
6

� �
0

1-
�

0
•��

��

6

� �
1

– infinitely many 1’s

(0 + 1)∗1ω:

- •
6

� �
0, 1

1
- •��

��

6

� �
1

– finitely many 0’s

10

Logic of Infinite Words

View infinite word w = a0, a1, . . . over alphabet
Σ as a mathematical structure:
• Domain: N
• Binary relations: <,≤
• Unary relations: {Pa : a ∈ Σ}

First-Order Logic (FO) :

• Unary atomic formulas: Pa(x) (a ∈ Σ)

• Binary atomic formulas: x < y, x ≤ y

Monadic Second-Order Logic (MSO) :

• Monadic second-order quantifier: ∃Q

• New unary atomic formulas: Q(x)

Example : q holds at every even point.

(∃Q)(∀x)(∀y)((((Q(x) ∧ y = x+ 1) → (¬Q(y)))∧
(((¬Q(x)) ∧ y = x+ 1) → Q(y)))∧
(x = 0 → Q(x)) ∧ (Q(x) → q(x))),

11

NBA vs. MSO

Theorem [Büchi, 1962]: MSO ≡ NBA
• Both MSO and NBA define the class ω-Reg.

Proof : Effective

• From NBA to MSO (A 7→ ϕA)

– Existence of run – existential monadic quantification

– Proper transitions and acceptance - first-order
formula

• From MSO to NBA (ϕ 7→ Aϕ): closure of NBAs
under

– Union – disjunction

– Projection - existential quantification

– Complementation - negation

12

Büchi Complementation

Problem : subset construction fails!

t

0

0
s

0

t
0

s

0

History

• Büchi’62: doubly exponential construction.

• SVW’85: 16n
2

upper bound

• Saf’88: n2n upper bound

• Mic’88: (n/e)n lower bound

• KV’97: (6n)n upper bound

• FKV’04: (0.97n)n upper bound

• Yan’06: (0.76n)n lower bound

• Schewe’09: (0.76n)n upper bound

13

NBA Nonemptiness

Nonemptiness : L(A) 6= ∅

Nonemptiness Problem : Decide if given A is
nonempty.

Directed Graph GA = (S,E) of NBA A =
(Σ, S, S0, ρ, F):
• Nodes: S
• Edges: E = {(s, t) : t ∈ ρ(s, a) for some a ∈
Σ}

Lemma : A is nonempty iff there is a path inGA from
S0 to some t ∈ F and from t to itself – lasso.

• Decidable in time linear in size of A, using depth-
first search – analysis of cycles in graphs.

14

MSO Satisfiability – Infinite Words

Satisfiability : models(ψ) 6= ∅

Satisfiability Problem : Decide if given ψ is
satisfiable.

Lemma : ψ is satisfiable iff Aψ is nonnempty.

Corollary : MSO satisfiability is decidable.

• Translate ψ to Aψ.

• Check nonemptiness of Aψ.

Complexity :

• Upper Bound: Nonelementary Growth

2·
·
·
2O(n log n)

(tower of height O(n))

• Lower Bound [Stockmeyer, 1974]: Satisfiability
of FO over infinite words is nonelementary (no
bounded-height tower).

15

Logic and Automata for Infinite Trees

Labeled Infinite k-ary Tree : τ : {0, . . . , k−1}∗ → Σ

Tree Automata :

• Transition Function– ρ : S × Σ → 2S
k

MSO for Trees :

• Atomic predicates: E1(x, y), . . . , Ek(x, y)

Theorem [Rabin, 1969]:
Tree MSO ≡ Tree Automata
• Major difficulty: complementation.

Corollary : Decidability of satisfiability of MSO on
trees – one of the most powerful decidability results
in logic.

Standard technique during 1970s : Prove decidability
via reduction to MSO on trees.

• Nonelementary complexity.

16

Temporal Logic

Prior, 1914–1969, Philosophical Preoccupations:

• Religion: Methodist, Presbytarian, atheist,
agnostic

• Ethics: “Logic and The Basis of Ethics”, 1949

• Free Will, Predestination, and Foreknowledge:

– “The future is to some extent, even if it is only
a very small extent, something we can make for
ourselves”.

– “Of what will be, it has now been the case that it
will be.”

– “There is a deity who infallibly knows the entire
future.”

Mary Prior: “I remember his waking me one
night [in 1953], coming and sitting on my bed,
. . ., and saying he thought one could make a
formalised tense logic.”

