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Construction of quantitative OE: Følner tilings

Definition

Let Γ be an amenable group and (Fk ) be a sequence of finite subsets of Γ. We
call (Fk ) a (left) Følner tiling sequence if the sequence of tiles (Tk ) defined
inductively by T0 = F0 and Tk+1 = TkFk+1 satisfies the following conditions:

1 (tiling condition) for all k ∈ N, Tk+1 is a disjoint union:

Tk+1 =
⊔

γ∈Fk+1

Tkγ;

2 (Følner condition) (Tk ) is a left Følner sequence: for all γ ∈ Γ,

lim
k→+∞

|γTk \ Tk |
|Tk |

= 0.

Remark

The first condition amounts to saying that every element of Tk can uniquely be
written as f0 · · · fk where each fi belongs to Fi .
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Profinite Følner tilings and profinite actions

Definition (Profinite Følner tilings)

A Følner tiling sequence (Fk )k∈N is profinite if there exists a decreasing sequence
of finite index subgroups Γk such that each Fk is a set of left coset
representatives of Γk−1 modulo Γk .

Note that each tile Tk is then a set of
coset-representatives of Γ modulo Γk .

Proposition

If (Fk ) is a profinite Følner tiling sequence associated to (Γk ), then the
corresponding pmp action is isomorphic to the profinite action of Γ on lim←− Γ/Γk .
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Quantitative Følner tiling sequences

Definition

A Følner tiling sequence (Fk ) of Γ is an (εk ,Rk )-Følner tiling sequence if

1 each tile Tk has dSΓ
-diameter at most Rk ,

2 every s ∈ SΓ satisfies |Tk \ sTk | ≤ εk |Tk |.

Proposition

Suppose that (Fk ), (F ′k ) are (εk ,Rk ), (ε′k ,R
′
k ) Følner tiling sequences for Γ and Γ′,

such that |Fk | =
∣∣F ′k ∣∣ for all k ∈ N. Let ϕ : [0,∞)→ [0,∞) be a non-decreasing

function such that the sequence (ϕ(2R′k )(εk−1 − εk ))k∈N is summable.

Then the orbit equivalence coupling from Γ to Γ′ is (ϕ, L0)-integrable.
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Applications

Theorem (Delabie-Koivisto-Le Mâıtre-Tessera 20)

Let d , k ′ ∈ N. Then Zd and Zd+k are Lp-OE for all p < d/(d + k).

Z4 and H(Z) are Lp-OE for all p < 1.

The lamplighter group and Z are (log n)1−ε-OE for all ε > 0.

All OE are between profinite actions (Odometer-like).

Problem

Which groups admit Følner tiling sequences ?

Nilpotent groups: Yes (Delabie-Llosa-Tessera 24).

Polycyclic groups: probably never if exponential growth.

But: Polycyclic groups are (virtually) uniform lattices in connected Solvable
Lie groups.

connected Solvable Lie groups have probably always Følner tiling sequences.
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Amandine Escalier’s work

Theorem (Delabie-Koivisto-Le Mâıtre-Tessera 20)

If Λ and Γ are (ϕ, L0)-OE for some concave increasing function ϕ, then
FølΛ ◦ ϕ . FølΓ.

Problem (Inverse problem)

For all increasing functions α and β find groups Λ and Γ such that

1 FølΛ ≈ α and FølΓ ≈ α;

2 Γ and Λ are (ϕ, L0)-OE, where ϕ = β−1 ◦ α.

Theorem (Brieussel-Zheng 18)

For every convex increasing function β, there exists a group Γβ such that
FølΓβ ≈ β.

Theorem (Escalier 23)

For every convex increasing function β, there exists an (ϕ, L0)-OE coupling from
the group Γβ to Z, where ϕ is “nearly” β−1: e.g. (β−1)1−ε. The construction
provides profinite actions (via Følner tilings).
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If Λ and Γ are (ϕ, L0)-OE for some concave increasing function ϕ, then
FølΛ ◦ ϕ . FølΓ.

