Conformal removability of Schramm Loewner Evolutions

Konstantinos Kavvadias

joint with Jason Miller and Lukas Schoug

March 11, 2024

Conformal welding

Suppose that Γ is a closed Jordan curve in the complex plane \mathbf{C} and let U (resp. \widetilde{U}) be the bounded (resp. unbounded) connected component of $\mathbf{C} \setminus \Gamma$. Let $f: \mathbf{D} \to U$ and $g: \mathbf{C} \setminus \overline{\mathbf{D}} \to \widetilde{U}$ be conformal transformations. By Caratheodory's theorem, f and g extend to homeomorphisms $\widetilde{f}: \partial \mathbf{D} \to \Gamma$ and $\widetilde{g}: \partial \mathbf{D} \to \Gamma$. Then $h = \widetilde{g}^{-1} \circ \widetilde{f}: \partial \mathbf{D} \to \partial \mathbf{D}$ is a homeomorphism and homeomorphisms arising in this way are called *conformal weldings*.

Fix a welding homeomorphism φ: ∂D → ∂D with two welding interfaces η₁, η₂ and corresponding pairs of conformal maps (f₁, g₁) and (f₂, g₂).

- Fix a welding homeomorphism φ: ∂D → ∂D with two welding interfaces η₁, η₂ and corresponding pairs of conformal maps (f₁, g₁) and (f₂, g₂).
- ▶ Let U_j (resp. \widetilde{U}_j) be the bounded (resp. unbounded) connected component of $\mathbf{C} \setminus \eta_j$ for j = 1, 2. Then $f_2 \circ f_1^{-1}$ is a conformal transformation mapping U_1 onto U_2 and $g_2 \circ g_1^{-1}$ is a conformal transformation mapping \widetilde{U}_1 onto \widetilde{U}_2 .

- Fix a welding homeomorphism φ: ∂D → ∂D with two welding interfaces η₁, η₂ and corresponding pairs of conformal maps (f₁, g₁) and (f₂, g₂).
- ▶ Let U_j (resp. \widetilde{U}_j) be the bounded (resp. unbounded) connected component of $\mathbf{C} \setminus \eta_j$ for j = 1, 2. Then $f_2 \circ f_1^{-1}$ is a conformal transformation mapping U_1 onto U_2 and $g_2 \circ g_1^{-1}$ is a conformal transformation mapping \widetilde{U}_1 onto \widetilde{U}_2 .
- ▶ We can define a homeomorphism ψ : **C** \rightarrow **C** by setting $\psi(z) = f_2 \circ f_1^{-1}(z)$ for $z \in U_1$, $\psi(z) = g_2 \circ g_1^{-1}(z)$ for $z \in \widetilde{U}_1$ and $\psi(z) = g_2 \circ g_1^{-1}(z) = f_2 \circ f_1^{-1}(z)$ for $z \in \eta_1$.

- Fix a welding homeomorphism φ: ∂D → ∂D with two welding interfaces η₁, η₂ and corresponding pairs of conformal maps (f₁, g₁) and (f₂, g₂).
- ▶ Let U_j (resp. \widetilde{U}_j) be the bounded (resp. unbounded) connected component of $\mathbf{C} \setminus \eta_j$ for j = 1, 2. Then $f_2 \circ f_1^{-1}$ is a conformal transformation mapping U_1 onto U_2 and $g_2 \circ g_1^{-1}$ is a conformal transformation mapping \widetilde{U}_1 onto \widetilde{U}_2 .
- ▶ We can define a homeomorphism ψ : **C** \rightarrow **C** by setting $\psi(z) = f_2 \circ f_1^{-1}(z)$ for $z \in U_1$, $\psi(z) = g_2 \circ g_1^{-1}(z)$ for $z \in \widetilde{U}_1$ and $\psi(z) = g_2 \circ g_1^{-1}(z) = f_2 \circ f_1^{-1}(z)$ for $z \in \eta_1$.
- Suppose that η₁ is conformally removable. Then ψ is a Mobius transformation since it is conformal on C \ η₁ and η₂ = ψ(η₁).

• SLE_{κ} ($\kappa > 0$), probability measure on random planar fractal curves.

- SLE_{κ} ($\kappa > 0$), probability measure on random planar fractal curves.
- Arise as scaling limits in 2D statistical mechanics models at criticality (Loop-erased random walk on Z² (κ = 2), Percolation interface in the hexagonal lattice in the plane (κ = 6)).

- SLE_{κ} ($\kappa > 0$), probability measure on random planar fractal curves.
- Arise as scaling limits in 2D statistical mechanics models at criticality (Loop-erased random walk on Z^2 ($\kappa = 2$), Percolation interface in the hexagonal lattice in the plane ($\kappa = 6$)).
- Conformally invariant.

- ▶ SLE_{κ} (κ > 0), probability measure on random planar fractal curves.
- Arise as scaling limits in 2D statistical mechanics models at criticality (Loop-erased random walk on \mathbf{Z}^2 ($\kappa = 2$), Percolation interface in the hexagonal lattice in the plane ($\kappa = 6$)).
- Conformally invariant.
- Three phases: curves are simple if κ ∈ (0,4], self-intersecting if κ ∈ (4,8) and space-filling if κ ≥ 8.

Figure: SLE_{κ} for $\kappa = 2, 3, 6$. (Simulation by Tom Kennedy.)

Random conformal welding

Fix $\kappa \in (0, 4]$ and suppose that η is an SLE_{κ} curve in the upper half-plane **H** from 0 to ∞ . Question: Is it possible to find a (random) homeomorphism $\phi: \mathbf{R}_+ \to \mathbf{R}_-$ so that the following holds?

Random conformal welding

- Fix $\kappa \in (0, 4]$ and suppose that η is an SLE_{κ} curve in the upper half-plane **H** from 0 to ∞ . Question: Is it possible to find a (random) homeomorphism $\phi: \mathbf{R}_+ \to \mathbf{R}_-$ so that the following holds?
- ▶ Let D_L (resp. D_R) be the connected component of $\mathbf{H} \setminus \eta$ lying to the left (resp. right) of η . Let also ψ_L (resp. ψ_R) be a conformal transformation mapping \mathbf{H} onto \mathbf{H}_L (resp. \mathbf{H}_R) and fixing 0 and ∞ . Then we need that $\phi = \psi_R^{-1} \circ \psi_L$.

Random conformal welding

- Fix κ ∈ (0, 4] and suppose that η is an SLE_κ curve in the upper half-plane H from 0 to ∞. Question: Is it possible to find a (random) homeomorphism φ: R₊ → R₋ so that the following holds?
- ▶ Let D_L (resp. D_R) be the connected component of $\mathbf{H} \setminus \eta$ lying to the left (resp. right) of η . Let also ψ_L (resp. ψ_R) be a conformal transformation mapping \mathbf{H} onto \mathbf{H}_L (resp. \mathbf{H}_R) and fixing 0 and ∞ . Then we need that $\phi = \psi_R^{-1} \circ \psi_L$.
- Conformal removability of SLE_κ would imply that the only possible welding interface corresponding to φ is a rescaling of η in H.

LQG random surface

▶ Let $\gamma \in (0,2]$. A γ -LQG surface is an equivalence class of pairs (D, h), where $D \subseteq \mathbf{C}$ is a simply connected domain and $h \in H^{-1}_{loc}(D)$ is a distribution on D. Two pairs (D_1, h_1) and (D_2, h_2) are defined to be equivalent if there exists a conformal map $\psi: D_2 \to D_1$ such that

$$h_2 = h_1 \circ \psi + Q_\gamma \log |\psi'| \tag{0.1}$$

where $Q_{\gamma} = \frac{2}{\gamma} + \frac{\gamma}{2}$.

