Quantitativ	e
ergodic	
theory	

Romain Tessera

Quantitative ergodic theory

Romain Tessera

CNRS, Université Paris Cité et Sorbonne Université

29/02/24

ヘロア 人間 アメヨア 人間 アー

Э

Quantitative ergodic theory

> Romain Tessera

Definition

Let Γ be an amenable group and (F_k) be a sequence of finite subsets of Γ . We call (F_k) a (left) **Følner tiling sequence** if the sequence of *tiles* (T_k) defined inductively by $T_0 = F_0$ and $T_{k+1} = T_k F_{k+1}$ satisfies the following conditions:

イロト イポト イヨト イヨト

Quantitative ergodic theory

> Romain Tessera

Definition

Let Γ be an amenable group and (F_k) be a sequence of finite subsets of Γ . We call (F_k) a (left) **Følner tiling sequence** if the sequence of *tiles* (T_k) defined inductively by $T_0 = F_0$ and $T_{k+1} = T_k F_{k+1}$ satisfies the following conditions:

1 (tiling condition) for all $k \in \mathbb{N}$, T_{k+1} is a *disjoint* union:

$$T_{k+1} = \bigsqcup_{\gamma \in F_{k+1}} T_k \gamma;$$

イロト イヨト イヨト イヨト

Quantitative ergodic theory

Romain

Let Γ be an amenable group and (F_k) be a sequence of finite subsets of Γ . We call (F_k) a (left) **Følner tiling sequence** if the sequence of tiles (T_k) defined inductively by $T_0 = F_0$ and $T_{k+1} = T_k F_{k+1}$ satisfies the following conditions:

1 (tiling condition) for all $k \in \mathbb{N}$, T_{k+1} is a *disjoint* union:

$$T_{k+1} = \bigsqcup_{\gamma \in F_{k+1}} T_k \gamma;$$

Definition

2 (Følner condition) (T_k) is a left Følner sequence: for all $\gamma \in \Gamma$, $\frac{|\gamma T_k \setminus T_k|}{|T_k|} = 0.$ lim $k \rightarrow +\infty$

イロト イヨト イヨト イヨト

2

Quantitative ergodic theory

Romain

Let Γ be an amenable group and (F_k) be a sequence of finite subsets of Γ . We call (F_k) a (left) **Følner tiling sequence** if the sequence of tiles (T_k) defined inductively by $T_0 = F_0$ and $T_{k+1} = T_k F_{k+1}$ satisfies the following conditions:

1 (tiling condition) for all $k \in \mathbb{N}$, T_{k+1} is a *disjoint* union:

$$T_{k+1} = \bigsqcup_{\gamma \in F_{k+1}} T_k \gamma;$$

Definition

2 (Følner condition) (T_k) is a left Følner sequence: for all $\gamma \in \Gamma$, $\frac{|\gamma T_k \setminus T_k|}{|T_k|} = 0.$ lim $k \rightarrow +\infty$

Remark

The first condition amounts to saying that every element of T_k can uniquely be written as $f_0 \cdots f_k$ where each f_i belongs to F_i .

Profinite Følner tilings and profinite actions

Quantitative ergodic theory

> Romain Tessera

Definition (Profinite Følner tilings)

A Følner tiling sequence $(F_k)_{k\in\mathbb{N}}$ is **profinite** if there exists a decreasing sequence of finite index subgroups Γ_k such that each F_k is a set of left coset representatives of Γ_{k-1} modulo Γ_k .

イロト イポト イヨト イヨト

Profinite Følner tilings and profinite actions

Quantitative ergodic theory

> Romain Tessera

Definition (Profinite Følner tilings)

A Følner tiling sequence $(F_k)_{k\in\mathbb{N}}$ is **profinite** if there exists a decreasing sequence of finite index subgroups Γ_k such that each F_k is a set of left coset representatives of Γ_{k-1} modulo Γ_k . Note that each tile T_k is then a set of coset-representatives of Γ modulo Γ_k .

Proposition

If (F_k) is a profinite Følner tiling sequence associated to (Γ_k) , then the corresponding pmp action is isomorphic to the profinite action of Γ on $\lim_{k \to \infty} \Gamma/\Gamma_k$.

イロト イヨト イヨト イヨト

Quantitative ergodic theory

Romain Tessera

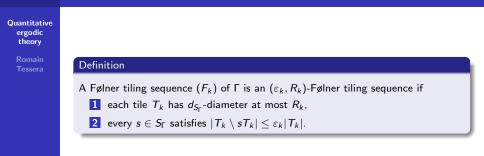
Definition

A Følner tiling sequence (F_k) of Γ is an (ε_k, R_k)-Følner tiling sequence if

1 each tile T_k has $d_{S_{\Gamma}}$ -diameter at most R_k ,

イロト イヨト イヨト イヨト

臣



・ロト ・日ト ・ヨト ・ヨト

Quantitative ergodic theory

Romain Tessera

Definition

A Følner tiling sequence (F_k) of Γ is an (ε_k, R_k) -Følner tiling sequence if

1 each tile T_k has $d_{S_{\Gamma}}$ -diameter at most R_k ,

2 every $s \in S_{\Gamma}$ satisfies $|T_k \setminus sT_k| \le \varepsilon_k |T_k|$.

Proposition

Suppose that (F_k) , (F'_k) are (ε_k, R_k) , (ε'_k, R'_k) Følner tiling sequences for Γ and Γ' , such that $|F_k| = |F'_k|$ for all $k \in \mathbb{N}$.

イロト イヨト イヨト イヨト

크

Quantitative ergodic theory

Romain Tessera

Definition

A Følner tiling sequence (F_k) of Γ is an (ε_k, R_k) -Følner tiling sequence if

1 each tile T_k has $d_{S_{\Gamma}}$ -diameter at most R_k ,

2 every $s \in S_{\Gamma}$ satisfies $|T_k \setminus sT_k| \le \varepsilon_k |T_k|$.

Proposition

Suppose that (F_k) , (F'_k) are (ε_k, R_k) , (ε'_k, R'_k) Følner tiling sequences for Γ and Γ' , such that $|F_k| = |F'_k|$ for all $k \in \mathbb{N}$. Let $\varphi : [0, \infty) \to [0, \infty)$ be a non-decreasing function such that the sequence $(\varphi(2R'_k)(\varepsilon_{k-1} - \varepsilon_k))_{k \in \mathbb{N}}$ is summable.