Problem (Inverse problem)

For all increasing functions α and β find groups Λ and Γ such that

1 FølΛ ≈ α and FølΓ ≈ α;

2 Γ and Λ are (ϕ, L0)-OE, where ϕ = β−1 ◦ α.

Theorem (Brieussel-Zheng 18)

For every convex increasing function β, there exists a group Γβ such that
FølΓβ ≈ β.

Theorem (Escalier 23)

For every convex increasing function β, there exists an (ϕ, L0)-OE coupling from
the group Γβ to Z, where ϕ is “nearly” β−1: e.g. (β−1)1−ε.

The construction
provides profinite actions (via Følner tilings).

Romain Tessera Quantitative ergodic theory



Quantitative
ergodic
theory

Romain
Tessera

Amandine Escalier’s work

Theorem (Delabie-Koivisto-Le Mâıtre-Tessera 20)
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Følner tilings for the lamplighter

Lamplighter: Z/2Z o Z :=
⊕

Z Z/2Z o Z.

standard generating set: {(0, 1), (δ0, 0)}.
The lamplighter point of view consists in viewing each element (f , n) of the
group as a pair where f is a configuration of lamps, and where n is the
position of the “lamplighter”. Multiplying (f , n) on the right by the first
generator amounts to moving the lamplighter from position n to n + 1.
Multiplying it by the second generator amounts to switching the light at
position n.

We define F0 = {(f , n) ∈ Z/mZ o Z : supp(f ) ⊆ {0, 1}, n ∈ {0, 1}} and

Fk =
{

(f , 0) ∈ Z/mZ o Z : supp(f ) ⊆ [2k , 2k+1 − 1]
}

∪
{

(f , 2k ) ∈ Z/mZ o Z : supp(f ) ⊆ [0, 2k − 1]
}
.

Tk = {(f , n) ∈ Z/mZ o Z : supp(f ) ⊆ [0, 2k+1 − 1], n ∈ [0, 2k+1 − 1]}.
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Proposition

The group Z/2Z o Z admits a (εk ,Rk )-Følner tiling sequence (Fk )k , with

|F0| = 23, and |Fk | = 2 · 22k , Rk = 3 · 2k+1 and εk = 2−(k+1) for k ≥ 1.

To bound the diameter of Tk , observe that to join two elements (f , n) and
(f ′, n′) in Tn, the lamplighter may travel from position n to n′, passing
through the whole interval [0, 2k+1 − 1], while possibly switching all the
lamps along the way.
If s = (δ0, 0), then Tk s = Tk . If s = (0, 1), then

Tk s \ Tk = {(f , 2k+1) ∈ Z/2Z o Z : supp(f ) ⊆ [0, 2k+1 − 1]}.

So |Tk s \ Tk | ≤ 22k+1
= 2−(k+1)|Tk |, so we are done.

Corollary

The lamplighter group and Z are (log n)1−ε-OE for all ε > 0.
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Corollary

The lamplighter group and Z are (log n)1−ε-OE for all ε > 0.

Romain Tessera Quantitative ergodic theory



Quantitative
ergodic
theory

Romain
Tessera

Følner tilings for the lamplighter

Lamplighter: Z/2Z o Z :=
⊕

Z Z/2Z o Z.
standard generating set: {(0, 1), (δ0, 0)}.
Tk = {(f , n) ∈ Z/2Z o Z : supp(f ) ⊆ [0, 2k+1 − 1], n ∈ [0, 2k+1 − 1]}.

Proposition

The group Z/2Z o Z admits a (εk ,Rk )-Følner tiling sequence (Fk )k , with

|F0| = 23, and |Fk | = 2 · 22k , Rk = 3 · 2k+1 and εk = 2−(k+1) for k ≥ 1.

