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Conformal welding

Suppose that Γ is a closed Jordan curve in the complex plane C and let U (resp. Ũ) be

the bounded (resp. unbounded) connected component of C \ Γ. Let f : D→ U and

g : C \D→ Ũ be conformal transformations. By Caratheodory’s theorem, f and g extend

to homeomorphisms f̃ : ∂D→ Γ and g̃ : ∂D→ Γ. Then h = g̃−1 ◦ f̃ : ∂D→ ∂D is a

homeomorphism and homeomorphisms arising in this way are called conformal weldings.
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Uniqueness of the welding interface

I Fix a welding homeomorphism φ : ∂D→ ∂D with two welding interfaces η1, η2 and
corresponding pairs of conformal maps (f1, g1) and (f2, g2).

I Let Uj (resp. Ũj) be the bounded (resp. unbounded) connected component of C \ ηj
for j = 1, 2. Then f2 ◦ f −1

1 is a conformal transformation mapping U1 onto U2 and

g2 ◦ g−1
1 is a conformal transformation mapping Ũ1 onto Ũ2.

I We can define a homeomorphism ψ : C→ C by setting ψ(z) = f2 ◦ f −1
1 (z) for z ∈ U1,

ψ(z) = g2 ◦ g−1
1 (z) for z ∈ Ũ1 and ψ(z) = g2 ◦ g−1

1 (z) = f2 ◦ f −1
1 (z) for z ∈ η1.

I Suppose that η1 is conformally removable. Then ψ is a Mobius transformation since
it is conformal on C \ η1 and η2 = ψ(η1).
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I We can define a homeomorphism ψ : C→ C by setting ψ(z) = f2 ◦ f −1
1 (z) for z ∈ U1,

ψ(z) = g2 ◦ g−1
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Schramm-Loewner evolution

I SLEκ (κ > 0), probability measure on random planar fractal curves.

I Arise as scaling limits in 2D statistical mechanics models at criticality (Loop-erased
random walk on Z2 (κ = 2), Percolation interface in the hexagonal lattice in the
plane (κ = 6)).

I Conformally invariant.
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Schramm-Loewner evolution
I SLEκ (κ > 0), probability measure on random planar fractal curves.

I Arise as scaling limits in 2D statistical mechanics models at criticality (Loop-erased
random walk on Z2 (κ = 2), Percolation interface in the hexagonal lattice in the
plane (κ = 6)).

I Conformally invariant.

I Three phases: curves are simple if κ ∈ (0, 4], self-intersecting if κ ∈ (4, 8) and
space-filling if κ ≥ 8.

Figure: SLEκ for κ = 2, 3, 6. (Simulation by Tom Kennedy.)
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Random conformal welding

I Fix κ ∈ (0, 4] and suppose that η is an SLEκ curve in the upper half-plane H from 0
to ∞. Question: Is it possible to find a (random) homeomorphism φ : R+ → R− so
that the following holds?

I Let DL (resp. DR) be the connected component of H \ η lying to the left (resp.
right) of η. Let also ψL (resp. ψR) be a conformal transformation mapping H onto
HL (resp. HR) and fixing 0 and ∞. Then we need that φ = ψ−1

R ◦ ψL.

I Conformal removability of SLEκ would imply that the only possible welding interface
corresponding to φ is a rescaling of η in H.
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LQG random surface

I Let γ ∈ (0, 2]. A γ-LQG surface is an equivalence class of pairs (D, h), where
D ⊆ C is a simply connected domain and h ∈ H−1loc (D) is a distribution on D.
Two pairs (D1, h1) and (D2, h2) are defined to be equivalent if there exists a
conformal map ψ : D2 → D1 such that

h2 = h1 ◦ ψ + Qγ log |ψ′| (0.1)

where Qγ = 2
γ + γ

2 .

