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Construction of quantitative OE: Fglner tilings

Quantitative
ergodic Definition
theory
Let I be an amenable group and (Fi) be a sequence of finite subsets of . We
call (Fk) a (left) Fglner tiling sequence if the sequence of tiles (Ty) defined
inductively by To = Fo and Tyy1 = TxFj41 satisfies the following conditions:
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Let I be an amenable group and (Fi) be a sequence of finite subsets of . We

call (Fk) a (left) Fglner tiling sequence if the sequence of tiles (Ty) defined
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(tiling condition) for all k € N, Ty is a disjoint union:
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Construction of quantitative OE: Fglner tilings

Definition

Let I be an amenable group and (Fi) be a sequence of finite subsets of . We
call (Fk) a (left) Fglner tiling sequence if the sequence of tiles (Ty) defined
inductively by To = Fo and Tyy1 = TxFj41 satisfies the following conditions:

(tiling condition) for all k € N, Ty is a disjoint union:

Ten= || Tew
YEFK11

(Fglner condition) (Ty) is a left Fglner sequence: for all v €T,
im DTATd _
k—+o00 | Tl

v

The first condition amounts to saying that every element of Ty can uniquely be
written as fy - - - f where each f; belongs to F;.
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Profinite Fglner tilings and profinite actions
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Definition (Profinite Fglner tilings)
A Fglner tiling sequence (Fk)ken is profinite if there exists a decreasing sequence
of finite index subgroups 'y such that each Fj is a set of left coset
representatives of 'y, _; modulo Ij.
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Definition (Profinite Fglner tilings)

A Fglner tiling sequence (Fk)ken is profinite if there exists a decreasing sequence
of finite index subgroups 'y such that each Fj is a set of left coset
representatives of ', _; modulo I',. Note that each tile Ty is then a set of
coset-representatives of ' modulo I'y.

Proposition

If (Fx) is a profinite Fglner tiling sequence associated to (Iy), then the
corresponding pmp action is isomorphic to the profinite action of I' on I|<_m I/Ty.
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Definition

A Fglner tiling sequence (Fx) of I is an (ex, Rk )-Fglner tiling sequence if
each tile Ty has ds -diameter at most Ry,
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Definition

A Fglner tiling sequence (Fx) of I is an (ex, Rk )-Fglner tiling sequence if
each tile Ty has ds -diameter at most Ry,
every s € Sy satisfies | Ty \ sTx| < x| Tk|-
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A Fglner tiling sequence (Fx) of I is an (ex, Rk )-Fglner tiling sequence if

each tile Ty has ds -diameter at most Ry,
every s € Sy satisfies | Ty \ sTx| < x| Tk|-

Proposition

Suppose that (Fi), (F]) are (e, Ri), (€}, R;) Falner tiling sequences for I and I,
such that |Fi| = |FI£| for all k € N.
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A Fglner tiling sequence (Fx) of I is an (ex, Rk )-Fglner tiling sequence if

each tile Ty has ds -diameter at most Ry,
every s € Sy satisfies | Ty \ sTx| < x| Tk|-

Proposition

Suppose that (Fi), (F]) are (e, Ri), (€}, R;) Falner tiling sequences for I and I,
such that |Fi| = |F/| for all k € N. Let ¢: [0,00) — [0, 00) be a non-decreasing
function such that the sequence (¢(2R;)(ex—1 — €k))keN is summable.
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A Fglner tiling sequence (Fx) of I is an (ex, Rk )-Fglner tiling sequence if

each tile Ty has ds -diameter at most Ry,
every s € Sy satisfies | Ty \ sTx| < x| Tk|-

Proposition

Suppose that (Fi), (F]) are (e, Ri), (€}, R;) Falner tiling sequences for I and I,
such that |Fi| = |F/| for all k € N. Let ¢: [0,00) — [0, 00) be a non-decreasing
function such that the sequence (¢(2R;)(ex—1 — €k))keN is summable.