To bound the diameter of Tk , observe that to join two elements (f , n) and
(f ′, n′) in Tn, the lamplighter may travel from position n to n′, passing
through the whole interval [0, 2k+1 − 1], while possibly switching all the
lamps along the way.
If s = (δ0, 0), then Tk s = Tk . If s = (0, 1), then

Tk s \ Tk = {(f , 2k+1) ∈ Z/2Z o Z : supp(f ) ⊆ [0, 2k+1 − 1]}.

So |Tk s \ Tk | ≤ 22k+1
= 2−(k+1)|Tk |, so we are done.

Corollary

The lamplighter group and Z are (log n)1−ε-OE for all ε > 0.

Romain Tessera Quantitative ergodic theory



Quantitative
ergodic
theory

Romain
Tessera

Følner tilings for the lamplighter

Lamplighter: Z/2Z o Z :=
⊕

Z Z/2Z o Z.
standard generating set: {(0, 1), (δ0, 0)}.
Tk = {(f , n) ∈ Z/2Z o Z : supp(f ) ⊆ [0, 2k+1 − 1], n ∈ [0, 2k+1 − 1]}.

Proposition

The group Z/2Z o Z admits a (εk ,Rk )-Følner tiling sequence (Fk )k , with

|F0| = 23, and |Fk | = 2 · 22k , Rk = 3 · 2k+1 and εk = 2−(k+1) for k ≥ 1.

To bound the diameter of Tk , observe that to join two elements (f , n) and
(f ′, n′) in Tn, the lamplighter may travel from position n to n′, passing
through the whole interval [0, 2k+1 − 1], while possibly switching all the
lamps along the way.

If s = (δ0, 0), then Tk s = Tk . If s = (0, 1), then

Tk s \ Tk = {(f , 2k+1) ∈ Z/2Z o Z : supp(f ) ⊆ [0, 2k+1 − 1]}.

So |Tk s \ Tk | ≤ 22k+1
= 2−(k+1)|Tk |, so we are done.

Corollary

The lamplighter group and Z are (log n)1−ε-OE for all ε > 0.

Romain Tessera Quantitative ergodic theory



Quantitative
ergodic
theory

Romain
Tessera

Følner tilings for the lamplighter

Lamplighter: Z/2Z o Z :=
⊕

Z Z/2Z o Z.
standard generating set: {(0, 1), (δ0, 0)}.
Tk = {(f , n) ∈ Z/2Z o Z : supp(f ) ⊆ [0, 2k+1 − 1], n ∈ [0, 2k+1 − 1]}.

Proposition

The group Z/2Z o Z admits a (εk ,Rk )-Følner tiling sequence (Fk )k , with

|F0| = 23, and |Fk | = 2 · 22k , Rk = 3 · 2k+1 and εk = 2−(k+1) for k ≥ 1.

To bound the diameter of Tk , observe that to join two elements (f , n) and
(f ′, n′) in Tn, the lamplighter may travel from position n to n′, passing
through the whole interval [0, 2k+1 − 1], while possibly switching all the
lamps along the way.
If s = (δ0, 0), then Tk s = Tk . If s = (0, 1), then

Tk s \ Tk = {(f , 2k+1) ∈ Z/2Z o Z : supp(f ) ⊆ [0, 2k+1 − 1]}.

So |Tk s \ Tk | ≤ 22k+1
= 2−(k+1)|Tk |, so we are done.

Corollary

The lamplighter group and Z are (log n)1−ε-OE for all ε > 0.

Romain Tessera Quantitative ergodic theory



Quantitative
ergodic
theory

Romain
Tessera

Beyond Følner tilings

Problem

Følner tilings provide OE which are at best almost L1. Can we do better?

Theorem (Delabie-Koivisto-Le Mâıtre-Tessera 20)

Baumslag-Solitar group: Z[1/2] o Z and Z/2Z o Z are (exp, L∞)-OE.

Corollary

Finite presentation is not preserved under L1-OE.