I For γ ∈ (0, 2) and a γ-LQG surface (D, h) we can define Borel measures µγh
and νγh on D and ∂D respectively via the regularization procedures

µγh (dz) = lim
ε→0

εγ
2/2eγhε(z)dz , νγh (dx) = lim

ε→0
εγ

2/4eγhε(x)/2dx .
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Solution of the random conformal welding problem

I Fix κ = γ2 ∈ (0, 4) and let (H, hL, 0,∞), (H, hR , 0,∞) be two independent
γ-quantum wedges. We let φ : R+ → R− be the homeomorphism so that
νhL([0, x ]) = νhR ([φ(x), 0]) for each x ≥ 0. Then we can find an interface η in H
from 0 to ∞ which is measurable with respect to (hL, hR) and such that
φ = ψ−1

R ◦ ψL, where ψq is the conformal transformation which maps H onto Dq and
fixes 0 and ∞ for q ∈ {L,R}.

I Conversely, suppose that we start with an (γ − 2
γ

)-quantum wedge (H, h, 0,∞) and
let η be an SLEκ in H from 0 to ∞ which is independent of η. Then the surfaces
(DL, h|DL), (DR , h|DR ) are independent γ-quantum wedges and their quantum
boundary lengths along η agree.

I The κ < 4 case was proved by Sheffield and the κ = 4 case by Holden and Powell.
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Why ”quantum wedges” are the natural surfaces to relate
to SLE curves?

An a-quantum wedge (H, h, 0,∞) has the following properties:

I (H, h, 0,∞) and (H, h + C , 0,∞) have the same law for every fixed C > 0
when viewed modulo the coordinate change formula (0.1). Note that the law
of SLEκ is scale invariant.

I (H, h, 0,∞) looks like h̃ − a log | · | in arbitrarily small neighbourhoods of 0,

where h̃ is a free boundary GFF on H normalized so that its average on
H ∩ ∂D is equal to 0.
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How does one prove conformal removability?

Jones and Smirnov proved that if K ⊆ C is the boundary of a Hölder domain, then
K is conformally removable. Rohde and Schramm proved that the complement of
an SLEκ in H for κ < 4 is a Hölder domain, so SLEκ is conformally removable for
κ < 4. More generally, Jones and Smirnov proved that if the uniformizing map has
modulus of continuity exp(−

√
log(δ−1)(log(log(δ−1)))/o(1)) as δ → 0, then

conformal removability of the boundary of the domain holds.
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Why conformal removability of SLE4 is hard?

The modulus of continuity of the SLE4 uniformizing map is given by
(log(δ−1))−

1
3+o(1) as δ → 0. The main reason for this is that SLE4 curves are

barely non-self-intersecting in the sense that they contain tight bottlenecks.
Equivalently, if z /∈ η is such that dist(z , η) � ε, then the probability that a
complex Brownian motion independent of η and started at z travels macroscopic
distance before hitting η behaves like exp(−ε−3+o(1)) as ε→ 0.
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Quasiconformal maps

I Let D, D̃ be domains in Ĉ = C ∪ {∞} and let f : D → D̃ be an orientation
preserving homeomorphism. We say that f is ACL (absolutely continuous on
lines) if f is absolutely continuous on Lebesgue a.e. line segment in D which is
parallel to one of the axes.

I For M ≥ 1, we say that f is an M-quasiconformal mapping if f is ACL and∣∣∂f
∂z

∣∣ ≤ (M−1
M+1

) ∣∣∂f
∂z

∣∣ a.e. where

∂f

∂z
=

1

2

(
∂f

∂x
− i

∂f

∂y

)
,

∂f

∂z
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
.

I f is conformal if and only if it is 1-quasiconformal. Moreover, for an
M-quasiconformal map f we have that

lim sup
r→0

M(z , r)

m(z , r)
≤ M,

where m(z , r) = inf|w−z|=r |f (w)− f (z)|, M(z , r) = sup|w−z|=r |f (w)− f (z)|.
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I Let D, D̃ be domains in Ĉ = C ∪ {∞} and let f : D → D̃ be an orientation
preserving homeomorphism. We say that f is ACL (absolutely continuous on
lines) if f is absolutely continuous on Lebesgue a.e. line segment in D which is
parallel to one of the axes.