LQG random surface

▶ Let $\gamma \in (0,2]$. A γ -LQG surface is an equivalence class of pairs (D, h), where $D \subseteq \mathbf{C}$ is a simply connected domain and $h \in H^{-1}_{loc}(D)$ is a distribution on D. Two pairs (D_1, h_1) and (D_2, h_2) are defined to be equivalent if there exists a conformal map $\psi: D_2 \to D_1$ such that

$$h_2 = h_1 \circ \psi + Q_\gamma \log |\psi'| \tag{0.1}$$

where $Q_{\gamma} = \frac{2}{\gamma} + \frac{\gamma}{2}$. For $\gamma \in (0, 2)$ and a γ -LQG surface (D, h) we can define Borel measures μ_h^{γ}

and ν_h^{γ} on D and ∂D respectively via the regularization procedures

$$\mu_h^{\gamma}(dz) = \lim_{\epsilon \to 0} \epsilon^{\gamma^2/2} e^{\gamma h_{\epsilon}(z)} dz, \quad \nu_h^{\gamma}(dx) = \lim_{\epsilon \to 0} \epsilon^{\gamma^2/4} e^{\gamma h_{\epsilon}(x)/2} dx.$$

Solution of the random conformal welding problem

Fix $\kappa = \gamma^2 \in (0, 4)$ and let $(\mathbf{H}, h_L, 0, \infty)$, $(\mathbf{H}, h_R, 0, \infty)$ be two independent γ -quantum wedges. We let $\phi: \mathbf{R}_+ \to \mathbf{R}_-$ be the homeomorphism so that $\nu_{h_L}([0, x]) = \nu_{h_R}([\phi(x), 0])$ for each $x \ge 0$. Then we can find an interface η in \mathbf{H} from 0 to ∞ which is measurable with respect to (h_L, h_R) and such that $\phi = \psi_R^{-1} \circ \psi_L$, where ψ_q is the conformal transformation which maps \mathbf{H} onto D_q and fixes 0 and ∞ for $q \in \{L, R\}$.

Solution of the random conformal welding problem

- Fix $\kappa = \gamma^2 \in (0, 4)$ and let $(\mathbf{H}, h_L, 0, \infty)$, $(\mathbf{H}, h_R, 0, \infty)$ be two independent γ -quantum wedges. We let $\phi: \mathbf{R}_+ \to \mathbf{R}_-$ be the homeomorphism so that $\nu_{h_L}([0, x]) = \nu_{h_R}([\phi(x), 0])$ for each $x \ge 0$. Then we can find an interface η in \mathbf{H} from 0 to ∞ which is measurable with respect to (h_L, h_R) and such that $\phi = \psi_R^{-1} \circ \psi_L$, where ψ_q is the conformal transformation which maps \mathbf{H} onto D_q and fixes 0 and ∞ for $q \in \{L, R\}$.
- Conversely, suppose that we start with an $(\gamma \frac{2}{\gamma})$ -quantum wedge $(\mathbf{H}, h, 0, \infty)$ and let η be an SLE_{κ} in \mathbf{H} from 0 to ∞ which is independent of η . Then the surfaces $(D_L, h|_{D_L}), (D_R, h|_{D_R})$ are independent γ -quantum wedges and their quantum boundary lengths along η agree.

Solution of the random conformal welding problem

- Fix $\kappa = \gamma^2 \in (0, 4)$ and let $(\mathbf{H}, h_L, 0, \infty)$, $(\mathbf{H}, h_R, 0, \infty)$ be two independent γ -quantum wedges. We let $\phi: \mathbf{R}_+ \to \mathbf{R}_-$ be the homeomorphism so that $\nu_{h_L}([0, x]) = \nu_{h_R}([\phi(x), 0])$ for each $x \ge 0$. Then we can find an interface η in \mathbf{H} from 0 to ∞ which is measurable with respect to (h_L, h_R) and such that $\phi = \psi_R^{-1} \circ \psi_L$, where ψ_q is the conformal transformation which maps \mathbf{H} onto D_q and fixes 0 and ∞ for $q \in \{L, R\}$.
- Conversely, suppose that we start with an $(\gamma \frac{2}{\gamma})$ -quantum wedge $(\mathbf{H}, h, 0, \infty)$ and let η be an SLE_{κ} in \mathbf{H} from 0 to ∞ which is independent of η . Then the surfaces $(D_L, h|_{D_L}), (D_R, h|_{D_R})$ are independent γ -quantum wedges and their quantum boundary lengths along η agree.
- The $\kappa < 4$ case was proved by Sheffield and the $\kappa = 4$ case by Holden and Powell.

Why "quantum wedges" are the natural surfaces to relate to ${\rm SLE}$ curves?

An *a*-quantum wedge $(\mathbf{H}, h, 0, \infty)$ has the following properties:

(H, h, 0, ∞) and (H, h + C, 0, ∞) have the same law for every fixed C > 0 when viewed modulo the coordinate change formula (0.1). Note that the law of SLE_κ is scale invariant.

Why "quantum wedges" are the natural surfaces to relate to ${\rm SLE}$ curves?

An *a*-quantum wedge $(\mathbf{H}, h, 0, \infty)$ has the following properties:

- (H, h, 0, ∞) and (H, h + C, 0, ∞) have the same law for every fixed C > 0 when viewed modulo the coordinate change formula (0.1). Note that the law of SLE_κ is scale invariant.
- ▶ $(\mathbf{H}, h, 0, \infty)$ looks like $\tilde{h} a \log |\cdot|$ in arbitrarily small neighbourhoods of 0, where \tilde{h} is a free boundary GFF on **H** normalized so that its average on $\mathbf{H} \cap \partial \mathbf{D}$ is equal to 0.

How does one prove conformal removability?

Jones and Smirnov proved that if $K \subseteq \mathbf{C}$ is the boundary of a Hölder domain, then K is conformally removable. Rohde and Schramm proved that the complement of an $\operatorname{SLE}_{\kappa}$ in **H** for $\kappa < 4$ is a Hölder domain, so $\operatorname{SLE}_{\kappa}$ is conformally removable for $\kappa < 4$. More generally, Jones and Smirnov proved that if the uniformizing map has modulus of continuity $\exp(-\sqrt{\log(\delta^{-1})(\log(\log(\delta^{-1})))}/o(1))$ as $\delta \to 0$, then conformal removability of the boundary of the domain holds.

Why conformal removability of SLE_4 is hard?

The modulus of continuity of the SLE₄ uniformizing map is given by $(\log(\delta^{-1}))^{-\frac{1}{3}+o(1)}$ as $\delta \to 0$. The main reason for this is that SLE₄ curves are barely non-self-intersecting in the sense that they contain tight bottlenecks. Equivalently, if $z \notin \eta$ is such that $\operatorname{dist}(z, \eta) \asymp \epsilon$, then the probability that a complex Brownian motion independent of η and started at z travels macroscopic distance before hitting η behaves like $\exp(-\epsilon^{-3+o(1)})$ as $\epsilon \to 0$.

Quasiconformal maps

Let D, D̃ be domains in Ĉ = C ∪ {∞} and let f: D → D̃ be an orientation preserving homeomorphism. We say that f is ACL (absolutely continuous on lines) if f is absolutely continuous on Lebesgue a.e. line segment in D which is parallel to one of the axes.

Quasiconformal maps

Let D, D̃ be domains in Ĉ = C ∪ {∞} and let f: D → D̃ be an orientation preserving homeomorphism. We say that f is ACL (absolutely continuous on lines) if f is absolutely continuous on Lebesgue a.e. line segment in D which is parallel to one of the axes.

▶ For $M \ge 1$, we say that f is an M-quasiconformal mapping if f is ACL and $\left|\frac{\partial f}{\partial \overline{z}}\right| \le \left(\frac{M-1}{M+1}\right) \left|\frac{\partial f}{\partial z}\right|$ a.e. where

$$\frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right), \quad \frac{\partial f}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right).$$

Quasiconformal maps

Let D, D̃ be domains in Ĉ = C ∪ {∞} and let f: D → D̃ be an orientation preserving homeomorphism. We say that f is ACL (absolutely continuous on lines) if f is absolutely continuous on Lebesgue a.e. line segment in D which is parallel to one of the axes.

▶ For $M \ge 1$, we say that f is an M-quasiconformal mapping if f is ACL and $\left|\frac{\partial f}{\partial \overline{z}}\right| \le \left(\frac{M-1}{M+1}\right) \left|\frac{\partial f}{\partial z}\right|$ a.e. where

$$\frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right), \quad \frac{\partial f}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right).$$

 f is conformal if and only if it is 1-quasiconformal. Moreover, for an M-quasiconformal map f we have that

$$\limsup_{r\to 0}\frac{M(z,r)}{m(z,r)}\leq M,$$

where $m(z, r) = \inf_{|w-z|=r} |f(w) - f(z)|$, $M(z, r) = \sup_{|w-z|=r} |f(w) - f(z)|$.