Asymptotic dimension is not preserved under L1-OE.
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Beyond Følner tilings

Theorem (Delabie-Koivisto-Le Mâıtre-Tessera 20)

Baumslag-Solitar group: Z[1/2] o Z and Z/2Z o Z are (exp, L∞)-OE.

An action of Z/2Z o Z on
∏

Z Z/2Z:

Z acts by shift,
⊕

Z Z/2Z acts
coordinate-wise.

An action of Z[1/2]: for all m ∈ Z, we decompose the space X as

X =
∏
i<m

Z/2Z×
∏
i≥m

Z/2Z,

and then (2m, 0) acts trivially on the first factor, and as the 2-adic
odometer on the second factor.

We extend it to an action of Z[1/2] o Z, where Z acts by shift.
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Baumslag-Solitar group: Z[1/2] o Z and Z/2Z o Z are (exp, L∞)-OE.

An action of Z/2Z o Z on
∏

Z Z/2Z: Z acts by shift,
⊕

Z Z/2Z acts
coordinate-wise.

An action of Z[1/2]: for all m ∈ Z, we decompose the space X as

X =
∏
i<m

Z/2Z×
∏
i≥m

Z/2Z,

and then (2m, 0) acts trivially on the first factor, and as the 2-adic
odometer on the second factor.

We extend it to an action of Z[1/2] o Z, where Z acts by shift.

Romain Tessera Quantitative ergodic theory



Quantitative
ergodic
theory

Romain
Tessera

Beyond Følner tilings: Sofic approximation

Let Γ be a group, S a finite generating set.

S-labelled graph: directed graph whose edges are labelled by elements of S.

Example: Cayley graph C(Γ, S).

Let G be a S-labeled graph. For r ≥ 1, we denote

X r =
{
x ∈ X | BG(x , r) ' BC(Γ,S)(1Γ, r)

}
,

where ' means isomorphic as S-labeled graphs.

Definition (Sofic approximation)

Let (Gn)n be a sequence of finite S-labeled graphs. PGn : renormalized counting
measure on Gn. (Gn)n is a Sofic approximation of (Γ, S), if for every r > 0,

lim
n→∞

PGn
(
G(r)
n

)
= 1.

Gn is a Følner sequence.

Gn = Schreier(Γ/Γn, S), where Γn is a decreasing sequence of finite index
subgroups such that

⋂
n Γn = {1}.
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Sofic approximation: construction of OE

Let Γ and Λ be sofic groups, let Gn and Ln be sofic approximations.
α, β decreasing functions such that limt →∞α(t) = limt →∞β(t) = 0.

A sequence of bijection Fn : Gn → Ln is (α, β)-statistically bi-Lipschitz if
for all R, and s ∈ SΓ and t ∈ SΛ,

PGn
(
x ∈ G1

n | d(F (x),F (xs)) ≥ R
)
≤ α(R),

PLn

(
y ∈ L1

n | d(F−1(y),F−1(yt)) ≥ R
)
≤ β(R).

Theorem (Carderi-Delabie-Koivisto-Le Mâıtre-Tessera 23)

Let Γ and Λ be sofic groups.

if Fn : Gn → Ln is (α, β)-statistically bi-Lipschitz, then there exist pmp
actions Γ y X and Λ y Y and an OE between them.

if α and β satisfy∫
ϕ(t)α(t)dt <∞ and

∫
ψ(t)β(t)dt <∞,

then the OE is (ϕ,ψ)-integrable.
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Reminder on quantitative OE

Definition (Word distance on X)

Let Λ be a group generated by a finite subset S and let assume Λ acts freely on
(X , µ), then the word distance on X associated to S is

dS (x , x ′) = min{n ∈ N | x ′ = s±1
1 . . . s±1

n · x},

where si ∈ S if x ′ and x lie in a same orbit,

and dS (x , x ′) =∞ otherwise.