イロン 不同 とうほう 不同 とう

3

Quantitative ergodic theory

Romain Tessera

Definition

A Følner tiling sequence (F_k) of Γ is an (ε_k, R_k) -Følner tiling sequence if

1 each tile T_k has $d_{S_{\Gamma}}$ -diameter at most R_k ,

2 every $s \in S_{\Gamma}$ satisfies $|T_k \setminus sT_k| \leq \varepsilon_k |T_k|$.

Proposition

Suppose that (F_k) , (F'_k) are (ε_k, R_k) , (ε'_k, R'_k) Følner tiling sequences for Γ and Γ' , such that $|F_k| = |F'_k|$ for all $k \in \mathbb{N}$. Let $\varphi : [0, \infty) \to [0, \infty)$ be a non-decreasing function such that the sequence $(\varphi(2R'_k)(\varepsilon_{k-1} - \varepsilon_k))_{k \in \mathbb{N}}$ is summable. Then the orbit equivalence coupling from Γ to Γ' is (φ, L^0) -integrable.

イロン 不同 とくほど 不同 とう

Quantitative ergodic theory

Romain Tessera

Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

• Let $d, k' \in \mathbb{N}$. Then \mathbb{Z}^d and \mathbb{Z}^{d+k} are L^p -OE for all p < d/(d+k).

イロト イヨト イヨト イヨト 三日

Quantitative ergodic theory

Romain Tessera

Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

- Let $d, k' \in \mathbb{N}$. Then \mathbb{Z}^d and \mathbb{Z}^{d+k} are L^p -OE for all p < d/(d+k).
- \mathbb{Z}^4 and $\mathbb{H}(\mathbb{Z})$ are L^p -OE for all p < 1.

<ロ> <四> <四> <四> <三</td>

Quantitative ergodic theory

Romain Tessera

Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

- Let $d, k' \in \mathbb{N}$. Then \mathbb{Z}^d and \mathbb{Z}^{d+k} are L^p -OE for all p < d/(d+k).
- \mathbb{Z}^4 and $\mathbb{H}(\mathbb{Z})$ are L^p -OE for all p < 1.
- The lamplighter group and \mathbb{Z} are $(\log n)^{1-\varepsilon}$ -OE for all $\varepsilon > 0$.

All OE are between profinite actions (Odometer-like).

Problem

Which groups admit Følner tiling sequences ?

■ Nilpotent groups: Yes (Delabie-Llosa-Tessera 24).

<ロ> (四) (四) (三) (三) (三)

Quantitative ergodic theory

Romain Tessera

Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

- Let $d, k' \in \mathbb{N}$. Then \mathbb{Z}^d and \mathbb{Z}^{d+k} are L^p -OE for all p < d/(d+k).
- \mathbb{Z}^4 and $\mathbb{H}(\mathbb{Z})$ are L^p -OE for all p < 1.
- The lamplighter group and \mathbb{Z} are $(\log n)^{1-\varepsilon}$ -OE for all $\varepsilon > 0$.

All OE are between profinite actions (Odometer-like).

Problem

Which groups admit Følner tiling sequences ?

- Nilpotent groups: Yes (Delabie-Llosa-Tessera 24).
- Polycyclic groups: probably never if exponential growth.

イロト イヨト イヨト イヨト

3

Quantitative ergodic theory

Romain Tessera

Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

- Let $d, k' \in \mathbb{N}$. Then \mathbb{Z}^d and \mathbb{Z}^{d+k} are L^p -OE for all p < d/(d+k).
- \mathbb{Z}^4 and $\mathbb{H}(\mathbb{Z})$ are L^p -OE for all p < 1.
- The lamplighter group and \mathbb{Z} are $(\log n)^{1-\varepsilon}$ -OE for all $\varepsilon > 0$.

All OE are between profinite actions (Odometer-like).

Problem

Which groups admit Følner tiling sequences ?

- Nilpotent groups: Yes (Delabie-Llosa-Tessera 24).
- Polycyclic groups: probably never if exponential growth.
- But: Polycyclic groups are (virtually) uniform lattices in connected Solvable Lie groups.

イロン イボン イモン イモン 三日

Quantitative ergodic theory

Romain Tessera

Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

- Let $d, k' \in \mathbb{N}$. Then \mathbb{Z}^d and \mathbb{Z}^{d+k} are L^p -OE for all p < d/(d+k).
- \mathbb{Z}^4 and $\mathbb{H}(\mathbb{Z})$ are L^p -OE for all p < 1.
- The lamplighter group and \mathbb{Z} are $(\log n)^{1-\varepsilon}$ -OE for all $\varepsilon > 0$.

All OE are between profinite actions (Odometer-like).

Problem

Which groups admit Følner tiling sequences ?

- Nilpotent groups: Yes (Delabie-Llosa-Tessera 24).
- Polycyclic groups: probably never if exponential growth.
- But: Polycyclic groups are (virtually) uniform lattices in connected Solvable Lie groups.
- connected Solvable Lie groups have probably always Følner tiling sequences.

イロン 不同 とうほう 不同 とう

3

Quantitative ergodic theory

> Romain Tessera

Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

If Λ and Γ are (φ, L^0) -OE for some concave increasing function φ , then $F \emptyset I_{\Lambda} \circ \varphi \lesssim F \emptyset I_{\Gamma}$.

イロン イボン イモン イモン 三日

Quantitative ergodic theory

> Romain Tessera

Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

If Λ and Γ are (φ, L^0) -OE for some concave increasing function φ , then $F \emptyset I_{\Lambda} \circ \varphi \lesssim F \emptyset I_{\Gamma}$.

Problem (Inverse problem)

For all increasing functions α and β find groups Λ and Γ such that

1 $F ø I_{\Lambda} \approx \alpha$ and $F ø I_{\Gamma} \approx \alpha$;

イロン イボン イモン イモン 三日

Quantitative ergodic theory

> Romain Tessera

Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

If Λ and Γ are (φ, L^0) -OE for some concave increasing function φ , then $F \not{a} I_{\Lambda} \circ \varphi \lesssim F \not{a} I_{\Gamma}$.

Problem (Inverse problem)

For all increasing functions α and β find groups Λ and Γ such that

1 $F ø I_{\Lambda} \approx \alpha$ and $F ø I_{\Gamma} \approx \alpha$;

2 Γ and Λ are (φ, L^0) -OE, where $\varphi = \beta^{-1} \circ \alpha$.

イロト イヨト イヨト イヨト 二日

Quantitative ergodic theory

> Romain Tessera

Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

If Λ and Γ are (φ, L^0) -OE for some concave increasing function φ , then $F \emptyset I_{\Lambda} \circ \varphi \lesssim F \emptyset I_{\Gamma}$.