Then the orbit equivalence coupling from T to I'" is (¢, L°)-integrable.
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Applications

Quantitative
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theory Theorem (Delabie-Koivisto-Le Maftre-Tessera 20)

m Let d, k' € N. Then Z9 and Z9+* are LP-OE for all p < d/(d + k).
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m Let d, k' € N. Then Z9 and Z9+* are LP-OE for all p < d/(d + k).
m Z* and H(Z) are LP-OE for all p < 1.
m The lamplighter group and Z are (log n)!=¢-OE for all € > 0.

All OE are between profinite actions (Odometer-like).

Problem
Which groups admit Fglner tiling sequences ?

m Nilpotent groups: Yes (Delabie-Llosa-Tessera 24).
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ergodic X - ~
theory Theorem (Delabie-Koivisto-Le Maftre-Tessera 20)

m Let d, k' € N. Then Z9 and Z9+* are LP-OE for all p < d/(d + k).
m Z* and H(Z) are LP-OE for all p < 1.
m The lamplighter group and Z are (log n)!=¢-OE for all € > 0.

All OE are between profinite actions (Odometer-like).

Problem
Which groups admit Fglner tiling sequences ?

m Nilpotent groups: Yes (Delabie-Llosa-Tessera 24).

m Polycyclic groups: probably never if exponential growth.

m But: Polycyclic groups are (virtually) uniform lattices in connected Solvable
Lie groups.

connected Solvable Lie groups have probably always Fglner tiling sequences.
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Amandine Escalier's work
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Theorem (Delabie-Koivisto-Le Maitre-Tessera 20)

If A and T are (i, L°)-OE for some concave increasing function o, then
Fglp o (%} s Fglr-.
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Amandine Escalier's work

Quantitathe Theorem (Delabie-Koivisto-Le Maitre-Tessera 20)
ergodic

ey If A and T are (i, L°)-OE for some concave increasing function o, then

Fglp o (%} 5 Fglr-.

Problem (Inverse problem)

For all increasing functions o and f3 find groups A\ and I' such that
Fgly =~ a and Fglf ~ «;
I and A are (¢, L°)-OE, where p = 71 0 a..

i
Theorem (Brieussel-Zheng 18)

For every convex increasing function [3, there exists a group I'g such that
Fgl- 8 =~ .
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Amandine Escalier's work

Theorem (Delabie-Koivisto-Le Maftre-Tessera 20)

If A and T are (i, L°)-OE for some concave increasing function o, then
Fglp o (%} 5 Fglr-.

v

Problem (Inverse problem)

For all increasing functions o and 8 find groups A\ and T such that
Fglyn =~ o and Fglr =~ «;
I and A are (¢, L°)-OE, where ¢ = B~ 1o a.

v

Theorem (Brieussel-Zheng 18)

For every convex increasing function [3, there exists a group I'g such that
Fgl- 5 =~ .

V.

Theorem (Escalier 23)

For every convex increasing function 3, there exists an (¢, L°)-OE coupling from
the group I'g to Z, where ¢ is “nearly” ="

-
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Amandine Escalier's work

Theorem (Delabie-Koivisto-Le Maftre-Tessera 20)

If A and T are (i, L°)-OE for some concave increasing function o, then
Fglp o (%} 5 Fglr-.

v

Problem (Inverse problem)

For all increasing functions o and 8 find groups A\ and T such that
Fglyn =~ o and Fglr =~ «;
I and A are (¢, L°)-OE, where ¢ = B~ 1o a.

v

Theorem (Brieussel-Zheng 18)

For every convex increasing function [3, there exists a group I'g such that
Fgl- 5 =~ .

V.

Theorem (Escalier 23)

For every convex increasing function 3, there exists an (¢, L°)-OE coupling from
the group I to Z, where ¢ is “nearly” B~1: e.g. (B~1)1~=.

-
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Amandine Escalier's work

Theorem (Delabie-Koivisto-Le Maftre-Tessera 20)

If A and T are (i, L°)-OE for some concave increasing function o, then
Fglp o (%} 5 Fglr-.

v

Problem (Inverse problem)

For all increasing functions o and 8 find groups A\ and T such that
Fglyn =~ o and Fglr =~ «;
I and A are (¢, L°)-OE, where ¢ = B~ 1o a.

v

Theorem (Brieussel-Zheng 18)

For every convex increasing function [3, there exists a group I'g such that
Fgl- 5 =~ .