• 1957: “Time and Modality”

17

The Temporal Logic of Programs

Precursors :

• Prior: “There are practical gains to be had from
this study too, for example in the representation of
time-delay in computer circuits”

• Rescher & Urquhart, 1971: applications to
processes (“a programmed sequence of states,
deterministic or stochastic”)

[Pnueli, 1977]:
• Future linear temporal logic (LTL) as a
logic for the specification of non-terminating
programs
• Temporal logic with “next” and “until”.

18

Programs as Labeled Graphs

Key Idea : Programs can be represented as
transition systems (state machines)

Transition System : M = (W, I,E, F, π)

• W : states

• I ⊆W : initial states

• E ⊆W ×W : transition relation

• F ⊆W : fair states

• π : W → Powerset(Prop): Observation
function

Fairness : An assumption of “reasonableness”
– restrict attention to computations that visit F
infinitely often, e.g., “the channel will be up infinitely
often”.

19

Runs and Computations

Run : w0, w1, w2, . . .

• w0 ∈ I

• (wi, wi+1) ∈ E for i = 0, 1, . . .

Computation : π(w0), π(w1), π(w2), . . .

• L(M): set of computations of M

Verification : System M satisfies specification ϕ –

• all computations in L(M) satisfy ϕ.

. . .

. . .

. . .

20

Specifications

Specification : properties of computations.

Examples :

• “No two processes can be in the critical section
at the same time.” – safety

• “Every request is eventually granted.” – liveness

• “Every continuous request is eventually
granted.” – liveness

• “Every repeated request is eventually granted.” –
liveness

21

Temporal Logic

Linear Temporal logic (LTL): logic of temporal
sequences (Pnueli, 1977)

Main feature: time is implicit

• next ϕ: ϕ holds in the next state.

• eventually ϕ: ϕ holds eventually

• always ϕ: ϕ holds from now on

• ϕ until ψ: ϕ holds until ψ holds.

• π,w |= next ϕ if w • -•
ϕ

- • -• -•. . .

• π,w |= ϕ until ψ if w •
ϕ

-•
ϕ

- •
ϕ

-•
ψ

-•. . .

22

Examples

• always not (CS1 and CS2): mutual exclusion
(safety)

• always (Request implies eventually Grant):
liveness

• always (Request implies (Request until Grant)):
liveness

• always (always eventually Request) implies
eventually Grant: liveness

23

Expressive Power

Gabbay, Pnueli, Shelah & Stavi, 1980:
Propositional LTL has precisely the expressive
power of FO over the naturals (builds on [Kamp,
1968]).

Easy Direction : LTL 7→FO

Example : ϕ is θ until ψ
FO(ϕ)(x) :

(∃y)(y > x∧FO(ψ)(y)∧(∀z)((x ≤ z < y) → FO(θ)(z))

Corollary : There is a translation of LTL to NBA via
FO.

• But: Translation is nonelementary.

24

Elementary Translation

Theorem [V.&Wolper, 1983]: There is an
exponential translation of LTL to NBA.
Corollary : There is an exponential algorithm for
satisfiability in LTL.

Industrial Impact :

• Practical verification tools based on LTL.

• Widespread usage in industry.

Question : What is the key to efficient translation?
Answer : Games!

25

Alternating Automata

Alternating automata : 2-player games

Nondeterministic transition: ρ(s, a) = t1 ∨ t2 ∨ t3

Alternating transition: ρ(s, a) = (t1 ∧ t2) ∨ t3
“either both t1 and t2 accept or t3 accepts”.

• (s, a) 7→ {t1, t2} or (s, a) 7→ {t3}

• {t1, t2} |= ρ(s, a) and {t3} |= ρ(s, a)

Alternating transition relation : ρ : S×Σ → B+(S)
(positive Boolean formulas over S)

Alternative Approach : existential and universal
states [Chandra, Kozen &Stckmeyer, 1980]

26

Alternating Automata

Brzozowski&Leiss, 1980: Boolean automata

A = (Σ, S, s0, ρ, F)
• Σ, S, F ⊆ S: as before
• s0 ∈ S: initial state
• ρ : S × Σ → B+(S): alternating transition
function

Game:

• Board: a0, a1 . . .

• Positions: S ×N

• Initial position: (s0, 0)

• Automaton move at (s, i):
choose T ⊆ S such that T |= ρ(s, ai)

• Opponent’s response:
move to (t, i+ 1) for some t ∈ T

• Automaton wins if play goes through infinitely
many positions (s′, i) with s′ ∈ F

Acceptance: Automaton has a winning strategy.