Suppose that Leb(X) = 0 and f: C → C is a homeomorphism such that f|_{C\X} is conformal. Since f is conformal a.e., it suffices to show that f has the ACL property.

- Suppose that Leb(X) = 0 and f: C → C is a homeomorphism such that f|_{C\X} is conformal. Since f is conformal a.e., it suffices to show that f has the ACL property.
- Fix a rectangle $F = [a, b] \times [c, d]$ and sample t from Leb([c, d]). Set $L_t = \{x + it : x \in \mathbf{R}\}$. We need to show that $f|_{L_t \cap F}$ is absolutely continuous.

- Suppose that Leb(X) = 0 and f: C → C is a homeomorphism such that f|_{C\X} is conformal. Since f is conformal a.e., it suffices to show that f has the ACL property.
- Fix a rectangle $F = [a, b] \times [c, d]$ and sample t from Leb([c, d]). Set $L_t = \{x + it : x \in \mathbf{R}\}$. We need to show that $f|_{L_t \cap F}$ is absolutely continuous.
- To show the latter, we need to control the variation of f near $L_t \cap X \cap F$.

• $K \subseteq X$ compact, M > 1 large.

• $K \subseteq X$ compact, M > 1 large.

• $\overline{\dim_M}(K) < 2, a \in (0,1)$ small such that $0 < a < \frac{2 - \overline{\dim_M}(K)}{5}$.

- $K \subseteq X$ compact, M > 1 large.
- $\overline{\dim_M}(K) < 2, a \in (0,1)$ small such that $0 < a < \frac{2 \overline{\dim_M}(K)}{5}$.
- A_n: family of conformal annuli (independent of f) such that diam(A) ≈ 2⁻ⁿ for every A ∈ A_n.

- $K \subseteq X$ compact, M > 1 large.
- $\overline{\dim_M}(K) < 2, a \in (0,1)$ small such that $0 < a < \frac{2 \overline{\dim_M}(K)}{5}$.
- A_n: family of conformal annuli (independent of f) such that diam(A) ≈ 2⁻ⁿ for every A ∈ A_n.
- For all n sufficiently large and every z ∈ K, there exists (1 − a²)n ≤ k ≤ n and A ∈ A_k such that B(z, 2⁻ⁿ) is in the bounded connected component of C \ A and the following holds.

- $K \subseteq X$ compact, M > 1 large.
- $\overline{\dim_M}(K) < 2, a \in (0,1)$ small such that $0 < a < \frac{2 \overline{\dim_M}(K)}{5}$.
- A_n: family of conformal annuli (independent of f) such that diam(A) ≈ 2⁻ⁿ for every A ∈ A_n.
- For all n sufficiently large and every z ∈ K, there exists (1 − a²)n ≤ k ≤ n and A ∈ A_k such that B(z, 2⁻ⁿ) is in the bounded connected component of C \ A and the following holds.
- There exists a path γ in A disconnecting $\partial^{in}A$ from $\partial^{out}A$ such that

$$\operatorname{diam}(f(\gamma)) \lesssim 2^{-(1-3a)k} + 2^{(1-a)k} \int_{A \setminus X} |f'(w)|^2 dw. \tag{0.2}$$

▶ We divide $L_t \cap F$ into intervals (I_j) of length 2^{-n} and surround each I_j by an annulus. Number of such intervals is $O(2^{(1-5a)n})$ and Fubini's theorem implies that $\int_{B(L_t \cap F, 2^{-(1-a^2)n})} |f'(w)|^2 dw \leq 2^{-(1-a^2)n}$.

- ▶ We divide $L_t \cap F$ into intervals (I_j) of length 2^{-n} and surround each I_j by an annulus. Number of such intervals is $O(2^{(1-5a)n})$ and Fubini's theorem implies that $\int_{B(L_t \cap F, 2^{-(1-a^2)n})} |f'(w)|^2 dw \leq 2^{-(1-a^2)n}$.
- ▶ Therefore the total variation of f near $L_t \cap X \cap F$ is at most

$$\sum_{j} \operatorname{diam}(f(\gamma_{j})) \lesssim 2^{(1-5a)n} 2^{-(1-a^{2})(1-3a)n} + 2^{(1-a)n} \sum_{j} \int_{A_{j} \setminus X} |f'(w)|^{2} dw$$
$$\lesssim 2^{(1-5a)n} 2^{-(1-a^{2})(1-3a)n} + 2^{(1-a)n} \int_{B(L_{t} \cap F, 2^{-(1-a^{2})n})} |f'(w)|^{2} dw \lesssim 2^{-an/2}.$$

Hyperbolic distance

The hyperbolic metric in the unit disk D is defined by

$$\mathsf{dist}^{\mathbf{D}}_{\mathsf{hyp}}(z_1,z_2) = \mathsf{inf}\left\{\int_{z_1}^{z_2} \frac{|dz|}{1-|z|^2}\right\} \ \, \mathsf{for} \ \, z_1,z_2 \in \mathbf{D},$$

where the infimum is taken over all smooth curves in **D** connecting z_1 and z_2 .
Hyperbolic distance

The hyperbolic metric in the unit disk D is defined by

$$\mathsf{dist}^{\mathbf{D}}_{\mathsf{hyp}}(z_1,z_2) = \inf\left\{\int_{z_1}^{z_2} \frac{|dz|}{1-|z|^2}\right\} \ \text{ for } z_1,z_2 \in \mathbf{D},$$

where the infimum is taken over all smooth curves in **D** connecting z_1 and z_2 .

▶ It is conformally invariant in the sense that $\operatorname{dist}_{hyp}^{\mathbf{D}}(\phi(z_1), \phi(z_2)) = \operatorname{dist}_{hyp}^{\mathbf{D}}(z_1, z_2)$ for each conformal automorphism ϕ of \mathbf{D} . Hence we can define the hyperbolic distance $\operatorname{dist}_{hyp}^{D}$ on a simply connected domain $D \subseteq \mathbf{C}$ by $\operatorname{dist}_{hyp}^{D}(z_1, z_2) = \operatorname{dist}_{hyp}^{\mathbf{D}}(\phi(z_1), \phi(z_2))$, where $\phi: D \to \mathbf{D}$ is a conformal transformation.

Whitney square decomposition

For any open subset $U \subseteq \mathbf{C}$, there exists a family $\mathcal{W} = (Q_j)$ of closed squares with pairwise disjoint interiors and sides parallel to the axes, so that Q_j has sidelength 2^{-n_j} for some $n_j \in \mathbf{Z}$, $U = \bigcup_i Q_j$ and such that

$$\operatorname{diam}(Q_j) \leq \operatorname{dist}(Q_j, \partial U) < 4\operatorname{diam}(Q_j).$$

Such a family is referred to as a Whitney square decomposition of U.

• How to construct γ ? Introduce further conditions.

- How to construct γ ? Introduce further conditions.
- ▶ There exist simply connected subsets of $A \setminus X$, U_1, \dots, U_m , segments $I_i \subseteq \partial U_{i-1} \cap \partial U_i$, and measures μ_i on I_i such that the following hold.
 - (i) There exists $d_i \in (10a, 2-10a)$ such that $\mu_i(I_i) \ge M^{-1}2^{-d_ik}$.
 - (ii) $\mu_i(Y) \leq M \operatorname{diam}(Y)^{d_i a}$ for every $Y \subseteq I_i$ Borel set.
 - (iii) If W_i is a Whitney square decomposition of U_i, then there exists z_i ∈ U_i such that for a large fraction of points w ∈ I_i with respect to μ_i we have that disthyp^{U_i}(z_i, Q) ≤ M(2^klength(Q))^{-a} for every Q ∈ W_i such that γ^{U_i}_{z_i,w} ∩ Q ≠ Ø. Call those points "good".
 - (iv) Number of $Q \in W_i$ such that length $(Q) = 2^{-j}$ and $\gamma_{z_i,w}^{U_i} \cap Q \neq \emptyset$ for some $w \in I_i$ "good" point is at most $M2^{(d_i+a)(i-k)}$.