V.

Theorem (Escalier 23)

For every convex increasing function 3, there exists an (¢, L°)-OE coupling from
the group I3 to Z, where ¢ is “nearly” B~1: e.g. (B~1)1=¢. The construction
provides profinite actions (via Fglner tilings).
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Fglner tilings for the lamplighter

Quantitative
ergodic
theory

Lamplighter: Z/27.7 := &, Z/2Z x L.
m standard generating set: {(0, 1), (do,0)}.

m The lamplighter point of view consists in viewing each element (f, n) of the
group as a pair where f is a configuration of lamps, and where n is the
position of the “lamplighter”. Multiplying (f, n) on the right by the first
generator amounts to moving the lamplighter from position n to n+ 1.
Multiplying it by the second generator amounts to switching the light at
position n.

m We define Fp = {(f,n) € Z/mZ1Z: supp(f) C {0,1},n € {0,1}} and

Fr :{(f,o) € Z/mZ 1 Z: supp(f) C [2K, 2k — 1]}

U {(f, 2%) € Z/mZ L supp(f) C [0,2% — 1]} .

Tw = {(f,n) € Z/mZ 1 Z: supp(f) C [0,2k+! — 1], n € [0,2KF1 —1]}.
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Fglner tilings for the lamplighter

Quantitative m Lamplighter: Z/27.17 := @, 7/2Z x Z.
ef;‘:'; m standard generating set: {(0,1), (do,0)}.
m T, ={(f,n) € Z/2Z 1 Z: supp(f) C 0,2kt —1],n € [0,2k+1 —1]}.
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Fglner tilings for the lamplighter

Quantitative m Lamplighter: Z/27.17 := @, 7/2Z x Z.
etLg;‘:'; m standard generating set: {(0,1), (do,0)}.
m T, ={(f,n) € Z/2Z 1 Z: supp(f) C 0,2kt —1],n € [0,2k+1 —1]}.

Proposition

The group Z/27 Z admits a (e, Rk)-F@lner tiling sequence (Fi)x, with
|Fol = 23, and |Fi| = 222", R = 3241 and g = 2= (k+1) for k > 1.
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Fglner tilings for the lamplighter

Quantitative m Lamplighter: Z/27.17 := @, 7/2Z x Z.
etLg;‘:'; m standard generating set: {(0,1), (do,0)}.
m T, ={(f,n) € Z/2Z 1 Z: supp(f) C 0,2kt —1],n € [0,2k+1 —1]}.

Proposition

The group Z/27 Z admits a (e, Rk)-F@lner tiling sequence (Fi)x, with
|Fol = 23, and |Fi| = 222", R = 3241 and g = 2= (k+1) for k > 1.

m To bound the diameter of Ty, observe that to join two elements (f, n) and
(f’,n") in Thp, the lamplighter may travel from position n to n’, passing
through the whole interval [0,2%+1 — 1], while possibly switching all the

lamps along the way.
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Fglner tilings for the lamplighter

Quantitative m Lamplighter: Z/27.17 := @, 7/2Z x Z.
etLg;‘:'; m standard generating set: {(0,1), (do,0)}.
m T, ={(f,n) € Z/2Z 1 Z: supp(f) C 0,2kt —1],n € [0,2k+1 —1]}.

Proposition

The group Z/27 Z admits a (e, Rk)-F@lner tiling sequence (Fi)x, with
|Fol = 23, and |Fi| = 222", R = 3241 and g = 2= (k+1) for k > 1.

m To bound the diameter of Ty, observe that to join two elements (f, n) and
(f’,n") in Thp, the lamplighter may travel from position n to n’, passing
through the whole interval [0,2%+1 — 1], while possibly switching all the
lamps along the way.

m If s = (d0,0), then Tys = Ty. If s =(0,1), then

Tis \ Ti = {(f,2"") € Z/2Z1 Z: supp(f) C [0,2°"" — 1]}

So |Tys \ Tkl < 22 = 2= (k+1)| T, |, so we are done.

The lamplighter group and Z are (log n)}~¢-OE for all ¢ > 0.
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Problem

Falner tilings provide OE which are at best almost L. Can we do better?