I For M ≥ 1, we say that f is an M-quasiconformal mapping if f is ACL and∣∣∂f
∂z

∣∣ ≤ (M−1
M+1

) ∣∣∂f
∂z

∣∣ a.e. where

∂f

∂z
=

1

2

(
∂f

∂x
− i

∂f

∂y

)
,

∂f

∂z
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
.

I f is conformal if and only if it is 1-quasiconformal. Moreover, for an
M-quasiconformal map f we have that

lim sup
r→0

M(z , r)

m(z , r)
≤ M,

where m(z , r) = inf|w−z|=r |f (w)− f (z)|, M(z , r) = sup|w−z|=r |f (w)− f (z)|.

Konstantinos Kavvadias Conformal removability of Schramm Loewner Evolutions March 11, 2024 12 / 45



Quasiconformal maps
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How do we show that X ⊆ C is conformally removable?

I Suppose that Leb(X ) = 0 and f : C→ C is a homeomorphism such that f |C\X
is conformal. Since f is conformal a.e., it suffices to show that f has the ACL
property.

I Fix a rectangle F = [a, b]× [c , d ] and sample t from Leb([c , d ]). Set
Lt = {x + it : x ∈ R}. We need to show that f |Lt∩F is absolutely continuous.

I To show the latter, we need to control the variation of f near Lt ∩ X ∩ F .
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How do we show that X ⊆ C is conformally removable?

I K ⊆ X compact, M > 1 large.

I dimM(K ) < 2, a ∈ (0, 1) small such that 0 < a < 2−dimM (K)
5 .

I An: family of conformal annuli (independent of f ) such that diam(A) � 2−n

for every A ∈ An.

I For all n sufficiently large and every z ∈ K , there exists (1− a2)n ≤ k ≤ n and
A ∈ Ak such that B(z , 2−n) is in the bounded connected component of C \ A
and the following holds.

I There exists a path γ in A disconnecting ∂ inA from ∂outA such that

diam(f (γ)) . 2−(1−3a)k + 2(1−a)k
∫
A\X
|f ′(w)|2dw . (0.2)
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I For all n sufficiently large and every z ∈ K , there exists (1− a2)n ≤ k ≤ n and
A ∈ Ak such that B(z , 2−n) is in the bounded connected component of C \ A
and the following holds.

I There exists a path γ in A disconnecting ∂ inA from ∂outA such that

diam(f (γ)) . 2−(1−3a)k + 2(1−a)k
∫
A\X
|f ′(w)|2dw . (0.2)
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Hyperbolic distance

I The hyperbolic metric in the unit disk D is defined by

distDhyp(z1, z2) = inf

{∫ z2

z1

|dz |
1− |z |2

}
for z1, z2 ∈ D,

where the infimum is taken over all smooth curves in D connecting z1 and z2.

I It is conformally invariant in the sense that
distDhyp(φ(z1), φ(z2)) = distDhyp(z1, z2) for each conformal automorphism φ of D.

Hence we can define the hyperbolic distance distDhyp on a simply connected

domain D ⊆ C by distDhyp(z1, z2) = distDhyp(φ(z1), φ(z2)), where φ : D → D is a
conformal transformation.
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Whitney square decomposition

For any open subset U ⊆ C, there exists a family W = (Qj) of closed squares with
pairwise disjoint interiors and sides parallel to the axes, so that Qj has sidelength
2−nj for some nj ∈ Z, U = ∪jQj and such that

diam(Qj) ≤ dist(Qj , ∂U) < 4diam(Qj).

Such a family is referred to as a Whitney square decomposition of U.
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Conformal removability condition

I How to construct γ? Introduce further conditions.

I There exist simply connected subsets of A \ X , U1, · · · ,Um, segments
Ii ⊆ ∂Ui−1 ∩ ∂Ui , and measures µi on Ii such that the following hold.

(i) There exists di ∈ (10a, 2− 10a) such that µi (Ii ) ≥ M−12−di k .