Problem (Inverse problem)

For all increasing functions α and β find groups Λ and Γ such that

1 $Føl_{\Lambda} \approx \alpha$ and $Føl_{\Gamma} \approx \alpha$;

2 Γ and Λ are (φ, L^0) -OE, where $\varphi = \beta^{-1} \circ \alpha$.

Theorem (Brieussel-Zheng 18)

For every convex increasing function β , there exists a group Γ_{β} such that $F \delta I_{\Gamma_{\beta}} \approx \beta$.

イロト イヨト イヨト イヨト 二日

Quantitative ergodic theory

> Romain Tessera

Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

If Λ and Γ are (φ, L^0) -OE for some concave increasing function φ , then $F \emptyset I_{\Lambda} \circ \varphi \lesssim F \emptyset I_{\Gamma}$.

Problem (Inverse problem)

For all increasing functions α and β find groups Λ and Γ such that

1 $Føl_{\Lambda} \approx \alpha$ and $Føl_{\Gamma} \approx \alpha$;

2 Γ and Λ are (φ, L^0) -OE, where $\varphi = \beta^{-1} \circ \alpha$.

Theorem (Brieussel-Zheng 18)

For every convex increasing function β , there exists a group Γ_{β} such that $F \phi I_{\Gamma_{\beta}} \approx \beta$.

Theorem (Escalier 23)

For every convex increasing function β , there exists an (φ, L^0) -OE coupling from the group Γ_{β} to \mathbb{Z} , where φ is "nearly" β^{-1} :

Quantitative ergodic theory

> Romain Tessera

Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

If Λ and Γ are (φ, L^0) -OE for some concave increasing function φ , then $F \emptyset I_{\Lambda} \circ \varphi \lesssim F \emptyset I_{\Gamma}$.

Problem (Inverse problem)

For all increasing functions α and β find groups Λ and Γ such that

1 $Føl_{\Lambda} \approx \alpha$ and $Føl_{\Gamma} \approx \alpha$;

2 Γ and Λ are (φ, L^0) -OE, where $\varphi = \beta^{-1} \circ \alpha$.

Theorem (Brieussel-Zheng 18)

For every convex increasing function β , there exists a group Γ_{β} such that $F \phi I_{\Gamma_{\beta}} \approx \beta$.

Theorem (Escalier 23)

For every convex increasing function β , there exists an (φ, L^0) -OE coupling from the group Γ_{β} to \mathbb{Z} , where φ is "nearly" β^{-1} : e.g. $(\beta^{-1})^{1-\varepsilon}$.

Quantitative ergodic theory

> Romain Tessera

Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

If Λ and Γ are (φ, L^0) -OE for some concave increasing function φ , then $F \emptyset I_{\Lambda} \circ \varphi \lesssim F \emptyset I_{\Gamma}$.

Problem (Inverse problem)

For all increasing functions α and β find groups Λ and Γ such that

1 $Føl_{\Lambda} \approx \alpha$ and $Føl_{\Gamma} \approx \alpha$;

2
$$\Gamma$$
 and Λ are (φ, L^0) -OE, where $\varphi = \beta^{-1} \circ \alpha$.

Theorem (Brieussel-Zheng 18)

For every convex increasing function β , there exists a group Γ_{β} such that $F \phi I_{\Gamma_{\beta}} \approx \beta$.

Theorem (Escalier 23)

For every convex increasing function β , there exists an (φ, L^0) -OE coupling from the group Γ_β to \mathbb{Z} , where φ is "nearly" β^{-1} : e.g. $(\beta^{-1})^{1-\varepsilon}$. The construction provides profinite actions (via Følner tilings).

Romain Tessera

- Lamplighter: $\mathbb{Z}/2\mathbb{Z} \wr \mathbb{Z} := \bigoplus_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z} \rtimes \mathbb{Z}$.
- standard generating set: $\{(0,1), (\delta_0, 0)\}$.
- The lamplighter point of view consists in viewing each element (f, n) of the group as a pair where f is a configuration of lamps, and where n is the position of the "lamplighter". Multiplying (f, n) on the right by the first generator amounts to moving the lamplighter from position n to n + 1. Multiplying it by the second generator amounts to switching the light at position n.
- We define $F_0 = \{(f, n) \in \mathbb{Z} / m\mathbb{Z} \wr \mathbb{Z} : \operatorname{supp}(f) \subseteq \{0, 1\}, n \in \{0, 1\}\}$ and

$$F_k = \left\{ (f,0) \in \mathbb{Z}/m\mathbb{Z} \wr \mathbb{Z} \colon \mathsf{supp}(f) \subseteq [2^k, 2^{k+1} - 1] \right\}$$
$$\cup \left\{ (f, 2^k) \in \mathbb{Z}/m\mathbb{Z} \wr \mathbb{Z} \colon \mathsf{supp}(f) \subseteq [0, 2^k - 1] \right\}.$$

イロト イヨト イヨト イヨト

•
$$T_k = \{(f, n) \in \mathbb{Z} / m\mathbb{Z} \wr \mathbb{Z} : \operatorname{supp}(f) \subseteq [0, 2^{k+1} - 1], n \in [0, 2^{k+1} - 1]\}.$$

Quantitative ergodic theory

> Romain Tessera

• Lamplighter: $\mathbb{Z}/2\mathbb{Z} \wr \mathbb{Z} := \bigoplus_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z} \rtimes \mathbb{Z}$.

ヘロア 人間 アメヨア 人間 アー

Э

Quantitative ergodic theory

> Romain Tessera

- Lamplighter: $\mathbb{Z}/2\mathbb{Z} \wr \mathbb{Z} := \bigoplus_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z} \rtimes \mathbb{Z}$.
- standard generating set: $\{(0,1), (\delta_0, 0)\}$.

イロト イヨト イヨト イヨト

臣

Quantitative ergodic theory

> Romain Tessera

- Lamplighter: $\mathbb{Z}/2\mathbb{Z} \wr \mathbb{Z} := \bigoplus_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z} \rtimes \mathbb{Z}$.
- standard generating set: $\{(0,1), (\delta_0, 0)\}$.
- $T_k = \{(f, n) \in \mathbb{Z}/2\mathbb{Z} \wr \mathbb{Z} : \operatorname{supp}(f) \subseteq [0, 2^{k+1} 1], n \in [0, 2^{k+1} 1]\}.$

イロト イヨト イヨト イヨト

크

Quantitative ergodic theory

> Romain Tessera

- Lamplighter: $\mathbb{Z}/2\mathbb{Z} \wr \mathbb{Z} := \bigoplus_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z} \rtimes \mathbb{Z}$.
- standard generating set: $\{(0,1), (\delta_0, 0)\}$.
- $T_k = \{(f, n) \in \mathbb{Z}/2\mathbb{Z} \wr \mathbb{Z} : \operatorname{supp}(f) \subseteq [0, 2^{k+1} 1], n \in [0, 2^{k+1} 1]\}.$

Proposition

The group $\mathbb{Z}/2\mathbb{Z} \wr \mathbb{Z}$ admits a (ε_k, R_k) -Følner tiling sequence $(F_k)_k$, with $|F_0| = 2^3$, and $|F_k| = 2 \cdot 2^{2^k}$, $R_k = 3 \cdot 2^{k+1}$ and $\varepsilon_k = 2^{-(k+1)}$ for $k \ge 1$.