Theorem (Delabie-Koivisto-Le Maitre-Tessera 20)
Baumslag-Solitar group: Z[1/2] X Z and 7Z/27. 7 are (exp, L>°)-OE.

m Finite presentation is not preserved under L1-OE.
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Problem

Falner tilings provide OE which are at best almost L. Can we do better?

Theorem (Delabie-Koivisto-Le Maitre-Tessera 20)
Baumslag-Solitar group: Z[1/2] X Z and 7Z/27. 7 are (exp, L>°)-OE.

m Finite presentation is not preserved under L1-OE.

m Asymptotic dimension is not preserved under L1-OE.
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Theorem (Delabie-Koivisto-Le Maitre-Tessera 20)
Baumslag-Solitar group: Z[1/2] x Z and Z/2Z Z are (exp, L>°)-OE.

m An action of Z/2ZZ on [], Z/2Z:
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Theorem (Delabie-Koivisto-Le Maitre-Tessera 20)
Baumslag-Solitar group: Z[1/2] x Z and Z/2Z Z are (exp, L>°)-OE.

m An action of Z/2ZZ on [], Z/27Z: 7Z acts by shift, @, Z/27Z acts
coordinate-wise.

m An action of Z[1/2]: for all m € Z, we decompose the space X as

X =1]2z/2zx ] 2/22,

i<m i>m

and then (2™, 0) acts trivially on the first factor, and as the 2-adic
odometer on the second factor.

m We extend it to an action of Z[1/2] x Z, where Z acts by shift.
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Beyond Fglner tilings: Sofic approximation

Quantitative Let I' be a group, S a finite generating set.

etLg;dic m S-labelled graph: directed graph whose edges are labelled by elements of S.
ry
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Quantitative Let I' be a group, S a finite generating set.

etLg;dic m S-labelled graph: directed graph whose edges are labelled by elements of S.
ry

m Example: Cayley graph C(T, S).
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Beyond Fglner tilings: Sofic approximation

Quantitative Let I be a group, S a finite generating set.
et'hg‘)dic m S-labelled graph: directed graph whose edges are labelled by elements of S.
eory

m Example: Cayley graph C(T, S).
m Let G be a S-labeled graph. For r > 1, we denote

X" ={xe X|Bg(x,r) ~ Beqr,s)(1r,r)},

where >~ means isomorphic as S-labeled graphs.
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Beyond Fglner tilings: Sofic approximation

Quantitative Let I' be a group, S a finite generating set.

etLg;dic m S-labelled graph: directed graph whose edges are labelled by elements of S.
ry

m Example: Cayley graph C(T', S).
m Let G be a S-labeled graph. For r > 1, we denote
X" ={xe X|Bg(x,r) ~ Beqr,s)(1r,r)},

where >~ means isomorphic as S-labeled graphs.

Definition (Sofic approximation)

Let (Gn)n be a sequence of finite S-labeled graphs. Pg, : renormalized counting
measure on Gn. (Gn)n is a Sofic approximation of (I, S), if for every r > 0,

s 7, 64 =1
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Quantitative Let I be a group, S a finite generating set.
etLg"diC m S-labelled graph: directed graph whose edges are labelled by elements of S.
eory

m Example: Cayley graph C(T', S).
m Let G be a S-labeled graph. For r > 1, we denote

X" ={xe X|Bg(x,r) ~ Beqr,s)(1r,r)},

where >~ means isomorphic as S-labeled graphs.

Definition (Sofic approximation)

Let (Gn)n be a sequence of finite S-labeled graphs. Pg, : renormalized counting
measure on Gn. (Gn)n is a Sofic approximation of (I, S), if for every r > 0,

s 7, 64 =1

m Gp is a Fglner sequence.
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Beyond Fglner tilings: Sofic approximation

Quantitative Let I be a group, S a finite generating set.
etLgOdic m S-labelled graph: directed graph whose edges are labelled by elements of S.
eory

m Example: Cayley graph C(T', S).
m Let G be a S-labeled graph. For r > 1, we denote

X" ={xe X|Bg(x,r) ~ Beqr,s)(1r,r)},

where >~ means isomorphic as S-labeled graphs.