- How to construct γ? Introduce further conditions.
- ▶ There exist simply connected subsets of $A \setminus X$, U_1, \dots, U_m , segments $I_i \subseteq \partial U_{i-1} \cap \partial U_i$, and measures μ_i on I_i such that the following hold.
 - (i) There exists $d_i \in (10a, 2-10a)$ such that $\mu_i(I_i) \ge M^{-1}2^{-d_ik}$.
 - (ii) $\mu_i(Y) \leq M \operatorname{diam}(Y)^{d_i a}$ for every $Y \subseteq I_i$ Borel set.
 - (iii) If W_i is a Whitney square decomposition of U_i, then there exists z_i ∈ U_i such that for a large fraction of points w ∈ I_i with respect to μ_i we have that disthyp^{U_i}(z_i, Q) ≤ M(2^klength(Q))^{-a} for every Q ∈ W_i such that γ^{U_i}_{z_i,w} ∩ Q ≠ Ø. Call those points "good".
 - (iv) Number of $Q \in W_i$ such that $\text{length}(Q) = 2^{-j}$ and $\gamma_{z_i,w}^{U_i} \cap Q \neq \emptyset$ for some $w \in I_i$ "good" point is at most $M2^{(d_i+a)(i-k)}$.
- ▶ Pick $w_i \in \partial U_{i-1} \cap \partial U_i$ "good" point and concatenate $\gamma_{z_i,w_i}^{U_i}, \gamma_{z_{i-1},w_i}^{U_{i-1}}$ for $2 \leq i \leq m$ to obtain γ .

• Our goal is to show that η (SLE₄) satisfies the conditions a.s. for every $K \subseteq \mathbf{H}$ compact. We are going to use the coupling of η with a GFF h on \mathbf{H} where η is heuristically interpreted as the level set $\{x : h(x) = 0\}$. η is a measurable function of h under this coupling.

Conformal removability of SLE₄

- Our goal is to show that η (SLE₄) satisfies the conditions a.s. for every $K \subseteq \mathbf{H}$ compact. We are going to use the coupling of η with a GFF h on \mathbf{H} where η is heuristically interpreted as the level set $\{x : h(x) = 0\}$. η is a measurable function of h under this coupling.
- μ_i will be the natural parameterization measure of η restricted to I_i and $d_i = \frac{3}{2}$ is the Hausdorff dimension of η . The natural parameterization of a segment I of η is given by

$$\lim_{r\to 0}e^{r(2-\frac{3}{2})}\mathsf{Leb}(\{z\in \mathbf{C}:\mathsf{dist}(z,I)\leq e^{-r}\}).$$

- Our goal is to show that η (SLE₄) satisfies the conditions a.s. for every $K \subseteq \mathbf{H}$ compact. We are going to use the coupling of η with a GFF h on \mathbf{H} where η is heuristically interpreted as the level set $\{x : h(x) = 0\}$. η is a measurable function of h under this coupling.
- μ_i will be the natural parameterization measure of η restricted to I_i and $d_i = \frac{3}{2}$ is the Hausdorff dimension of η . The natural parameterization of a segment I of η is given by

$$\lim_{r\to 0}e^{r(2-\frac{3}{2})}\mathsf{Leb}(\{z\in \mathbf{C}:\mathsf{dist}(z,l)\leq e^{-r}\}).$$

It is conjectured to be the time parameterization which arises when considering SLE as the scaling limit of an interface of a discrete model in which the curve is parameterized by the number of edges it crosses.

▶ Strategy: Fix $z \in \mathbf{H}$, $k \in \mathbf{N}$ and $A_{z,k} = B(z, 2^{-k}) \setminus \overline{B(z, 2^{-k-1})}$. The event that $\eta|_{A_{z,k}}$ satisfies the desired conditions is determined by $h|_{A_{z,k}}$. The laws of the restrictions of h to disjoint annuli are approximately independent. So by applying a Borel-Cantelli type argument for a grid of points, it suffices to show that η satisfies the desired properties with arbitrarily high probability (by adjusting the parameters).

- ▶ Strategy: Fix $z \in \mathbf{H}$, $k \in \mathbf{N}$ and $A_{z,k} = B(z, 2^{-k}) \setminus \overline{B(z, 2^{-k-1})}$. The event that $\eta|_{A_{z,k}}$ satisfies the desired conditions is determined by $h|_{A_{z,k}}$. The laws of the restrictions of h to disjoint annuli are approximately independent. So by applying a Borel-Cantelli type argument for a grid of points, it suffices to show that η satisfies the desired properties with arbitrarily high probability (by adjusting the parameters).
- i and ii come from properties of natural parameterization.

- ▶ Strategy: Fix $z \in \mathbf{H}$, $k \in \mathbf{N}$ and $A_{z,k} = B(z, 2^{-k}) \setminus \overline{B(z, 2^{-k-1})}$. The event that $\eta|_{A_{z,k}}$ satisfies the desired conditions is determined by $h|_{A_{z,k}}$. The laws of the restrictions of h to disjoint annuli are approximately independent. So by applying a Borel-Cantelli type argument for a grid of points, it suffices to show that η satisfies the desired properties with arbitrarily high probability (by adjusting the parameters).
- i and ii come from properties of natural parameterization.
- ▶ iv comes from the following observation. Fix R > 0 and for $\ell \in \mathbf{N}$, let N_{ℓ} be the number of points $z \in (2^{-\ell}\mathbf{Z})^2 \cap \mathbf{H} \cap B(0, R)$ such that $\eta \cap B(z, c2^{-\ell}) \neq \emptyset$, c > 0 constant. Then, $\mathbf{E}[N_{\ell}] \leq 2^{3\ell/2}$ and so $N_{\ell} \leq 2^{(3/2+a)\ell}$ for all ℓ sufficiently large a.s.

▶ η₀, η₁, · · · , η_n, η_{n+1} crossings of A_{z,k} made by η, where η₀ (resp. η_{n+1}) is the right (resp. left) side of the first crossing.

- ▶ $\eta_0, \eta_1, \dots, \eta_n, \eta_{n+1}$ crossings of $A_{z,k}$ made by η , where η_0 (resp. η_{n+1}) is the right (resp. left) side of the first crossing.
- First crossing: locally described by a two-sided whole-plane SLE₄ η̃ from ∞ to ∞ passing through 0. iii is true for η̃ with high probability and M > 1 large, so the same is true for η₀ and η_{n+1} in the component U of A_{z,k} \ η₀ (resp. A_{z,k} \ η_{n+1}) whose boundary contains ∂ⁱⁿA_{z,k}.

- ▶ η₀, η₁, · · · , η_n, η_{n+1} crossings of A_{z,k} made by η, where η₀ (resp. η_{n+1}) is the right (resp. left) side of the first crossing.
- First crossing: locally described by a two-sided whole-plane SLE₄ η̃ from ∞ to ∞ passing through 0. iii is true for η̃ with high probability and M > 1 large, so the same is true for η₀ and η_{n+1} in the component U of A_{z,k} \ η₀ (resp. A_{z,k} \ η_{n+1}) whose boundary contains ∂ⁱⁿA_{z,k}.
- iii is local in the sense that if we replace U by the connected component U₀ (resp. U_{n+1}) of A_{z,k} \ η whose boundary contains η₀ (resp. η_{n+1}), then iii still holds.

- ▶ η₀, η₁, · · · , η_n, η_{n+1} crossings of A_{z,k} made by η, where η₀ (resp. η_{n+1}) is the right (resp. left) side of the first crossing.
- First crossing: locally described by a two-sided whole-plane SLE₄ η̃ from ∞ to ∞ passing through 0. iii is true for η̃ with high probability and M > 1 large, so the same is true for η₀ and η_{n+1} in the component U of A_{z,k} \ η₀ (resp. A_{z,k} \ η_{n+1}) whose boundary contains ∂ⁱⁿA_{z,k}.
- iii is local in the sense that if we replace U by the connected component U₀ (resp. U_{n+1}) of A_{z,k} \ η whose boundary contains η₀ (resp. η_{n+1}), then iii still holds.
- Sampling $\tilde{\eta}$: first sample a whole-plane radial SLE₄(2) η_1 from ∞ to 0, and given η_1 , sample an SLE₄ η_2 from 0 to ∞ in **C** \ η_1 .

Next step: Consider the rest of the crossings.

Next step: Consider the rest of the crossings.

• Couple η with a GFF h on **H** such that η is the level line of h.

- Next step: Consider the rest of the crossings.
- Couple η with a GFF *h* on **H** such that η is the level line of *h*.