(ii) µi (Y ) ≤ Mdiam(Y )di−a for every Y ⊆ Ii Borel set.

(iii) If Wi is a Whitney square decomposition of Ui , then there exists zi ∈ Ui such
that for a large fraction of points w ∈ Ii with respect to µi we have that
disthypUi (zi ,Q) ≤ M(2k length(Q))−a for every Q ∈ Wi such that
γUi
zi ,w ∩ Q 6= ∅. Call those points ”good”.

(iv) Number of Q ∈ Wi such that length(Q) = 2−j and γUi
zi ,w ∩ Q 6= ∅ for some

w ∈ Ii ”good” point is at most M2(di+a)(i−k).

I Pick wi ∈ ∂Ui−1 ∩ ∂Ui ”good” point and concatenate γUi
zi ,wi

, γ
Ui−1
zi−1,wi for

2 ≤ i ≤ m to obtain γ.
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Conformal removability condition

A∂inA

∂outA

U1

U2

U3

U4

U5

U6
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Conformal removability of SLE4

I Our goal is to show that η (SLE4) satisfies the conditions a.s. for every
K ⊆ H compact. We are going to use the coupling of η with a GFF h on H
where η is heuristically interpreted as the level set {x : h(x) = 0}. η is a
measurable function of h under this coupling.

I µi will be the natural parameterization measure of η restricted to Ii and di = 3
2

is the Hausdorff dimension of η. The natural parameterization of a segment I
of η is given by

lim
r→0

er(2−
3
2 )Leb({z ∈ C : dist(z , I ) ≤ e−r}).

I It is conjectured to be the time parameterization which arises when considering
SLE as the scaling limit of an interface of a discrete model in which the curve
is parameterized by the number of edges it crosses.
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Conformal removability of SLE4

I Strategy: Fix z ∈ H, k ∈ N and Az,k = B(z , 2−k) \ B(z , 2−k−1). The event that
η|Az,k satisfies the desired conditions is determined by h|Az,k . The laws of the
restrictions of h to disjoint annuli are approximately independent. So by applying a
Borel-Cantelli type argument for a grid of points, it suffices to show that η satisfies
the desired properties with arbitrarily high probability (by adjusting the parameters).

I i and ii come from properties of natural parameterization.

I iv comes from the following observation. Fix R > 0 and for ` ∈ N, let N` be the
number of points z ∈ (2−`Z)2 ∩H ∩ B(0,R) such that η ∩ B(z , c2−`) 6= ∅, c > 0
constant. Then, E[N`] . 23`/2 and so N` ≤ 2(3/2+a)` for all ` sufficiently large a.s.
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Conformal removability of SLE4

I η0, η1, · · · , ηn, ηn+1 crossings of Az,k made by η, where η0 (resp. ηn+1) is the
right (resp. left) side of the first crossing.

I First crossing: locally described by a two-sided whole-plane SLE4 η̃ from ∞ to
∞ passing through 0. iii is true for η̃ with high probability and M > 1 large,
so the same is true for η0 and ηn+1 in the component U of Az,k \ η0 (resp.
Az,k \ ηn+1) whose boundary contains ∂ inAz,k .

I iii is local in the sense that if we replace U by the connected component U0

(resp. Un+1) of Az,k \ η whose boundary contains η0 (resp. ηn+1), then iii still
holds.

I Sampling η̃: first sample a whole-plane radial SLE4(2) η1 from ∞ to 0, and
given η1, sample an SLE4 η2 from 0 to ∞ in C \ η1.
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Conformal removability of SLE4

I Next step: Consider the rest of the crossings.

I Couple η with a GFF h on H such that η is the level line of h.

I Set up:

(i) τz,k : first time that η hits ∂ inAz,k .
(ii) A∗z,k : connected component of Az,k \ η([0, τz,k ]) whose boundary contains

∂ inAz,k .
(iii) Hz,k : unique positive real number such that there exists conformal

transformation ϕz,k : A∗z,k → (0, 1)× (0,Hz,k) such that ϕz,k(η0) = [0, iHz,k ]
and ϕz,k(ηn+1) = 1 + [0, iHz,k ].