Definition (Sofic approximation)

Let (Gn)n be a sequence of finite S-labeled graphs. Pg, : renormalized counting
measure on Gn. (Gn)n is a Sofic approximation of (I, S), if for every r > 0,

s 7, 64 =1

m Gp is a Fglner sequence.

m G, = Schreier(I'/T 5, S), where I, is a decreasing sequence of finite index
subgroups such that (), I, = {1}.
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Sofic approximation: construction of OE

Quantitative m Let I and A be sofic groups, let G, and L, be sofic approximations.

etrli‘:)‘:i; m «, 3 decreasing functions such that lim¢ — coa(t) = lim; — cof(t) = 0.
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Quantitative m Let I and A be sofic groups, let G, and L, be sofic approximations.
etrli‘:)‘:i; m «, 3 decreasing functions such that lim¢ — coa(t) = lim; — cof(t) = 0.
m A sequence of bijection F,, : G — Ly is («, 8)-statistically bi-Lipschitz if
i forall R, and s € Sr and t € Sp,

Bg, (x € G} | d(F(x), F(xs)) > R) < a(R),
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Sofic approximation: construction of OE

Quantitative m Let I and A be sofic groups, let G, and L, be sofic approximations.
etrli‘:)‘:i; m «, 3 decreasing functions such that lim¢ — coa(t) = lim; — cof(t) = 0.
m A sequence of bijection F,, : G — Ly is («, 8)-statistically bi-Lipschitz if

forall R, and s € Sr and t € Sp,

Bg, (x € G} | d(F(x), F(xs)) > R) < a(R),

Pr, (v € £ | d(F71(y), F1(y1)) 2 R) < B(R).
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Sofic approximation: construction of OE

Quantitative m Let I and A be sofic groups, let G, and L, be sofic approximations.
etLg;‘:i; m «, 3 decreasing functions such that lim¢ — coa(t) = lim; — cof(t) = 0.
m A sequence of bijection F,, : G — Ly is («, 8)-statistically bi-Lipschitz if

forall R, and s € Sr and t € Sp,

Bg, (x € G} | d(F(x), F(xs)) > R) < a(R),

P, (v € Lo | d(F7H(y), F1(yt)) > R) < B(R).

Theorem (Carderi-Delabie-Koivisto-Le Maitre-Tessera 23)

Let ' and N be sofic groups.

m if Fp: Gy — Ly is (o, B)-statistically bi-Lipschitz, then there exist pmp
actions T ~ X and N ~ Y and an OE between them.
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Sofic approximation: construction of OE

Quantitative m Let I and A be sofic groups, let G, and L, be sofic approximations.
etLg;‘:i; m «, 3 decreasing functions such that lim¢ — coa(t) = lim; — cof(t) = 0.
m A sequence of bijection F,, : G — Ly is («, 8)-statistically bi-Lipschitz if

forall R, and s € Sr and t € Sp,

Bg, (x € G} | d(F(x), F(xs)) > R) < a(R),

P, (v € Lo | d(F7H(y), F1(yt)) > R) < B(R).

Theorem (Carderi-Delabie-Koivisto-Le Maitre-Tessera 23)

Let ' and N be sofic groups.

m if Fp: Gy — Ly is (o, B)-statistically bi-Lipschitz, then there exist pmp
actions T ~ X and N ~ Y and an OE between them.

m if « and B satisfy
/(p(t)a(t)dt < oo and /w(t)ﬁ(t)dt < 00,

then the OE is (¢, )-integrable.
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Reminder on quantitative OE

Qu:rrg;;aizwe Definition (Word distance on X)

theory Let A be a group generated by a finite subset S and let assume A acts freely on
(X, 1), then the word distance on X associated to S is

ds(x,x") =min{n e N| x' = slil LosElox)

where s; € S if x’ and x lie in a same orbit,
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theory Let A be a group generated by a finite subset S and let assume A acts freely on
(X, 1), then the word distance on X associated to S is
ds(x,x") =min{n e N| x' = slil LosElox)
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Reminder on quantitative OE

Qu::;;:zwe Definition (Word distance on X)

theory

Let A be a group generated by a finite subset S and let assume A acts freely on

Romain (X, i), then the word distance on X associated to S is
Tessera

ds(x,x") =min{n e N| x' = slil LosElox)

where s; € S if x’ and x lie in a same orbit, and ds(x,x’) = co otherwise.