We use the measure µ to compare the word distances associated to two distinct
pmp actions as follows:

Proposition (ϕ-integrable orbit equivalence)

Assume Λ, Γ y (X , µ) with same orbits. The actions are (ϕ,ψ)-OE iff for all
λ ∈ SΛ, ∫

X
ϕ(dSΓ

(x , λ · x))dµ(x) <∞,

and all γ ∈ SΓ, ∫
X
ψ(dSΛ

(x , γ · x))dµ(x) <∞,
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Sofic approximation: construction of OE

Lemma (Carderi-Delabie-Koivisto-Le Mâıtre-Tessera 23)

Let Γ and Λ be sofic groups. if Fn : Gn → Ln is (α, β)-statistically bi-Lipschitz,
then there exist pmp actions Γ y X and Λ y Y and an OE such that for all
s ∈ SΓ, t ∈ SΛ and R > 0,

PX

(
x ∈ X | dSΛ

(FU (x),FU (s · x)) ≥ R
)
≤ α(R),

and
PY

(
y ∈ Y | dSΓ

(F−1
U (y),F−1

U (t · y)) ≥ R
)
≤ β(R),

Sketch of proof.

Take a ultrafilter U , and consider the limit X = limU Gn (similarly
Y = limU Ln).

X come equipped with probability measures PX = limU PGn , and a free
pmp actions of Γ.

The map FU = limU Fn is a measure isomorphism and satisfies the
conclusion of the lemma.

In particular: dSΓ
(x , x ′) <∞ ⇐⇒ dSΛ

(FU (x),FU (x ′)) <∞: FU is an OE.
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Take a ultrafilter U , and consider the limit X = limU Gn (similarly
Y = limU Ln).

X come equipped with probability measures PX = limU PGn , and a free
pmp actions of Γ.

The map FU = limU Fn is a measure isomorphism and satisfies the
conclusion of the lemma.

In particular: dSΓ
(x , x ′) <∞ ⇐⇒ dSΛ

(FU (x),FU (x ′)) <∞: FU is an OE.
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Other constructions: wreath products

Definition

The wreath product of Λ with Γ:

Λ o Γ :=

(⊕
Γ

Λ

)
o Γ

(lamp group: Λ, base group: Γ)

Theorem (Delabie-Koivisto-Le Mâıtre-Tessera 20)

If Γ1 and Γ2 admit a (ϕ,ψ)-integrable orbit equivalence coupling, and if Λ1 and
Λ2 admit a (ϕ,ψ)-integrable orbit equivalence coupling, then the wreath products
Λ1 o Γ2 and Λ2 o Γ2 also admit a (ϕ,ψ)-integrable orbit equivalence couplings.

Corollary

Let a, b ∈ N with a < b and let ∆ be any finitely generated group, then there is

an (Lp , Lp
′
)-orbit equivalence coupling from ∆ o Zb to ∆ o Za for every p < a

b
and

p′ < b
a

.
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Other constructions: wreath products

Baby case: If Λ1 = Λ2 = Λ is finite.

Assume Γ1 and Γ2 act with same orbits on X : α : Γ1 × X → Γ2.

Consider the probability space X × ΛΓ1 . Action of Λ o Γ1:

γ ∈ Γ1 acts by “shift”:

γ · (x , (lg )g∈Γ1
) = (γ · x , (lgγ)g∈Γ1

).

⊕
γ∈Γ1

Λ-action: for all f ∈
⊕
γ∈Γ1

Λ,

f · (x , (lg )g∈Γ) = (x , (f (g−1) · lg )g∈Γ1
).

Action of Λ o Γ2:

γ2 ∈ Γ2:
γ2 · (x , (lg )g∈Γ1

) = (γ2 · x , (lgα(γ2,x))g∈Γ1
).

⊕
γ∈Γ2

Λ-action:

f · (x , (lg )g∈Γ) = (x , (f (α(g , x)−1) · lg )g∈Γ).
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