I Fix H0 > 0, ξ ∈ (0,H0/10) small and suppose that Hz,k ≥ H0. Let η̃1, · · · , η̃n
be the parts of ϕz,k(η1), · · · , ϕz,k(ηn) in (0, 1)× (3ξ,H0 − 3ξ).
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Conformal removability of SLE4

z
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Conformal removability of SLE4

I Goal: Conditionally on τz,k <∞, the desired properties hold for η̃1, · · · , η̃n.
Hence, the same is true for η1, · · · , ηn.

I Issue: h ◦ ϕ−1z,k |R may have complicated boundary values where
R = (0, 1)× (0,H0).

I Key idea: replace h ◦ ϕ−1z,k by the field ĥ on R with boundary values π
2 (resp.

−π2 ) on ∂LR (resp. ∂RR) and 0 on ∂R \ (∂LR∪ ∂RR).

I Main step: Introduce an exploration procedure which ”discovers” the crossings
η̃1, · · · , η̃n as a measurable function of h ◦ ϕ−1z,k |R.

I Next step: do the same for ĥ to obtain the crossings η̂1, · · · , η̂n. Then, show
that with high probability the desired conditions hold for η̂1, · · · , η̂n.
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Conformal removability of SLE4
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Conformal removability of SLE4

I Control the Radon-Nikodym derivative of the law of h ◦ ϕ−1z,k |R with respect to

that of ĥ|R.

I To do this, consider different random scales (kj(z))j∈N.

I Roughly speaking, the scales kj(z)’s are the ones at which the boundary values
of h on ∂A∗z,k are bounded from below and above by universal constants.

I Finally, show that the kj(z)’s are dense in the following sense: a.s. for every
compact set K ⊆ H, there exists n0 ∈ N such that for every n ≥ n0 and every
z ∈ (e−5nZ)2 ∩ K , if τz,n <∞, there exists (1− a2)n ≤ kj(z) ≤ n and the
desired properties hold for Az,kj (z).
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Explorartion

I Next we explore the crossings in a way which is measurable with respect to the
fields. Fix 0 < a < b < H and set R = (0, 1)× (0,H),Ra,b = (0, 1)× (a, b).

I h: GFF on R with boundary conditions given by λ = π
2 on ∂LR, −λ = −π2 on

∂RR, and 0 on ∂UR∪ ∂DR.

I Fix u > 0 small and let η1 be the level line of h of height u (level line of h− u)

started from the midpoint i(a+b)
2 of ∂LRa,b. Then, we have two possible

outcomes.

I η1 exits Ra,b in ∂DRa,b. Then, we explore the level line η̃1 of −h + u from the
point of ∂LRa,b which has the largest imaginary part among the points visited
by the exploration.

(i) η̃1 hits ∂URa,b before ∂DRa,b ∪ ∂RRa,b. Then, first stage of the exploration
complete.

(ii) η̃1 hits ∂DRa,b before ∂URa,b. Then, we explore the level line of height u from
the point of ∂LRa,b which has the largest imaginary part among the points
visited by the exploration. Repeat this until the level line of height u hits
∂URa,b before ∂DRa,b ∪ ∂RRa,b.
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Exploration

I η1 exits Ra,b in ∂URa,b. Then, we explore the level line η̃1 of −h + u from the
point of ∂LRa,b with the smallest imaginary part among the points visited by
the exploration.

(i) η̃1 hits ∂DRa,b before ∂RRa,b ∪ ∂URa,b. Then, first stage of the exploration
complete.

(ii) η̃1 hits ∂URa,b before ∂RRa,b ∪ ∂DRa,b. Then, explore the level line of height u
from the point of ∂LRa,b with the smallest imaginary part among the points
visited by the exploration. Repeat this until some level line of height u hits
∂DRa,b before ∂URa,b ∪ ∂RRa,b.