イロト イヨト イヨト イヨト

Quantitative ergodic theory

> Romain Tessera

- Lamplighter: $\mathbb{Z}/2\mathbb{Z} \wr \mathbb{Z} := \bigoplus_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z} \rtimes \mathbb{Z}$.
- standard generating set: $\{(0,1), (\delta_0, 0)\}$.
 - $T_k = \{(f, n) \in \mathbb{Z}/2\mathbb{Z} \wr \mathbb{Z} : \operatorname{supp}(f) \subseteq [0, 2^{k+1} 1], n \in [0, 2^{k+1} 1]\}.$

Proposition

The group $\mathbb{Z}/2\mathbb{Z} \wr \mathbb{Z}$ admits a (ε_k, R_k) -Følner tiling sequence $(F_k)_k$, with $|F_0| = 2^3$, and $|F_k| = 2 \cdot 2^{2^k}$, $R_k = 3 \cdot 2^{k+1}$ and $\varepsilon_k = 2^{-(k+1)}$ for $k \ge 1$.

• To bound the diameter of T_k , observe that to join two elements (f, n) and (f', n') in T_n , the lamplighter may travel from position n to n', passing through the whole interval $[0, 2^{k+1} - 1]$, while possibly switching all the lamps along the way.

イロト イヨト イヨト イヨト

Quantitative ergodic theory

> Romain Tessera

- Lamplighter: $\mathbb{Z}/2\mathbb{Z} \wr \mathbb{Z} := \bigoplus_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z} \rtimes \mathbb{Z}$.
- standard generating set: $\{(0,1), (\delta_0, 0)\}$.
 - $T_k = \{(f, n) \in \mathbb{Z}/2\mathbb{Z} \wr \mathbb{Z} : \operatorname{supp}(f) \subseteq [0, 2^{k+1} 1], n \in [0, 2^{k+1} 1]\}.$

Proposition

The group $\mathbb{Z}/2\mathbb{Z} \wr \mathbb{Z}$ admits a (ε_k, R_k) -Følner tiling sequence $(F_k)_k$, with $|F_0| = 2^3$, and $|F_k| = 2 \cdot 2^{2^k}$, $R_k = 3 \cdot 2^{k+1}$ and $\varepsilon_k = 2^{-(k+1)}$ for $k \ge 1$.

• To bound the diameter of T_k , observe that to join two elements (f, n) and (f', n') in T_n , the lamplighter may travel from position n to n', passing through the whole interval $[0, 2^{k+1} - 1]$, while possibly switching all the lamps along the way.

• If $s = (\delta_0, 0)$, then $T_k s = T_k$. If s = (0, 1), then

$$T_k s \setminus T_k = \{(f, 2^{k+1}) \in \mathbb{Z}/2\mathbb{Z} \wr \mathbb{Z} \colon \mathsf{supp}(f) \subseteq [0, 2^{k+1} - 1]\}.$$

So
$$|T_k s \setminus T_k| \leq 2^{2^{k+1}} = 2^{-(k+1)} |T_k|$$
, so we are done.

Corollary

The lamplighter group and \mathbb{Z} are $(\log n)^{1-\varepsilon}$ -OE for all $\varepsilon > 0$.

Beyond Følner tilings Quantitative ergodic theory Romain Problem Følner tilings provide OE which are at best almost L^1 . Can we do better? Theorem (Delabie-Koivisto-Le Maître-Tessera 20) Baumslag-Solitar group: $\mathbb{Z}[1/2] \rtimes \mathbb{Z}$ and $\mathbb{Z}/2\mathbb{Z} \wr \mathbb{Z}$ are (exp, L^{∞})-OE. Corollary Finite presentation is not preserved under L^1 -OE.

イロン 不同 とくほど 不同 とう

臣

Beyond Følner tilings Quantitative ergodic theory Romain Problem Følner tilings provide OE which are at best almost L^1 . Can we do better? Theorem (Delabie-Koivisto-Le Maître-Tessera 20) Baumslag-Solitar group: $\mathbb{Z}[1/2] \rtimes \mathbb{Z}$ and $\mathbb{Z}/2\mathbb{Z} \wr \mathbb{Z}$ are (exp, L^{∞})-OE. Corollary Finite presentation is not preserved under L¹-OE. Asymptotic dimension is not preserved under L¹-OE.

イロン イヨン イヨン

Beyond Følner tilings

Quantitative ergodic theory

Romain Tessera Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

Baumslag-Solitar group: $\mathbb{Z}[1/2] \rtimes \mathbb{Z}$ and $\mathbb{Z}/2\mathbb{Z} \wr \mathbb{Z}$ are (exp, L^{∞}) -OE.

• An action of $\mathbb{Z}/2\mathbb{Z} \wr \mathbb{Z}$ on $\prod_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z}$:

ヘロア 人間 アメヨア 人間 アー

크

Beyond Følner tilings

Quantitative ergodic theory

Romain Tessera Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

Baumslag-Solitar group: $\mathbb{Z}[1/2] \rtimes \mathbb{Z}$ and $\mathbb{Z}/2\mathbb{Z} \wr \mathbb{Z}$ are (exp, L^{∞}) -OE.

- An action of Z/2Z ≀Z on ∏_Z Z/2Z: Z acts by shift, ⊕_Z Z/2Z acts coordinate-wise.
- An action of $\mathbb{Z}[1/2]$: for all $m \in \mathbb{Z}$, we decompose the space X as

$$X = \prod_{i < m} \mathbb{Z}/2\mathbb{Z} imes \prod_{i \ge m} \mathbb{Z}/2\mathbb{Z},$$

イロン イヨン イヨン イヨン

æ

and then $(2^m, 0)$ acts trivially on the first factor, and as the 2-adic odometer on the second factor.

• We extend it to an action of $\mathbb{Z}[1/2] \rtimes \mathbb{Z}$, where \mathbb{Z} acts by shift.