Set up:

- (i) $\tau_{z,k}$: first time that η hits $\partial^{in} A_{z,k}$.
- (ii) $A_{z,k}^*$: connected component of $A_{z,k} \setminus \eta([0, \tau_{z,k}])$ whose boundary contains $\partial^{in} A_{z,k}$.
- (iii) $H_{z,k}$: unique positive real number such that there exists conformal transformation $\varphi_{z,k} : A_{z,k}^* \to (0,1) \times (0, H_{z,k})$ such that $\varphi_{z,k}(\eta_0) = [0, iH_{z,k}]$ and $\varphi_{z,k}(\eta_{n+1}) = 1 + [0, iH_{z,k}]$.

- Next step: Consider the rest of the crossings.
- Couple η with a GFF *h* on **H** such that η is the level line of *h*.

Set up:

- (i) $\tau_{z,k}$: first time that η hits $\partial^{in} A_{z,k}$.
- (ii) $A_{z,k}^*$: connected component of $A_{z,k} \setminus \eta([0, \tau_{z,k}])$ whose boundary contains $\partial^{in} A_{z,k}$.
- (iii) $H_{z,k}$: unique positive real number such that there exists conformal transformation $\varphi_{z,k} : A_{z,k}^* \to (0,1) \times (0, H_{z,k})$ such that $\varphi_{z,k}(\eta_0) = [0, iH_{z,k}]$ and $\varphi_{z,k}(\eta_{n+1}) = 1 + [0, iH_{z,k}]$.
- Fix $H_0 > 0, \xi \in (0, H_0/10)$ small and suppose that $H_{z,k} \ge H_0$. Let $\tilde{\eta}_1, \dots, \tilde{\eta}_n$ be the parts of $\varphi_{z,k}(\eta_1), \dots, \varphi_{z,k}(\eta_n)$ in $(0, 1) \times (3\xi, H_0 3\xi)$.

• Goal: Conditionally on $\tau_{z,k} < \infty$, the desired properties hold for $\tilde{\eta}_1, \dots, \tilde{\eta}_n$. Hence, the same is true for η_1, \dots, η_n .

- Goal: Conditionally on $\tau_{z,k} < \infty$, the desired properties hold for $\tilde{\eta}_1, \dots, \tilde{\eta}_n$. Hence, the same is true for η_1, \dots, η_n .
- lssue: $h \circ \varphi_{z,k}^{-1}|_{\mathcal{R}}$ may have complicated boundary values where $\mathcal{R} = (0, 1) \times (0, H_0)$.

- Goal: Conditionally on $\tau_{z,k} < \infty$, the desired properties hold for $\tilde{\eta}_1, \dots, \tilde{\eta}_n$. Hence, the same is true for η_1, \dots, η_n .
- lssue: $h \circ \varphi_{z,k}^{-1}|_{\mathcal{R}}$ may have complicated boundary values where $\mathcal{R} = (0, 1) \times (0, H_0)$.
- ▶ Key idea: replace $h \circ \varphi_{z,k}^{-1}$ by the field \hat{h} on \mathcal{R} with boundary values $\frac{\pi}{2}$ (resp. $-\frac{\pi}{2}$) on $\partial^{L}\mathcal{R}$ (resp. $\partial^{R}\mathcal{R}$) and 0 on $\partial\mathcal{R} \setminus (\partial^{L}\mathcal{R} \cup \partial^{R}\mathcal{R})$.

- Goal: Conditionally on $\tau_{z,k} < \infty$, the desired properties hold for $\tilde{\eta}_1, \dots, \tilde{\eta}_n$. Hence, the same is true for η_1, \dots, η_n .
- lssue: $h \circ \varphi_{z,k}^{-1}|_{\mathcal{R}}$ may have complicated boundary values where $\mathcal{R} = (0, 1) \times (0, H_0)$.
- ▶ Key idea: replace $h \circ \varphi_{z,k}^{-1}$ by the field \hat{h} on \mathcal{R} with boundary values $\frac{\pi}{2}$ (resp. $-\frac{\pi}{2}$) on $\partial^{L}\mathcal{R}$ (resp. $\partial^{R}\mathcal{R}$) and 0 on $\partial\mathcal{R} \setminus (\partial^{L}\mathcal{R} \cup \partial^{R}\mathcal{R})$.

- Goal: Conditionally on $\tau_{z,k} < \infty$, the desired properties hold for $\tilde{\eta}_1, \dots, \tilde{\eta}_n$. Hence, the same is true for η_1, \dots, η_n .
- lssue: $h \circ \varphi_{z,k}^{-1}|_{\mathcal{R}}$ may have complicated boundary values where $\mathcal{R} = (0, 1) \times (0, H_0).$
- ▶ Key idea: replace $h \circ \varphi_{z,k}^{-1}$ by the field \hat{h} on \mathcal{R} with boundary values $\frac{\pi}{2}$ (resp. $-\frac{\pi}{2}$) on $\partial^{L}\mathcal{R}$ (resp. $\partial^{R}\mathcal{R}$) and 0 on $\partial\mathcal{R} \setminus (\partial^{L}\mathcal{R} \cup \partial^{R}\mathcal{R})$.
- ▶ Main step: Introduce an exploration procedure which "discovers" the crossings $\tilde{\eta}_1, \dots, \tilde{\eta}_n$ as a measurable function of $h \circ \varphi_{z,k}^{-1}|_{\mathcal{R}}$.

- Goal: Conditionally on $\tau_{z,k} < \infty$, the desired properties hold for $\tilde{\eta}_1, \dots, \tilde{\eta}_n$. Hence, the same is true for η_1, \dots, η_n .
- lssue: $h \circ \varphi_{z,k}^{-1}|_{\mathcal{R}}$ may have complicated boundary values where $\mathcal{R} = (0, 1) \times (0, H_0)$.
- ▶ Key idea: replace $h \circ \varphi_{z,k}^{-1}$ by the field \hat{h} on \mathcal{R} with boundary values $\frac{\pi}{2}$ (resp. $-\frac{\pi}{2}$) on $\partial^{L}\mathcal{R}$ (resp. $\partial^{R}\mathcal{R}$) and 0 on $\partial\mathcal{R} \setminus (\partial^{L}\mathcal{R} \cup \partial^{R}\mathcal{R})$.
- Main step: Introduce an exploration procedure which "discovers" the crossings $\tilde{\eta}_1, \dots, \tilde{\eta}_n$ as a measurable function of $h \circ \varphi_{z,k}^{-1}|_{\mathcal{R}}$.

Conformal removability of SLE₄

Control the Radon-Nikodym derivative of the law of h ∘ φ⁻¹_{z,k} with respect to that of h
_k.

- Control the Radon-Nikodym derivative of the law of h ∘ φ⁻¹_{z,k} with respect to that of h
 _k.
- ▶ To do this, consider different random scales $(k_j(z))_{j \in \mathbb{N}}$.

- Control the Radon-Nikodym derivative of the law of h ∘ φ⁻¹_{z,k} with respect to that of h
 _k.
- ▶ To do this, consider different random scales $(k_j(z))_{j \in \mathbb{N}}$.
- ▶ Roughly speaking, the scales k_j(z)'s are the ones at which the boundary values of h on ∂A^{*}_{z,k} are bounded from below and above by universal constants.

- Control the Radon-Nikodym derivative of the law of h ∘ φ⁻¹_{z,k} with respect to that of h
 _k.
- ▶ To do this, consider different random scales $(k_j(z))_{j \in \mathbb{N}}$.
- ▶ Roughly speaking, the scales k_j(z)'s are the ones at which the boundary values of h on ∂A^{*}_{z,k} are bounded from below and above by universal constants.
- ▶ Finally, show that the $k_j(z)$'s are dense in the following sense: a.s. for every compact set $K \subseteq \mathbf{H}$, there exists $n_0 \in \mathbf{N}$ such that for every $n \ge n_0$ and every $z \in (e^{-5n}\mathbf{Z})^2 \cap K$, if $\tau_{z,n} < \infty$, there exists $(1 a^2)n \le k_j(z) \le n$ and the desired properties hold for $A_{z,k_j(z)}$.

Explorartion

Next we explore the crossings in a way which is measurable with respect to the fields. Fix 0 < a < b < H and set R = (0,1) × (0, H), R_{a,b} = (0,1) × (a, b).