We use the measure 1 to compare the word distances associated to two distinct
pmp actions as follows:

Proposition (p-integrable orbit equivalence)

Assume N, ~ (X, ) with same orbits. The actions are (p,1))-OE iff for all
e 5/\,

. oldse (3 x))de) < oo,
X

and all v € Sr,
/X $(dsy (.7 - x))dp(x) < oo,
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Sofic approximation: construction of OE

Quantitatihe Lemma (Carderi-Delabie-Koivisto-Le Maftre-Tessera 23)
ergodic

theory Let T and A be sofic groups. if Fn : Gn — Ln is (o, 8)-statistically bi-Lipschitz,
then there exist pmp actions I ~ X and N ~ Y and an OE such that for all
sESr,teSyand R >0,
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Sofic approximation: construction of OE

Quantitathe Lemma (Carderi-Delabie-Koivisto-Le Maftre-Tessera 23)
ergodic

theery Let T and A be sofic groups. if Fn : Gn — Ln is (o, 8)-statistically bi-Lipschitz,
Romain then there exist pmp actions I ~ X and N ~ Y and an OE such that for all
e sESr, teESyand R >0,

Px (x € X | ds, (Fu(x), Fu(s - x)) > R) < o(R),

and
Py (v € Y | ds(F7 (), i '(¢-)) 2 R) < B(R),

Sketch of proof.

m Take a ultrafilter U, and consider the limit X = limy, G, (similarly
Y = limy Ln).

Romain Tessera Quantitative ergodic theory



Quantitative
ergodic
theory

Romain
Tessera

Sofic approximation: construction of OE

Lemma (Carderi-Delabie-Koivisto-Le Maitre-Tessera 23)

Let T and A be sofic groups. if Fn : Gn — Ln is (o, 8)-statistically bi-Lipschitz,
then there exist pmp actions I ~ X and N ~ Y and an OE such that for all
sESr,teSyand R >0,

Px (x € X | ds, (Fu(x), Fu(s - x)) > R) < o(R),

and
Py (v € Y | ds(F7 (), i '(¢-)) 2 R) < B(R),

Sketch of proof.

m Take a ultrafilter U, and consider the limit X = limy, G, (similarly
Y = limy Ln).

m X come equipped with probability measures Px = limy; Pg,, and a free
pmp actions of I'.
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Sofic approximation: construction of OE

Lemma (Carderi-Delabie-Koivisto-Le Maitre-Tessera 23)

Let T and A be sofic groups. if Fn : Gn — Ln is (o, 8)-statistically bi-Lipschitz,
then there exist pmp actions I ~ X and N ~ Y and an OE such that for all
seSr,teSyand R >0,

Px (x € X | ds, (Fu(x), Fu(s - x)) > R) < a(R),

and
Py (v € Y | ds(F7 (), i '(¢-)) 2 R) < B(R),

Sketch of proof.

m Take a ultrafilter U, and consider the limit X = limy, G, (similarly
Y = limy Lhp).

m X come equipped with probability measures Px = limy; Pg,, and a free
pmp actions of I'.

m The map Fyy = limy F, is a measure isomorphism and satisfies the
conclusion of the lemma.
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Sofic approximation: construction of OE

Lemma (Carderi-Delabie-Koivisto-Le Maitre-Tessera 23)

Let T and A be sofic groups. if Fn : Gn — Ln is (o, 8)-statistically bi-Lipschitz,
then there exist pmp actions I ~ X and N ~ Y and an OE such that for all
seSr,teSyand R >0,

Px (x € X | ds, (Fu(x), Fu(s - x)) > R) < a(R),

and
Py (v € Y | ds(F7 (), i '(¢-)) 2 R) < B(R),

Sketch of proof.

m Take a ultrafilter U, and consider the limit X = limy, G, (similarly
Y = limy Lhp).

m X come equipped with probability measures Px = limy; Pg,, and a free
pmp actions of I'.