I K1: set discovered by the first stage of the exploration. Let L1 be the
rightmost crossing of K1. Boundary values of h on L1 are either −λ+ u or
λ+ u. We say that L1 is a crossing of height u.
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Exploration

I Suppose that we have defined the exploration after j steps without discovering
level lines which hit ∂RRa,b. Kj : set discovered up until the j-th step, Lj : j-th
crossing and uj : height of Lj .

I If h has boundary values λ+ uj on Lj , then we let ηj+1 be the level line of h of
height uj+1 = uj + u starting from the leftmost intersection of Lj with the line
{z : Im(z) = (a + b)/2}.

I If h has boundary values −λ+ uj on Lj , then we let ηj+1 be the level line of
height uj+1 = uj − u starting from the leftmost intersection of Lj with the line
{z : Im(z) = (a + b)/2}.

I Repeat the step of the j = 1 case, replacing ∂LRa,b with Lj and η1 by ηj+1 as
follows.

(i) If uj+1 /∈ (−2λ, 0), then ηj+1 a.s. does not hit ∂RRa,b, so we proceed as before.
(ii) If uj+1 ∈ (−2λ, 0), then ηj+1 or any subsequent level line might exit Ra,b in

∂RRa,b and so we stop the exploration at that point.
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Exploration

I Obtain crossings (Lj) of Ra,b such that Lj ∩ Lj+1 6= ∅ for every j .

I Why define the exploration in this way? The crossings Lj such that uj = 0 are
exactly the crossings η̂1, · · · , η̂n.

I A.s. the exploration discovers finitely many crossings (non-trivial).
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Random conformal welding of SLEκ for κ ∈ (4, 8).

I SLEκ curves for κ ∈ (4, 8) arise as the welding interface where we glue
together two independent stable looptrees where each loop is filled with a
conditionally independent random surface (quantum disk).

I A stable looptree is a random space that comes equipped with a topology and
some additional structure, e.g., each loop comes with a defined boundary
length measure, and the looptree is a geodesic metric space.
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Main difficulty in proving conformal removability

I The complement of an SLEκ curve with κ ∈ (4, 8) consists of a countable collection
of simply connected domains and so it falls outside of the scope of Jones-Smirnov
condition.

I Conformal removability in the context of non-simply connected domains is subtle.

I It is not difficult to check that the Sierpinski carpet is not conformally removable.
However, it is much more difficult to prove that the Sierpinski gasket is not
conformally removable.

I The main difference is that the boundaries of the complementary connected
components in the latter intersect each other while they do not in the former case.

I We can think of an SLEκ for κ ∈ (4, 8) as a random analogue of the Sierpinski
gasket in the sense that the boundaries of its complementary connected components
intersect each other.

I However, two distinct complementary connected components with non-empty
intersection of the latter intersect at exactly one place whereas in the case of the
former the intersection set is uncountable and has Hausdorff dimension 3− 3κ

8
.
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Main result

I Suppose that D ⊆ C is open and K ⊆ C closed in D. We say that the
adjacency graph of connected components of K in D is connected if for every
pair of connected components U,V of D \ K , there exist connected
components U1, · · · ,Un of D \ K such that U = U1,V = Un, and
∂Ui ∩ ∂Ui+1 6= ∅ for every 1 ≤ i ≤ n − 1. Let K be the set of κ ∈ (4, 8) such
that the adjacency graph of complementary connected components of an
SLEκ in H is a.s. connected (Gwynne and Pfeffer proved that K 6= ∅).

I Main result: Fix κ′ ∈ K and suppose that η′ is an SLEκ′ in H from 0 to ∞.
It a.s. holds that the range of η′ is a.s. conformally removable.

I As in the κ = 4 case, we will couple η′ with a GFF h on H so that η′ is the
counterflow line of h in H from 0 to ∞. Then, we will show that a.s., the
conformal removability condition holds for η′ at a sufficiently dense set of
scales.
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Construction of the chain of components

I Main local connectivity statement: Suppose that κ′ ∈ K and fix p ∈ (0, 1) and an
annulus A ⊆ H of size 2−k . Then, with probability at least p, we can find M ∈ N
and connected components U1, · · · ,Un of A \ η′ with n ≤ M, so that
∂Uj−1 ∩ ∂Uj 6= ∅, for every 1 ≤ j ≤ n (with the convention that U0 = Un and
U1 = Un+1), and the following hold.