Explorartion

- Next we explore the crossings in a way which is measurable with respect to the fields. Fix 0 < a < b < H and set R = (0,1) × (0, H), R_{a,b} = (0,1) × (a,b).
- *h*: GFF on \mathcal{R} with boundary conditions given by $\lambda = \frac{\pi}{2}$ on $\partial^{L}\mathcal{R}$, $-\lambda = -\frac{\pi}{2}$ on $\partial^{R}\mathcal{R}$, and 0 on $\partial^{U}\mathcal{R} \cup \partial^{D}\mathcal{R}$.

Explorartion

- Next we explore the crossings in a way which is measurable with respect to the fields. Fix 0 < a < b < H and set R = (0,1) × (0, H), R_{a,b} = (0,1) × (a,b).
- *h*: GFF on \mathcal{R} with boundary conditions given by $\lambda = \frac{\pi}{2}$ on $\partial^{L}\mathcal{R}$, $-\lambda = -\frac{\pi}{2}$ on $\partial^{R}\mathcal{R}$, and 0 on $\partial^{U}\mathcal{R} \cup \partial^{D}\mathcal{R}$.
- Fix u > 0 small and let η₁ be the level line of h of height u (level line of h − u) started from the midpoint ^{i(a+b)}/₂ of ∂^L R_{a,b}. Then, we have two possible outcomes.
- Next we explore the crossings in a way which is measurable with respect to the fields. Fix 0 < a < b < H and set R = (0,1) × (0, H), R_{a,b} = (0,1) × (a,b).
- *h*: GFF on \mathcal{R} with boundary conditions given by $\lambda = \frac{\pi}{2}$ on $\partial^{L}\mathcal{R}$, $-\lambda = -\frac{\pi}{2}$ on $\partial^{R}\mathcal{R}$, and 0 on $\partial^{U}\mathcal{R} \cup \partial^{D}\mathcal{R}$.
- Fix u > 0 small and let η₁ be the level line of h of height u (level line of h − u) started from the midpoint ^{i(a+b)}/₂ of ∂^L R_{a,b}. Then, we have two possible outcomes.
- η₁ exits R_{a,b} in ∂^DR_{a,b}. Then, we explore the level line η̃₁ of −h + u from the point of ∂^LR_{a,b} which has the largest imaginary part among the points visited by the exploration.
 - (i) $\tilde{\eta}_1$ hits $\partial^U \mathcal{R}_{a,b}$ before $\partial^D \mathcal{R}_{a,b} \cup \partial^R \mathcal{R}_{a,b}$. Then, first stage of the exploration complete.

- η_1 exits $\mathcal{R}_{a,b}$ in $\partial^U \mathcal{R}_{a,b}$. Then, we explore the level line $\tilde{\eta}_1$ of -h + u from the point of $\partial^L \mathcal{R}_{a,b}$ with the smallest imaginary part among the points visited by the exploration.
 - (i) $\tilde{\eta}_1$ hits $\partial^{\mathsf{D}} \mathcal{R}_{a,b}$ before $\partial^{\mathsf{R}} \mathcal{R}_{a,b} \cup \partial^{\mathsf{U}} \mathcal{R}_{a,b}$. Then, first stage of the exploration complete.
 - (ii) γ˜₁ hits ∂^U R_{a,b} before ∂^R R_{a,b} ∪ ∂^D R_{a,b}. Then, explore the level line of height u from the point of ∂^L R_{a,b} with the smallest imaginary part among the points visited by the exploration. Repeat this until some level line of height u hits ∂^D R_{a,b} before ∂^U R_{a,b} ∪ ∂^R R_{a,b}.

- η_1 exits $\mathcal{R}_{a,b}$ in $\partial^U \mathcal{R}_{a,b}$. Then, we explore the level line $\tilde{\eta}_1$ of -h + u from the point of $\partial^L \mathcal{R}_{a,b}$ with the smallest imaginary part among the points visited by the exploration.
 - (i) $\tilde{\eta}_1$ hits $\partial^{\mathsf{D}} \mathcal{R}_{a,b}$ before $\partial^{\mathsf{R}} \mathcal{R}_{a,b} \cup \partial^{\mathsf{U}} \mathcal{R}_{a,b}$. Then, first stage of the exploration complete.
 - (ii) γ˜₁ hits ∂^U R_{a,b} before ∂^R R_{a,b} ∪ ∂^D R_{a,b}. Then, explore the level line of height u from the point of ∂^L R_{a,b} with the smallest imaginary part among the points visited by the exploration. Repeat this until some level line of height u hits ∂^D R_{a,b} before ∂^U R_{a,b} ∪ ∂^R R_{a,b}.
- K₁: set discovered by the first stage of the exploration. Let L₁ be the rightmost crossing of K₁. Boundary values of h on L₁ are either −λ + u or λ + u. We say that L₁ is a crossing of height u.

Suppose that we have defined the exploration after j steps without discovering level lines which hit ∂^RR_{a,b}. K_j: set discovered up until the j-th step, L_j: j-th crossing and u_j: height of L_j.

- Suppose that we have defined the exploration after j steps without discovering level lines which hit ∂^RR_{a,b}. K_j: set discovered up until the j-th step, L_j: j-th crossing and u_j: height of L_j.
- If h has boundary values λ + u_j on L_j, then we let η_{j+1} be the level line of h of height u_{j+1} = u_j + u starting from the leftmost intersection of L_j with the line {z : Im(z) = (a + b)/2}.

- Suppose that we have defined the exploration after j steps without discovering level lines which hit ∂^RR_{a,b}. K_j: set discovered up until the j-th step, L_j: j-th crossing and u_j: height of L_j.
- If h has boundary values λ + u_j on L_j, then we let η_{j+1} be the level line of h of height u_{j+1} = u_j + u starting from the leftmost intersection of L_j with the line {z : Im(z) = (a + b)/2}.
- If h has boundary values −λ + u_j on L_j, then we let η_{j+1} be the level line of height u_{j+1} = u_j − u starting from the leftmost intersection of L_j with the line {z : Im(z) = (a + b)/2}.

- Suppose that we have defined the exploration after *j* steps without discovering level lines which hit ∂^RR_{a,b}. K_j: set discovered up until the *j*-th step, L_j: *j*-th crossing and u_j: height of L_j.
- If h has boundary values λ + u_j on L_j, then we let η_{j+1} be the level line of h of height u_{j+1} = u_j + u starting from the leftmost intersection of L_j with the line {z : Im(z) = (a + b)/2}.
- If h has boundary values −λ + u_j on L_j, then we let η_{j+1} be the level line of height u_{j+1} = u_j − u starting from the leftmost intersection of L_j with the line {z : Im(z) = (a + b)/2}.
- ▶ Repeat the step of the j = 1 case, replacing $\partial^{L} \mathcal{R}_{a,b}$ with L_j and η_1 by η_{j+1} as follows.
 - (i) If u_{j+1} ∉ (-2λ, 0), then η_{j+1} a.s. does not hit ∂^R R_{a,b}, so we proceed as before.
 (ii) If u_{j+1} ∈ (-2λ, 0), then η_{j+1} or any subsequent level line might exit R_{a,b} in ∂^R R_{a,b} and so we stop the exploration at that point.

▶ Obtain crossings (L_j) of $\mathcal{R}_{a,b}$ such that $L_j \cap L_{j+1} \neq \emptyset$ for every *j*.

- ▶ Obtain crossings (L_j) of $\mathcal{R}_{a,b}$ such that $L_j \cap L_{j+1} \neq \emptyset$ for every j.

- ▶ Obtain crossings (L_j) of $\mathcal{R}_{a,b}$ such that $L_j \cap L_{j+1} \neq \emptyset$ for every j.
- A.s. the exploration discovers finitely many crossings (non-trivial).

Random conformal welding of SLE_{κ} for $\kappa \in (4, 8)$.

SLE_κ curves for κ ∈ (4,8) arise as the welding interface where we glue together two independent stable looptrees where each loop is filled with a conditionally independent random surface (quantum disk).

Random conformal welding of SLE_{κ} for $\kappa \in (4, 8)$.

- SLE_κ curves for κ ∈ (4,8) arise as the welding interface where we glue together two independent stable looptrees where each loop is filled with a conditionally independent random surface (quantum disk).
- A stable looptree is a random space that comes equipped with a topology and some additional structure, e.g., each loop comes with a defined boundary length measure, and the looptree is a geodesic metric space.