m The map Fyy = limy F, is a measure isomorphism and satisfies the
conclusion of the lemma.

m In particular: ds (x,x") < 0o <= ds, (Fu(x), Fu(x")) < co: Fy is an OE.
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Other constructions: wreath products

ergodic

theory The wreath product of A with T

AT = <€B/\> x T

=

(lamp group: A, base group: T)

Theorem (Delabie-Koivisto-Le Maftre-Tessera 20)

IfT1 and Ty admit a (p,1)-integrable orbit equivalence coupling, and if Ay and
A2 admit a (¢, v)-integrable orbit equivalence coupling, then the wreath products
A1 T2 and A2 1Ty also admit a (¢, )-integrable orbit equivalence couplings.
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Other constructions: wreath products

The wreath product of A with T

AT = <€B/\> x T

=

(lamp group: A, base group: T)

| \

Theorem (Delabie-Koivisto-Le Maftre-Tessera 20)

IfT1 and Ty admit a (p,1)-integrable orbit equivalence coupling, and if Ay and
A2 admit a (¢, v)-integrable orbit equivalence coupling, then the wreath products
A1 T2 and A2 1Ty also admit a (¢, )-integrable orbit equivalence couplings.

Corollary

Let a,b € N with a < b and let A be any finitely generated group, then there is

an (LP, Lp/)—orbit equivalence coupling from AUZP to A 72 for every p < % and

p <
a
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Other constructions: wreath products

Quantitative Baby case: If A; = Ay = A is finite.
ergodic
theory
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Other constructions: wreath products

Quantitative Baby case: If Ay = Ay = Ais finite.

et'hg‘)dic m Assume 1 and I, act with same orbits on X: a: [ x X — 5.
eory
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Other constructions: wreath products

Quantitative Baby case: If A; = Ay = A is finite.
et'hg"dic m Assume 1 and > act with same orbits on X: a: 1 x X — 5.
eor
y m Consider the probability space X x A,
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Other constructions: wreath products

Quantitative Baby case: If A; = Ay = A is finite.
etLg;dic m Assume 1 and > act with same orbits on X: o : ;1 x X — I,.
T
y m Consider the probability space X x ATl. Action of A T:
m vy €1 acts by “shift”:

7 (x (/g)gel’l) =(v-x, (/gv)gel'l)-
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Other constructions: wreath products

Quantitative Baby case: If A; = Ay = A is finite.
etLg;dic m Assume 1 and > act with same orbits on X: o : ;1 x X — I,.
T
y m Consider the probability space X x ATl. Action of A T:
m vy €1 acts by “shift”:

7 (x (/g)gel’l) =(v-x, (/gv)gel'l)-

m D, cr, Aaction: forall f € D, cr, A,

£ (x, (lg)ger) = (x, (F(g™1) - lg)gery)-
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Other constructions: wreath products

Quantitative Baby case: If A; = Ay = A is finite.
etLg;dic m Assume 1 and > act with same orbits on X: o : ;1 x X — I,.
T
y m Consider the probability space X x ATl. Action of A T:
m vy €1 acts by “shift”:

7 (x (/g)gel’l) =(v-x, (/gv)gel'l)-

@D, cr, Maction: forall f € D, o, A

£ (x, (lg)ger) = (x, (F(g™1) - lg)gery)-

Action of AT
Y2 € Ia:

Y2 - (X7 (lg)g€r1) = ('72 ) (Iga(ﬂ/g,x))gEH)'
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Other constructions: wreath products

Quantitative Baby case: If A; = Ay = A is finite.
etLg;dic m Assume 1 and > act with same orbits on X: o : ;1 x X — I,.
T
y m Consider the probability space X x ATl. Action of A T:
m vy €1 acts by “shift”:

7 (x (/g)gel’l) =(v-x, (/gv)gel'l)-

@D, cr, Maction: forall f € D, o, A

£ (x, (lg)ger) = (x, (F(g™1) - lg)gery)-

Action of AT
Y2 € Ia:

Y2 - (X7 (lg)g€r1) = ('72 ) (Iga(ﬂ/g,x))gEH)'

@D, er, N-action:

f(x, (lg)ger) = (x, (F(alg, x) ") - le)ger)-
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