Quantitative ergodic theory

> Romain Tessera

Let Γ be a group, S a finite generating set.

イロト イヨト イヨト イヨト

Quantitative ergodic theory

> Romain Tessera

Let Γ be a group, S a finite generating set.

• S-labelled graph: directed graph whose edges are labelled by elements of S.

イロト イヨト イヨト イヨト

Quantitative ergodic theory

> Romain Tessera

- Let Γ be a group, S a finite generating set.
 - S-labelled graph: directed graph whose edges are labelled by elements of S.
 - Example: Cayley graph $C(\Gamma, S)$.

イロン イヨン イヨン

Quantitative ergodic theory

> Romain Tessera

- Let Γ be a group, S a finite generating set.
 - S-labelled graph: directed graph whose edges are labelled by elements of S.
 - Example: Cayley graph $\mathcal{C}(\Gamma, S)$.
 - Let \mathcal{G} be a *S*-labeled graph. For $r \geq 1$, we denote

$$X^r = \left\{ x \in X \mid B_{\mathcal{G}}(x,r) \simeq B_{\mathcal{C}(\Gamma,S)}(1_{\Gamma},r) \right\},$$

where \simeq means isomorphic as *S*-labeled graphs.

・ 回 ト ・ ヨ ト ・ ヨ ト

Quantitative ergodic theory

> Romain Tessera

- Let Γ be a group, S a finite generating set.
 - S-labelled graph: directed graph whose edges are labelled by elements of S.
 - Example: Cayley graph $\mathcal{C}(\Gamma, S)$.
 - Let \mathcal{G} be a S-labeled graph. For $r \geq 1$, we denote

$$X^{r} = \left\{ x \in X \mid B_{\mathcal{G}}(x, r) \simeq B_{\mathcal{C}(\Gamma, S)}(1_{\Gamma}, r) \right\},\$$

where \simeq means isomorphic as S-labeled graphs.

Definition (Sofic approximation)

Let $(\mathcal{G}_n)_n$ be a sequence of finite S-labeled graphs. $\mathbb{P}_{\mathcal{G}_n}$: renormalized counting measure on \mathcal{G}_n . $(\mathcal{G}_n)_n$ is a Sofic approximation of (Γ, S) , if for every r > 0,

$$\lim_{n\to\infty}\mathbb{P}_{\mathcal{G}_n}\left(\mathcal{G}_n^{(r)}\right)=1.$$

イロト イヨト イヨト イヨト

Quantitative ergodic theory

> Romain Tessera

- Let Γ be a group, S a finite generating set.
 - S-labelled graph: directed graph whose edges are labelled by elements of S.
 - Example: Cayley graph $C(\Gamma, S)$.
 - Let \mathcal{G} be a S-labeled graph. For $r \geq 1$, we denote

$$X^{r} = \left\{ x \in X \mid B_{\mathcal{G}}(x, r) \simeq B_{\mathcal{C}(\Gamma, S)}(1_{\Gamma}, r) \right\},\$$

where \simeq means isomorphic as S-labeled graphs.

Definition (Sofic approximation)

Let $(\mathcal{G}_n)_n$ be a sequence of finite S-labeled graphs. $\mathbb{P}_{\mathcal{G}_n}$: renormalized counting measure on \mathcal{G}_n . $(\mathcal{G}_n)_n$ is a Sofic approximation of (Γ, S) , if for every r > 0,

$$\lim_{n\to\infty}\mathbb{P}_{\mathcal{G}_n}\left(\mathcal{G}_n^{(r)}\right)=1.$$

• \mathcal{G}_n is a Følner sequence.

イロン イヨン イヨン イヨン

Quantitative ergodic theory

> Romain Tessera

- Let Γ be a group, S a finite generating set.
 - S-labelled graph: directed graph whose edges are labelled by elements of S.
 - Example: Cayley graph $C(\Gamma, S)$.
 - Let \mathcal{G} be a S-labeled graph. For $r \geq 1$, we denote

$$X^{r} = \left\{ x \in X \mid B_{\mathcal{G}}(x, r) \simeq B_{\mathcal{C}(\Gamma, S)}(1_{\Gamma}, r) \right\},\$$

where \simeq means isomorphic as S-labeled graphs.

Definition (Sofic approximation)

Let $(\mathcal{G}_n)_n$ be a sequence of finite S-labeled graphs. $\mathbb{P}_{\mathcal{G}_n}$: renormalized counting measure on \mathcal{G}_n . $(\mathcal{G}_n)_n$ is a Sofic approximation of (Γ, S) , if for every r > 0,

$$\lim_{n\to\infty}\mathbb{P}_{\mathcal{G}_n}\left(\mathcal{G}_n^{(r)}\right)=1.$$

- \mathcal{G}_n is a Følner sequence.
- $\mathcal{G}_n = \text{Schreier}(\Gamma/\Gamma_n, S)$, where Γ_n is a decreasing sequence of finite index subgroups such that $\bigcap_n \Gamma_n = \{1\}$.

Quantitative ergodic theory

> Romain Tessera

- Let Γ and Λ be sofic groups, let \mathcal{G}_n and \mathcal{L}_n be sofic approximations.
- α, β decreasing functions such that $\lim_{t \to \infty} \alpha(t) = \lim_{t \to \infty} \alpha(t) = 0$.

イロト イヨト イヨト イヨト

Quantitative ergodic theory

> Romain Tessera

- Let Γ and Λ be sofic groups, let \mathcal{G}_n and \mathcal{L}_n be sofic approximations.
- α, β decreasing functions such that $\lim_t \to \infty \alpha(t) = \lim_t \to \infty \beta(t) = 0$.
- A sequence of bijection $F_n : \mathcal{G}_n \to \mathcal{L}_n$ is (α, β) -statistically bi-Lipschitz if for all R, and $s \in S_{\Gamma}$ and $t \in S_{\Lambda}$,

 $\mathbb{P}_{\mathcal{G}_n}\left(x \in \mathcal{G}_n^1 \mid d(F(x), F(xs)) \geq R\right) \leq \alpha(R),$