▶ The complement of an SLE_{κ} curve with $\kappa \in (4, 8)$ consists of a countable collection of simply connected domains and so it falls outside of the scope of Jones-Smirnov condition.

- ▶ The complement of an SLE_{κ} curve with $\kappa \in (4, 8)$ consists of a countable collection of simply connected domains and so it falls outside of the scope of Jones-Smirnov condition.
- Conformal removability in the context of non-simply connected domains is subtle.

- ▶ The complement of an SLE_{κ} curve with $\kappa \in (4, 8)$ consists of a countable collection of simply connected domains and so it falls outside of the scope of Jones-Smirnov condition.
- Conformal removability in the context of non-simply connected domains is subtle.
- It is not difficult to check that the Sierpinski carpet is not conformally removable. However, it is much more difficult to prove that the Sierpinski gasket is not conformally removable.

- ▶ The complement of an SLE_{κ} curve with $\kappa \in (4, 8)$ consists of a countable collection of simply connected domains and so it falls outside of the scope of Jones-Smirnov condition.
- Conformal removability in the context of non-simply connected domains is subtle.
- It is not difficult to check that the Sierpinski carpet is not conformally removable. However, it is much more difficult to prove that the Sierpinski gasket is not conformally removable.
- The main difference is that the boundaries of the complementary connected components in the latter intersect each other while they do not in the former case.

- ▶ The complement of an SLE_{κ} curve with $\kappa \in (4, 8)$ consists of a countable collection of simply connected domains and so it falls outside of the scope of Jones-Smirnov condition.
- Conformal removability in the context of non-simply connected domains is subtle.
- It is not difficult to check that the Sierpinski carpet is not conformally removable. However, it is much more difficult to prove that the Sierpinski gasket is not conformally removable.
- The main difference is that the boundaries of the complementary connected components in the latter intersect each other while they do not in the former case.
- We can think of an SLE_κ for κ ∈ (4,8) as a random analogue of the Sierpinski gasket in the sense that the boundaries of its complementary connected components intersect each other.

- The complement of an SLE_κ curve with κ ∈ (4,8) consists of a countable collection of simply connected domains and so it falls outside of the scope of Jones-Smirnov condition.
- Conformal removability in the context of non-simply connected domains is subtle.
- It is not difficult to check that the Sierpinski carpet is not conformally removable. However, it is much more difficult to prove that the Sierpinski gasket is not conformally removable.
- The main difference is that the boundaries of the complementary connected components in the latter intersect each other while they do not in the former case.
- We can think of an SLE_κ for κ ∈ (4,8) as a random analogue of the Sierpinski gasket in the sense that the boundaries of its complementary connected components intersect each other.
- However, two distinct complementary connected components with non-empty intersection of the latter intersect at exactly one place whereas in the case of the former the intersection set is uncountable and has Hausdorff dimension 3 - ^{3κ}/₈.

Main result

Suppose that $D \subseteq \mathbf{C}$ is open and $K \subseteq \mathbf{C}$ closed in D. We say that the adjacency graph of connected components of K in D is connected if for every pair of connected components U, V of $D \setminus K$, there exist connected components U_1, \dots, U_n of $D \setminus K$ such that $U = U_1, V = U_n$, and $\partial U_i \cap \partial U_{i+1} \neq \emptyset$ for every $1 \le i \le n-1$. Let \mathcal{K} be the set of $\kappa \in (4, 8)$ such that the adjacency graph of complementary connected components of an SLE_{κ} in \mathbf{H} is a.s. connected (Gwynne and Pfeffer proved that $\mathcal{K} \neq \emptyset$).

Main result

- Suppose that $D \subseteq \mathbf{C}$ is open and $K \subseteq \mathbf{C}$ closed in D. We say that the adjacency graph of connected components of K in D is connected if for every pair of connected components U, V of $D \setminus K$, there exist connected components U_1, \dots, U_n of $D \setminus K$ such that $U = U_1, V = U_n$, and $\partial U_i \cap \partial U_{i+1} \neq \emptyset$ for every $1 \le i \le n-1$. Let \mathcal{K} be the set of $\kappa \in (4, 8)$ such that the adjacency graph of complementary connected components of an SLE_{κ} in \mathbf{H} is a.s. connected (Gwynne and Pfeffer proved that $\mathcal{K} \neq \emptyset$).
- Main result: Fix $\kappa' \in \mathcal{K}$ and suppose that η' is an $SLE_{\kappa'}$ in **H** from 0 to ∞ . It a.s. holds that the range of η' is a.s. conformally removable.

Main result

- Suppose that $D \subseteq \mathbf{C}$ is open and $K \subseteq \mathbf{C}$ closed in D. We say that the adjacency graph of connected components of K in D is connected if for every pair of connected components U, V of $D \setminus K$, there exist connected components U_1, \dots, U_n of $D \setminus K$ such that $U = U_1, V = U_n$, and $\partial U_i \cap \partial U_{i+1} \neq \emptyset$ for every $1 \le i \le n-1$. Let \mathcal{K} be the set of $\kappa \in (4, 8)$ such that the adjacency graph of complementary connected components of an SLE_{κ} in \mathbf{H} is a.s. connected (Gwynne and Pfeffer proved that $\mathcal{K} \neq \emptyset$).
- ▶ Main result: Fix $\kappa' \in \mathcal{K}$ and suppose that η' is an $SLE_{\kappa'}$ in **H** from 0 to ∞ . It a.s. holds that the range of η' is a.s. conformally removable.
- As in the $\kappa = 4$ case, we will couple η' with a GFF *h* on **H** so that η' is the counterflow line of *h* in **H** from 0 to ∞ . Then, we will show that a.s., the conformal removability condition holds for η' at a sufficiently dense set of scales.

▶ Main local connectivity statement: Suppose that $\kappa' \in \mathcal{K}$ and fix $p \in (0, 1)$ and an annulus $A \subseteq \mathbf{H}$ of size 2^{-k} . Then, with probability at least p, we can find $M \in \mathbf{N}$ and connected components U_1, \dots, U_n of $A \setminus \eta'$ with $n \leq M$, so that $\partial U_{j-1} \cap \partial U_j \neq \emptyset$, for every $1 \leq j \leq n$ (with the convention that $U_0 = U_n$ and $U_1 = U_{n+1}$), and the following hold.

- ▶ Main local connectivity statement: Suppose that $\kappa' \in \mathcal{K}$ and fix $p \in (0, 1)$ and an annulus $A \subseteq \mathbf{H}$ of size 2^{-k} . Then, with probability at least p, we can find $M \in \mathbf{N}$ and connected components U_1, \dots, U_n of $A \setminus \eta'$ with $n \leq M$, so that $\partial U_{j-1} \cap \partial U_j \neq \emptyset$, for every $1 \leq j \leq n$ (with the convention that $U_0 = U_n$ and $U_1 = U_{n+1}$), and the following hold.
- (i) The upper Minkowski dimension of ∂U_{j-1} ∩ ∂U_j is at most d^{cut}_{κ'} = 3 3κ'/8.
 (ii) There exists α = α_{κ'} ∈ (0, 1) such that the following is true. For each conformal transformation φ: D → O, mapping D onto O with O ∈ {U_{j-1}, U_j}, there exists an open set W ⊆ D which contains a neighbourhood of φ⁻¹(∂U_{j-1} ∩ ∂U_j) in D such that φ|_W is Hölder continuous with exponent α.

- ▶ Main local connectivity statement: Suppose that $\kappa' \in \mathcal{K}$ and fix $p \in (0, 1)$ and an annulus $A \subseteq \mathbf{H}$ of size 2^{-k} . Then, with probability at least p, we can find $M \in \mathbf{N}$ and connected components U_1, \dots, U_n of $A \setminus \eta'$ with $n \leq M$, so that $\partial U_{j-1} \cap \partial U_j \neq \emptyset$, for every $1 \leq j \leq n$ (with the convention that $U_0 = U_n$ and $U_1 = U_{n+1}$), and the following hold.
- (i) The upper Minkowski dimension of ∂U_{j-1} ∩ ∂U_j is at most d^{cut}_{κ'} = 3 3κ'/8.
 (ii) There exists α = α_{κ'} ∈ (0, 1) such that the following is true. For each conformal transformation φ: D → O, mapping D onto O with O ∈ {U_{j-1}, U_j}, there exists an open set W ⊆ D which contains a neighbourhood of φ⁻¹(∂U_{j-1} ∩ ∂U_j) in D such that φ|_W is Hölder continuous with exponent α.
- ► The existence of ϕ follows from the fact that both of ∂U_{j-1} and ∂U_j consist of $SLE_{\kappa'}$ segments and we know that the complementary connected components of an $SLE_{\kappa'}$ are Hölder domains for $\kappa' \in (4, 8)$.