27

Example

A = ({0, 1}, {m, s},m, ρ, {m})

• ρ(m, 1) = m

• ρ(m, 0) = m ∧ s

• ρ(s, 1) = true

• ρ(s, 0) = s

Intuition:

• m is a master process. It launches s when it sees
0.

• s is a slave process. It wait for 1, and then
terminates successfully.

L(A) = infinitely many 1’s.

28

Expressiveness

[Miyano&Hayashi, 1984]:

• Nondeterministic Büchi automata: ω-regular
languages

• Alternating automata: ω-regular languages

What is the point?: Succinctness

Exponential gap :

• Exponential translation from alternating Büchi
automata to nondeterministic Büchi automata

• In the worst case this is the best possible

• PSPACE nonemptiness test: go via nondeterministic
automata.

Theorem [V., 1994] : For each LTL formula ϕ
there is an alternating Büchi automaton Aϕ with
||ϕ|| states such that models(ϕ) = L(Aϕ).

29

Game Semantics for LTL

Background : game-semantics for FO, à la
[Lorenzen, 1958] and [Hintikka, 1973] .

Game for LTL: Protagonist vs Antagonist

• Formula ϕ

• Infinite word w = a0, a1, . . .

• Position (ψ, i) in subformulas(ϕ) ×N

• Initial position (ϕ, 0)

case
• ψ propositional: Protagonist wins iff ψ holds
at ai
• ψ = ψ1 ∨ ψ2: Protagonist choses ψj and
moves to (ψj, i)
• ψ = ψ1∧ψ2: Antagonist choses ψj and moves
to (ψj, i)
• ψ = next θ: Protagonist moves to (θ, i+ 1)
• ψ = θ until χ: Protagonist moves to (χ, i) or
(θ ∧ (next ψ), i)
esac .

Crucial Idea : Alternating automata capture game
semantics

30

LTL to to Alternating Büchi Automata

Input formula : ϕ

• subf(ϕ): subformulas of ϕ

• nonU(ϕ): non-Until subformulas of ϕ

Alternating Büchi Automaton :

Aϕ = {2Prop, subf(ϕ), ϕ, ρ, nonU(ϕ)}:
• ρ(p, a) = true if p ∈ a,
• ρ(p, a) = false if p 6∈ a,
• ρ(ξ ∧ ψ, a) = ρ(ξ, a) ∧ ρ(ψ, a),
• ρ(ξ ∨ ψ, a) = ρ(ξ, a) ∨ ρ(ψ, a),
• ρ(Xψ, a) = ψ,
• ρ(ξUψ, a) = ρ(ψ, a) ∨ (ρ(ξ, a) ∧ ξUψ).

31

Back to Trees

Games, vis alternating automata, provide the key
to obtaining elementary decision procedures to
numerous modal, temporal, and dynamic logics.

Theorem [Kupferman&V.&Wolper, 1994]: For
each CTL formula ϕ there is an alternating
Büchi tree automaton Aϕ with ||ϕ|| states such
that models(ϕ) = L(Aϕ).
Theorem [KVW, 1986]: There is an exponential
translation of alternating Büchi tree automata to
nondeterministic Büchi tree automata.

Known : Nonemptiness of nondeterministic Büchi
tree automata can be checked in quadratic time
[V.&Wolper, 1984]

Corollary : There is an exponential algorithm for
satisfiability of CTL [Emerson&Halpern, 1985]

32

Discussion

Major Points :

• The logic-automata connection is one of the most
fundamental paradigms of logic.

• One of the major benefits of this paradigm is its
algorithmic consequences.

• A newer component of this approach is that
of games, and alternating automata as their
automata-theoretic counterpart.

• The interaction between logic, automata, games.
and algorithms yields a fertile research area.

33

Tower of Abstractions

Key idea in science : abstraction tower

strings

quarks

hadrons

atoms

molecules

amino acids

genes

genomes

organisms

populations

34

Abstraction Tower in CS

CS Abstraction Tower :

analog devices
digital devices
microprocessors
assembly languages
high-level languages
libraries
software frameworks

Crux : Abstraction tower is the only way to deal with
complexity!

Similarly : We need high-level algorithmic building
blocks, e.g., BFS, DFS.

This talk : Games/alternation as a high-level
algorithmic construct.

Bottom line : Alternation is a key algorithmic
construct in automated reasoning — used in
industrial tools.

35