・ 同 ト ・ ヨ ト ・ ヨ ト

Quantitative ergodic theory

> Romain Tessera

- Let Γ and Λ be sofic groups, let \mathcal{G}_n and \mathcal{L}_n be sofic approximations.
- α, β decreasing functions such that $\lim_t \to \infty \alpha(t) = \lim_t \to \infty \beta(t) = 0$.
- A sequence of bijection $F_n : \mathcal{G}_n \to \mathcal{L}_n$ is (α, β) -statistically bi-Lipschitz if for all R, and $s \in S_{\Gamma}$ and $t \in S_{\Lambda}$,

$$\mathbb{P}_{\mathcal{G}_n}\left(x\in\mathcal{G}_n^1\mid d(F(x),F(xs))\geq R\right)\leq lpha(R),$$

$$\mathbb{P}_{\mathcal{L}_n}\left(y \in \mathcal{L}_n^1 \mid d(F^{-1}(y), F^{-1}(yt)) \geq R\right) \leq \beta(R).$$

Quantitative ergodic theory

> Romain Tessera

- Let Γ and Λ be sofic groups, let \mathcal{G}_n and \mathcal{L}_n be sofic approximations.
- α, β decreasing functions such that $\lim_t \to \infty \alpha(t) = \lim_t \to \infty \beta(t) = 0$.
- A sequence of bijection $F_n : \mathcal{G}_n \to \mathcal{L}_n$ is (α, β) -statistically bi-Lipschitz if for all R, and $s \in S_{\Gamma}$ and $t \in S_{\Lambda}$,

$$\mathbb{P}_{\mathcal{G}_n}\left(x\in \mathcal{G}_n^1\mid d(F(x),F(xs))\geq R\right)\leq lpha(R),$$

$$\mathbb{P}_{\mathcal{L}_n}\left(y \in \mathcal{L}_n^1 \mid d(F^{-1}(y), F^{-1}(yt)) \geq R\right) \leq \beta(R).$$

Theorem (Carderi-Delabie-Koivisto-Le Maître-Tessera 23)

Let Γ and Λ be sofic groups.

• if $F_n : \mathcal{G}_n \to \mathcal{L}_n$ is (α, β) -statistically bi-Lipschitz, then there exist pmp actions $\Gamma \curvearrowright X$ and $\Lambda \curvearrowright Y$ and an OE between them.

Quantitative ergodic theory

> Romain Tessera

- Let Γ and Λ be sofic groups, let \mathcal{G}_n and \mathcal{L}_n be sofic approximations.
- α, β decreasing functions such that $\lim_t \to \infty \alpha(t) = \lim_t \to \infty \beta(t) = 0$.
- A sequence of bijection $F_n : \mathcal{G}_n \to \mathcal{L}_n$ is (α, β) -statistically bi-Lipschitz if for all R, and $s \in S_{\Gamma}$ and $t \in S_{\Lambda}$,

$$\mathbb{P}_{\mathcal{G}_n}\left(x\in \mathcal{G}_n^1\mid d(F(x),F(xs))\geq R\right)\leq lpha(R),$$

$$\mathbb{P}_{\mathcal{L}_n}\left(y\in\mathcal{L}_n^1\mid d(F^{-1}(y),F^{-1}(yt))\geq R\right)\leq\beta(R).$$

Theorem (Carderi-Delabie-Koivisto-Le Maître-Tessera 23)

Let Γ and Λ be sofic groups.

- if $F_n : \mathcal{G}_n \to \mathcal{L}_n$ is (α, β) -statistically bi-Lipschitz, then there exist pmp actions $\Gamma \curvearrowright X$ and $\Lambda \curvearrowright Y$ and an OE between them.
- if α and β satisfy

$$\int arphi(t) lpha(t) dt < \infty \ ext{ and } \ \int \psi(t) eta(t) dt < \infty,$$

then the OE is (φ, ψ) -integrable.

Reminder on quantitative OE

Quantitative ergodic theory

> Romain Tessera

Definition (Word distance on X)

Let Λ be a group generated by a finite subset S and let assume Λ acts freely on (X, μ) , then the word distance on X associated to S is

$$d_{\mathcal{S}}(x,x') = \min\{n \in \mathbb{N} \mid x' = s_1^{\pm 1} \dots s_n^{\pm 1} \cdot x\},\$$

where $s_i \in S$ if x' and x lie in a same orbit,

イロト イヨト イヨト イヨト

Reminder on quantitative OE

Quantitative ergodic theory

> Romain Tessera

Definition (Word distance on X)

Let Λ be a group generated by a finite subset S and let assume Λ acts freely on (X, μ) , then the word distance on X associated to S is

$$d_{\mathcal{S}}(x,x') = \min\{n \in \mathbb{N} \mid x' = s_1^{\pm 1} \dots s_n^{\pm 1} \cdot x\},\$$

where $s_i \in S$ if x' and x lie in a same orbit, and $d_S(x, x') = \infty$ otherwise.

イロト イヨト イヨト イヨト

Reminder on quantitative OE

Quantitative ergodic theory

> Romain Tessera

Definition (Word distance on X)

Let Λ be a group generated by a finite subset S and let assume Λ acts freely on (X, μ) , then the word distance on X associated to S is

$$d_{\mathcal{S}}(x,x') = \min\{n \in \mathbb{N} \mid x' = s_1^{\pm 1} \dots s_n^{\pm 1} \cdot x\},\$$

where $s_i \in S$ if x' and x lie in a same orbit, and $d_S(x, x') = \infty$ otherwise.

We use the measure μ to compare the word distances associated to two distinct pmp actions as follows:

Proposition (φ -integrable orbit equivalence)

Assume $\Lambda, \Gamma \curvearrowright (X, \mu)$ with same orbits. The actions are (φ, ψ) -OE iff for all $\lambda \in S_{\Lambda}$,

$$\int_X \varphi(d_{\mathcal{S}_{\Gamma}}(x,\lambda\cdot x))d\mu(x) < \infty,$$

and all $\gamma \in S_{\Gamma}$,

$$\int_X \psi(d_{S_{\Lambda}}(x,\gamma\cdot x))d\mu(x) < \infty,$$

Quantitative ergodic theory

> Romain Tessera

Lemma (Carderi-Delabie-Koivisto-Le Maître-Tessera 23)

Let Γ and Λ be sofic groups. if $F_n : \mathcal{G}_n \to \mathcal{L}_n$ is (α, β) -statistically bi-Lipschitz, then there exist pmp actions $\Gamma \curvearrowright X$ and $\Lambda \curvearrowright Y$ and an OE such that for all $s \in S_{\Gamma}$, $t \in S_{\Lambda}$ and R > 0,

イロン 不同 とうほう 不同 とう

크

Quantitative ergodic theory

> Romain Tessera

Lemma (Carderi-Delabie-Koivisto-Le Maître-Tessera 23)

Let Γ and Λ be sofic groups. if $F_n : \mathcal{G}_n \to \mathcal{L}_n$ is (α, β) -statistically bi-Lipschitz, then there exist pmp actions $\Gamma \curvearrowright X$ and $\Lambda \curvearrowright Y$ and an OE such that for all $s \in S_{\Gamma}$, $t \in S_{\Lambda}$ and R > 0,

$$\mathbb{P}_X\left(x \in X \mid d_{S_{\Lambda}}(F_{\mathcal{U}}(x), F_{\mathcal{U}}(s \cdot x)) \geq R\right) \leq \alpha(R),$$

and

$$\mathbb{P}_{Y}\left(y\in Y\mid d_{\mathcal{S}_{\Gamma}}(\mathcal{F}_{\mathcal{U}}^{-1}(y),\mathcal{F}_{\mathcal{U}}^{-1}(t\cdot y))\geq R
ight)\leq eta(R),$$

Sketch of proof.