- ▶ Main local connectivity statement: Suppose that $\kappa' \in \mathcal{K}$ and fix $p \in (0, 1)$ and an annulus $A \subseteq \mathbf{H}$ of size 2^{-k} . Then, with probability at least p, we can find $M \in \mathbf{N}$ and connected components U_1, \dots, U_n of $A \setminus \eta'$ with $n \leq M$, so that $\partial U_{j-1} \cap \partial U_j \neq \emptyset$, for every $1 \leq j \leq n$ (with the convention that $U_0 = U_n$ and $U_1 = U_{n+1}$), and the following hold.
- (i) The upper Minkowski dimension of ∂U_{j-1} ∩ ∂U_j is at most d^{cut}_{κ'} = 3 3κ'/8.
 (ii) There exists α = α_{κ'} ∈ (0, 1) such that the following is true. For each conformal transformation φ: D → O, mapping D onto O with O ∈ {U_{j-1}, U_j}, there exists an open set W ⊆ D which contains a neighbourhood of φ⁻¹(∂U_{j-1} ∩ ∂U_j) in D such that φ|_W is Hölder continuous with exponent α.
- ► The existence of ϕ follows from the fact that both of ∂U_{j-1} and ∂U_j consist of $SLE_{\kappa'}$ segments and we know that the complementary connected components of an $SLE_{\kappa'}$ are Hölder domains for $\kappa' \in (4, 8)$.
- The upper bound on the Minkowski dimension of ∂U_{j-1} ∩ ∂U_j follows from the fact that the points on ∂U_{j-1} ∩ ∂U_j are cut points of certain SLE_{κ'} curves and the later set has Minkowski dimension equal to d^{cut}_{κ'}. By cut points, we mean points of intersection of the left and right outer boundaries.

It remains to construct the measures μ_j and prove (i) and (ii). Since the events are locally determined by the underlying GFF, it suffices to assume that h is a GFF on **D** with boundary conditions so that the counterflow line η' of h has the law of a chordal $\text{SLE}_{\kappa'}(\kappa'-6)$ in **D** from -i to i with the force point located at $(-i)^+$.

It suffices to construct measures satisfying the desired properties on ∂U ∩ ∂V, where U, V are distinct complementary connected components of η' with non-empty boundary intersection.

- It suffices to construct measures satisfying the desired properties on ∂U ∩ ∂V, where U, V are distinct complementary connected components of η' with non-empty boundary intersection.
- For t ≥ 0, we let X_t be the place where η' last intersected the counterclockwise arc of ∂D from −i to i before time t. Then, the law of η'|_[t,τt] is that of an SLE_{κ'} from η'(t) to X_t if η'(t) ≠ X_t, where τ_t is the first time that η' disconnects X_t from i.

- It suffices to construct measures satisfying the desired properties on ∂U ∩ ∂V, where U, V are distinct complementary connected components of η' with non-empty boundary intersection.
- For t ≥ 0, we let X_t be the place where η' last intersected the counterclockwise arc of ∂D from −i to i before time t. Then, the law of η'|_[t,τt] is that of an SLE_{κ'} from η'(t) to X_t if η'(t) ≠ X_t, where τ_t is the first time that η' disconnects X_t from i.
- We continue the curve η'|_[t,τt] by targeting it at X_t. Let η'_t be the resulting curve and η'_t be its time-reversal. Then, we pick rational times t, t
 ∈ Q₊ such that the points on ∂U ∩ ∂V are cut points of the restriction of η' in D \ (η'([0, t]) ∪ η'_t([0, t])).

- It suffices to construct measures satisfying the desired properties on ∂U ∩ ∂V, where U, V are distinct complementary connected components of η' with non-empty boundary intersection.
- For t ≥ 0, we let X_t be the place where η' last intersected the counterclockwise arc of ∂D from −i to i before time t. Then, the law of η'|_[t,τt] is that of an SLE_{κ'} from η'(t) to X_t if η'(t) ≠ X_t, where τ_t is the first time that η' disconnects X_t from i.
- We continue the curve η'|_[t,τt] by targeting it at X_t. Let η'_t be the resulting curve and η'_t be its time-reversal. Then, we pick rational times t, t
 ∈ Q₊ such that the points on ∂U ∩ ∂V are cut points of the restriction of η' in D \ (η'([0, t]) ∪ η'_t([0, t])).
- ▶ The latter is an $SLE_{\kappa'}$ and so the standard cut-point measure is well-defined on $\partial U \cap \partial V$.

Construction of the cut-point measure

► To construct the $\text{SLE}_{\kappa'}$ cut-point measure, we let $\mathcal{W} = (\mathbf{H}, h, 0, \infty)$ be a quantum wedge of weight $\frac{3\gamma^2}{2} - 2$ independent of the $\text{SLE}_{\kappa'} \eta'$ in \mathbf{H} . For each Borel set $O \subseteq \mathbf{H}$ and $\epsilon > 0$, we let $N_{\epsilon}^{h,\eta'}(O)$ be the number of points in O which are closing points of connected components between the left and right outer boundaries of η' of quantum area at least ϵ .
Construction of the cut-point measure

- ► To construct the $\text{SLE}_{\kappa'}$ cut-point measure, we let $\mathcal{W} = (\mathbf{H}, h, 0, \infty)$ be a quantum wedge of weight $\frac{3\gamma^2}{2} 2$ independent of the $\text{SLE}_{\kappa'} \eta'$ in \mathbf{H} . For each Borel set $O \subseteq \mathbf{H}$ and $\epsilon > 0$, we let $N_{\epsilon}^{h,\eta'}(O)$ be the number of points in O which are closing points of connected components between the left and right outer boundaries of η' of quantum area at least ϵ .
- Then, the sequence of measure (ε^{1-κ'/8}N_ε^{h,η'})_{ε>0} converges vaguely as ε → 0 almost surely. Denote the limit by μ_{h,η'}^{cut}. If h⁰ is a zero-boundary GFF on **H** independent of (h, η'), then the law of h⁰ restricted to compact subsets of **H** is mutually absolutely continuous with respect to that of h and so the sequence of measures (ε^{1-κ'/8}N_ε^{h⁰,η'})_{ε>0} converges vaguely as ε → 0 a.s. to some limit μ_{h⁰,η'}^{cut}.

Construction of the cut-point measure

- ► To construct the $\text{SLE}_{\kappa'}$ cut-point measure, we let $\mathcal{W} = (\mathbf{H}, h, 0, \infty)$ be a quantum wedge of weight $\frac{3\gamma^2}{2} 2$ independent of the $\text{SLE}_{\kappa'}$ η' in \mathbf{H} . For each Borel set $O \subseteq \mathbf{H}$ and $\epsilon > 0$, we let $N_{\epsilon}^{h,\eta'}(O)$ be the number of points in O which are closing points of connected components between the left and right outer boundaries of η' of quantum area at least ϵ .
- Then, the sequence of measure (ε^{1-κ'/8}N_ε^{h,η'})_{ε>0} converges vaguely as ε → 0 almost surely. Denote the limit by μ_{h,η'}^{cut}. If h⁰ is a zero-boundary GFF on **H** independent of (h, η'), then the law of h⁰ restricted to compact subsets of **H** is mutually absolutely continuous with respect to that of h and so the sequence of measures (ε^{1-κ'/8}N_ε^{h⁰,η'})_{ε>0} converges vaguely as ε → 0 a.s. to some limit μ_{h⁰,η'}^{cut}.
- The above convergence holds if we replace H by any simply connected domain D ⊆ C and η' is an SLE_{κ'} in D. Then, we set

$$\mu_{\eta'}^{\mathsf{cut}}(dz) = r_D(z) \mathsf{E}[\mu_{h^0,\eta'}^{\mathsf{cut}}(dz) \,|\, \eta'],$$

where $r_D(z) = CR(z, D)^{2-8/\kappa' - \kappa'/8}$.

Thank you!