I (i) The upper Minkowski dimension of ∂Uj−1 ∩ ∂Uj is at most d cut
κ′ = 3− 3κ′

8
.

(ii) There exists α = ακ′ ∈ (0, 1) such that the following is true. For each
conformal transformation φ : D→ O, mapping D onto O with O ∈ {Uj−1,Uj},
there exists an open set W ⊆ D which contains a neighbourhood of
φ−1(∂Uj−1 ∩ ∂Uj) in D such that φ|W is Hölder continuous with exponent α.

I The existence of φ follows from the fact that both of ∂Uj−1 and ∂Uj consist of
SLEκ′ segments and we know that the complementary connected components of an
SLEκ′ are Hölder domains for κ′ ∈ (4, 8).

I The upper bound on the Minkowski dimension of ∂Uj−1 ∩ ∂Uj follows from the fact
that the points on ∂Uj−1 ∩ ∂Uj are cut points of certain SLEκ′ curves and the later
set has Minkowski dimension equal to d cut

κ′ . By cut points, we mean points of
intersection of the left and right outer boundaries.
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Construction of the chain of components
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Construction of the chain of components
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Construction of the chain of components
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Construction of the measures

It remains to construct the measures µj and prove (i) and (ii). Since the events are
locally determined by the underlying GFF, it suffices to assume that h is a GFF on
D with boundary conditions so that the counterflow line η′ of h has the law of a
chordal SLEκ′(κ

′ − 6) in D from −i to i with the force point located at (−i)+.
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Construction of the measures

I It suffices to construct measures satisfying the desired properties on ∂U ∩ ∂V , where
U,V are distinct complementary connected components of η′ with non-empty
boundary intersection.

I For t ≥ 0, we let Xt be the place where η′ last intersected the counterclockwise arc
of ∂D from −i to i before time t. Then, the law of η′|[t,τt ] is that of an SLEκ′ from
η′(t) to Xt if η′(t) 6= Xt , where τt is the first time that η′ disconnects Xt from i .

I We continue the curve η′|[t,τt ] by targeting it at Xt . Let η′t be the resulting curve and
η′t be its time-reversal. Then, we pick rational times t, t ∈ Q+ such that the points
on ∂U ∩ ∂V are cut points of the restriction of η′ in D \ (η′([0, t]) ∪ η′t([0, t])).

I The latter is an SLEκ′ and so the standard cut-point measure is well-defined on
∂U ∩ ∂V .
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Construction of the measures
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Construction of the cut-point measure

I To construct the SLEκ′ cut-point measure, we let W = (H, h, 0,∞) be a

quantum wedge of weight 3γ2

2 − 2 independent of the SLEκ′ η
′ in H. For each

Borel set O ⊆ H and ε > 0, we let Nh,η′

ε (O) be the number of points in O
which are closing points of connected components between the left and right
outer boundaries of η′ of quantum area at least ε.

I Then, the sequence of measure (ε1−κ
′/8Nh,η′

ε )ε>0 converges vaguely as ε→ 0
almost surely. Denote the limit by µcut

h,η′ . If h0 is a zero-boundary GFF on H

independent of (h, η′), then the law of h0 restricted to compact subsets of H is
mutually absolutely continuous with respect to that of h and so the sequence
of measures (ε1−κ

′/8Nh0,η′

ε )ε>0 converges vaguely as ε→ 0 a.s. to some limit
µcut
h0,η′ .

I The above convergence holds if we replace H by any simply connected domain
D ⊆ C and η′ is an SLEκ′ in D. Then, we set

µcut
η′ (dz) = rD(z)E[µcut

h0,η′(dz) | η′],

where rD(z) = CR(z ,D)2−8/κ
′−κ′/8.
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Thank you!
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