Take a ultrafilter U, and consider the limit $X = \lim_{\mathcal{U}} \mathcal{G}_n$ (similarly $Y = \lim_{\mathcal{U}} \mathcal{L}_n$).

Quantitative ergodic theory

> Romain Tessera

Lemma (Carderi-Delabie-Koivisto-Le Maître-Tessera 23)

Let Γ and Λ be sofic groups. if $F_n : \mathcal{G}_n \to \mathcal{L}_n$ is (α, β) -statistically bi-Lipschitz, then there exist pmp actions $\Gamma \curvearrowright X$ and $\Lambda \curvearrowright Y$ and an OE such that for all $s \in S_{\Gamma}$, $t \in S_{\Lambda}$ and R > 0,

$$\mathbb{P}_X\left(x \in X \mid d_{S_{\Lambda}}(F_{\mathcal{U}}(x), F_{\mathcal{U}}(s \cdot x)) \geq R\right) \leq \alpha(R),$$

and

$$\mathbb{P}_{Y}\left(y\in Y\mid d_{\mathcal{S}_{\Gamma}}(\mathcal{F}_{\mathcal{U}}^{-1}(y),\mathcal{F}_{\mathcal{U}}^{-1}(t\cdot y))\geq R
ight)\leq eta(R),$$

Sketch of proof.

- Take a ultrafilter \mathcal{U} , and consider the limit $X = \lim_{\mathcal{U}} \mathcal{G}_n$ (similarly $Y = \lim_{\mathcal{U}} \mathcal{L}_n$).
- X come equipped with probability measures P_X = lim_U P_{G_n}, and a free pmp actions of Γ.

Quantitative ergodic theory

> Romain Tessera

Lemma (Carderi-Delabie-Koivisto-Le Maître-Tessera 23)

Let Γ and Λ be sofic groups. if $F_n : \mathcal{G}_n \to \mathcal{L}_n$ is (α, β) -statistically bi-Lipschitz, then there exist pmp actions $\Gamma \curvearrowright X$ and $\Lambda \curvearrowright Y$ and an OE such that for all $s \in S_{\Gamma}$, $t \in S_{\Lambda}$ and R > 0,

$$\mathbb{P}_X\left(x \in X \mid d_{S_{\Lambda}}(F_{\mathcal{U}}(x), F_{\mathcal{U}}(s \cdot x)) \geq R\right) \leq \alpha(R),$$

and

$$\mathbb{P}_{Y}\left(y\in Y\mid d_{\mathcal{S}_{\Gamma}}(\mathcal{F}_{\mathcal{U}}^{-1}(y),\mathcal{F}_{\mathcal{U}}^{-1}(t\cdot y))\geq R
ight)\leq eta(R),$$

Sketch of proof.

- Take a ultrafilter \mathcal{U} , and consider the limit $X = \lim_{\mathcal{U}} \mathcal{G}_n$ (similarly $Y = \lim_{\mathcal{U}} \mathcal{L}_n$).
- X come equipped with probability measures P_X = lim_U P_{G_n}, and a free pmp actions of Γ.
- The map F_U = lim_U F_n is a measure isomorphism and satisfies the conclusion of the lemma.

Quantitative ergodic theory

> Romain Tessera

Lemma (Carderi-Delabie-Koivisto-Le Maître-Tessera 23)

Let Γ and Λ be sofic groups. if $F_n : \mathcal{G}_n \to \mathcal{L}_n$ is (α, β) -statistically bi-Lipschitz, then there exist pmp actions $\Gamma \curvearrowright X$ and $\Lambda \curvearrowright Y$ and an OE such that for all $s \in S_{\Gamma}$, $t \in S_{\Lambda}$ and R > 0,

$$\mathbb{P}_X\left(x \in X \mid d_{\mathcal{S}_{\Lambda}}(\mathcal{F}_{\mathcal{U}}(x), \mathcal{F}_{\mathcal{U}}(s \cdot x)) \geq R\right) \leq \alpha(R),$$

and

$$\mathbb{P}_{Y}\left(y\in Y\mid d_{\mathcal{S}_{\Gamma}}(\mathcal{F}_{\mathcal{U}}^{-1}(y),\mathcal{F}_{\mathcal{U}}^{-1}(t\cdot y))\geq R
ight)\leq eta(R),$$

Sketch of proof.

- Take a ultrafilter U, and consider the limit $X = \lim_{\mathcal{U}} \mathcal{G}_n$ (similarly $Y = \lim_{\mathcal{U}} \mathcal{L}_n$).
- X come equipped with probability measures P_X = lim_U P_{G_n}, and a free pmp actions of Γ.
- The map F_U = lim_U F_n is a measure isomorphism and satisfies the conclusion of the lemma.
- In particular: $d_{S_{\Gamma}}(x, x') < \infty \iff d_{S_{\Lambda}}(F_{\mathcal{U}}(x), F_{\mathcal{U}}(x')) < \infty$: $F_{\mathcal{U}}$ is an OE.

Quantitative ergodic theory

> Romain Tessera

Definition

The wreath product of Λ with Γ :

$$\Lambda\wr\Gamma:=\left(\bigoplus_{\Gamma}\Lambda\right)\rtimes\Gamma$$

(lamp group: Λ , base group: Γ)

Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

If Γ_1 and Γ_2 admit a (φ, ψ) -integrable orbit equivalence coupling, and if Λ_1 and Λ_2 admit a (φ, ψ) -integrable orbit equivalence coupling, then the wreath products $\Lambda_1 \wr \Gamma_2$ and $\Lambda_2 \wr \Gamma_2$ also admit a (φ, ψ) -integrable orbit equivalence couplings.

イロン 不同 とくほど 不同 とう

Quantitative ergodic theory

> Romain Tessera

Definition

The wreath product of Λ with Γ :

$$\Lambda\wr\Gamma:=\left(\bigoplus_{\Gamma}\Lambda\right)\rtimes\Gamma$$

(lamp group: Λ , base group: Γ)

Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

If Γ_1 and Γ_2 admit a (φ, ψ) -integrable orbit equivalence coupling, and if Λ_1 and Λ_2 admit a (φ, ψ) -integrable orbit equivalence coupling, then the wreath products $\Lambda_1 \wr \Gamma_2$ and $\Lambda_2 \wr \Gamma_2$ also admit a (φ, ψ) -integrable orbit equivalence couplings.

Corollary

Let $a, b \in \mathbb{N}$ with a < b and let Δ be any finitely generated group, then there is an $(L^p, {L^{p'}})$ -orbit equivalence coupling from $\Delta \wr \mathbb{Z}^b$ to $\Delta \wr \mathbb{Z}^a$ for every $p < \frac{a}{b}$ and $p' < \frac{b}{a}$.

Quantitative ergodic theory

> Romain Tessera

Baby case: If $\Lambda_1 = \Lambda_2 = \Lambda$ is finite.

イロン 不同 とうほう 不同 とう

Э

Quantitative ergodic theory

> Romain Tessera

Baby case: If $\Lambda_1 = \Lambda_2 = \Lambda$ is finite.

• Assume Γ_1 and Γ_2 act with same orbits on X: $\alpha : \Gamma_1 \times X \to \Gamma_2$.

イロト イヨト イヨト イヨト

Quantitative ergodic theory

> Romain Tessera

Baby case: If $\Lambda_1 = \Lambda_2 = \Lambda$ is finite.

- Assume Γ_1 and Γ_2 act with same orbits on $X: \alpha: \Gamma_1 \times X \to \Gamma_2$.
- Consider the probability space $X \times \Lambda^{\Gamma_1}$.

イロン イヨン イヨン イヨン

Quantitative ergodic theory

> Romain Tessera

Baby case: If $\Lambda_1 = \Lambda_2 = \Lambda$ is finite.

- Assume Γ_1 and Γ_2 act with same orbits on X: $\alpha : \Gamma_1 \times X \to \Gamma_2$.
- Consider the probability space $X \times \Lambda^{\Gamma_1}$. Action of $\Lambda \wr \Gamma_1$:
- $\gamma \in \Gamma_1$ acts by "shift":

$$\gamma \cdot (x, (I_g)_{g \in \Gamma_1}) = (\gamma \cdot x, (I_{g\gamma})_{g \in \Gamma_1}).$$

イロト イヨト イヨト イヨト

Quantitative ergodic theory

> Romain Tessera

- Baby case: If $\Lambda_1 = \Lambda_2 = \Lambda$ is finite.
 - Assume Γ_1 and Γ_2 act with same orbits on X: $\alpha : \Gamma_1 \times X \to \Gamma_2$.
 - Consider the probability space $X \times \Lambda^{\Gamma_1}$. Action of $\Lambda \wr \Gamma_1$:
 - $\gamma \in \Gamma_1$ acts by "shift":

$$\gamma \cdot (x, (I_g)_{g \in \Gamma_1}) = (\gamma \cdot x, (I_{g\gamma})_{g \in \Gamma_1}).$$

•
$$\bigoplus_{\gamma \in \Gamma_1} \Lambda$$
-action: for all $f \in \bigoplus_{\gamma \in \Gamma_1} \Lambda$,

$$f \cdot (x, (I_g)_{g \in \Gamma}) = (x, (f(g^{-1}) \cdot I_g)_{g \in \Gamma_1}).$$

イロト イヨト イヨト イヨト

Quantitative ergodic theory

> Romain Tessera

- Baby case: If $\Lambda_1 = \Lambda_2 = \Lambda$ is finite.
 - Assume Γ_1 and Γ_2 act with same orbits on X: $\alpha : \Gamma_1 \times X \to \Gamma_2$.
 - Consider the probability space $X \times \Lambda^{\Gamma_1}$. Action of $\Lambda \wr \Gamma_1$:
 - $\gamma \in \Gamma_1$ acts by "shift":

$$\gamma \cdot (x, (I_g)_{g \in \Gamma_1}) = (\gamma \cdot x, (I_{g\gamma})_{g \in \Gamma_1}).$$

•
$$\bigoplus_{\gamma \in \Gamma_1} \Lambda$$
-action: for all $f \in \bigoplus_{\gamma \in \Gamma_1} \Lambda$,
 $f \cdot (x, (l_g)_{g \in \Gamma}) = (x, (f(g^{-1}) \cdot l_g)_{g \in \Gamma_1}).$

- Action of Λ ≥ Γ₂:
- $\gamma_2 \in \Gamma_2$:

$$\gamma_2 \cdot (x, (I_g)_{g \in \Gamma_1}) = (\gamma_2 \cdot x, (I_{g\alpha(\gamma_2, x)})_{g \in \Gamma_1}).$$

イロト イヨト イヨト イヨト

Quantitative ergodic theory

> Romain Tessera

- Baby case: If $\Lambda_1 = \Lambda_2 = \Lambda$ is finite.
 - Assume Γ_1 and Γ_2 act with same orbits on X: $\alpha : \Gamma_1 \times X \to \Gamma_2$.
 - Consider the probability space $X \times \Lambda^{\Gamma_1}$. Action of $\Lambda \wr \Gamma_1$:
 - $\gamma \in \Gamma_1$ acts by "shift":

$$\gamma \cdot (x, (I_g)_{g \in \Gamma_1}) = (\gamma \cdot x, (I_{g\gamma})_{g \in \Gamma_1}).$$

•
$$\bigoplus_{\gamma \in \Gamma_1} \Lambda$$
-action: for all $f \in \bigoplus_{\gamma \in \Gamma_1} \Lambda$,
 $f \cdot (x, (l_g)_{g \in \Gamma}) = (x, (f(g^{-1}) \cdot l_g)_{g \in \Gamma_1}).$

- Action of A ≥ Γ₂:
- $\gamma_2 \in \Gamma_2$:

$$\gamma_2 \cdot (x, (I_g)_{g \in \Gamma_1}) = (\gamma_2 \cdot x, (I_{g\alpha(\gamma_2, x)})_{g \in \Gamma_1}).$$

• $\bigoplus_{\gamma \in \Gamma_2} \Lambda$ -action:

$$f \cdot (x, (l_g)_{g \in \Gamma}) = (x, (f(\alpha(g, x)^{-1}) \cdot l_g)_{g \in \Gamma}).$$

イロト イヨト イヨト イヨト