Quantitativ	e
ergodic	
theory	

Romain Tessera

Quantitative ergodic theory

Romain Tessera

CNRS, Université Paris Cité et Sorbonne Université

20/02/24

ヘロア 人間 アメヨア 人間 アー

Э

OE between free abelian groups

Romain Tessera

Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

Let $d, k \in \mathbb{N}$. There is no L^p -OE from \mathbb{Z}^{d+k} to \mathbb{Z}^d for p > d/(d+k).

Today, we will focus on the following converse:

Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

Let $d, k' \in \mathbb{N}$. Then \mathbb{Z}^d and \mathbb{Z}^{d+k} are L^p -OE for all p < d/(d+k).

イロン 不同 とうほう 不同 とう

æ

OE between free abelian groups

Romain Tessera

Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

Let $d, k \in \mathbb{N}$. There is no L^p -OE from \mathbb{Z}^{d+k} to \mathbb{Z}^d for p > d/(d+k).

Today, we will focus on the following converse:

Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

Let $d, k' \in \mathbb{N}$. Then \mathbb{Z}^d and \mathbb{Z}^{d+k} are L^p -OE for all p < d/(d+k).

Problem

What happens for p = d/(d + k)?

<ロ> (四) (四) (三) (三) (三)

Quantitative ergodic theory

> Romain Tessera

Definition

Let Γ be an amenable group and (F_k) be a sequence of finite subsets of Γ . We call (F_k) a (left) **Følner tiling sequence** if the sequence of *tiles* (T_k) defined inductively by $T_0 = F_0$ and $T_{k+1} = T_k F_{k+1}$ satisfies the following conditions:

Quantitative ergodic theory

> Romain Tessera

Definition

Let Γ be an amenable group and (F_k) be a sequence of finite subsets of Γ . We call (F_k) a (left) **Følner tiling sequence** if the sequence of *tiles* (T_k) defined inductively by $T_0 = F_0$ and $T_{k+1} = T_k F_{k+1}$ satisfies the following conditions:

1 (tiling condition) for all $k \in \mathbb{N}$, T_{k+1} is a *disjoint* union:

$$T_{k+1} = \bigsqcup_{\gamma \in F_{k+1}} T_k \gamma;$$

Quantitative ergodic theory

Romain

Let Γ be an amenable group and (F_k) be a sequence of finite subsets of Γ . We call (F_k) a (left) **Følner tiling sequence** if the sequence of tiles (T_k) defined inductively by $T_0 = F_0$ and $T_{k+1} = T_k F_{k+1}$ satisfies the following conditions:

1 (tiling condition) for all $k \in \mathbb{N}$, T_{k+1} is a *disjoint* union:

$$T_{k+1} = \bigsqcup_{\gamma \in F_{k+1}} T_k \gamma;$$

Definition

2 (Følner condition) (T_k) is a left Følner sequence: for all $\gamma \in \Gamma$, $\frac{|\gamma T_k \setminus T_k|}{|T_k|} = 0.$ lim $k \rightarrow +\infty$

イロト イヨト イヨト イヨト

2

Quantitative ergodic theory

Romain

Let Γ be an amenable group and (F_k) be a sequence of finite subsets of Γ . We call (F_k) a (left) **Følner tiling sequence** if the sequence of tiles (T_k) defined inductively by $T_0 = F_0$ and $T_{k+1} = T_k F_{k+1}$ satisfies the following conditions:

1 (tiling condition) for all $k \in \mathbb{N}$, T_{k+1} is a *disjoint* union:

$$T_{k+1} = \bigsqcup_{\gamma \in F_{k+1}} T_k \gamma;$$

Definition

2 (Følner condition) (T_k) is a left Følner sequence: for all $\gamma \in \Gamma$, $\frac{|\gamma T_k \setminus T_k|}{|T_k|} = 0.$ lim $k \rightarrow +\infty$

Remark

The first condition amounts to saying that every element of T_k can uniquely be written as $f_0 \cdots f_k$ where each f_i belongs to F_i .

Romain Tessera

Definition

 $T_0 = F_0$ and $T_{k+1} = T_k F_{k+1}$ satisfies the following conditions:

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ -

Quantitative ergodic theory

> Romain Tessera

Definition

 $T_0 = F_0$ and $T_{k+1} = T_k F_{k+1}$ satisfies the following conditions:

1 (tiling condition) for all $k \in \mathbb{N}$, T_{k+1} is a *disjoint* union:

$$T_{k+1} = \bigsqcup_{\gamma \in F_{k+1}} T_k \gamma;$$

イロン 不同 とうほう 不同 とう

Quantitative ergodic theory

> Romain Tessera

Definition

 $T_0 = F_0$ and $T_{k+1} = T_k F_{k+1}$ satisfies the following conditions:

1 (tiling condition) for all $k \in \mathbb{N}$, T_{k+1} is a *disjoint* union:

$$T_{k+1} = \bigsqcup_{\gamma \in F_{k+1}} T_k \gamma;$$

2 (Følner condition) (T_k) is a left Følner sequence: for all $\gamma \in \Gamma$, $\lim_{k \to +\infty} \frac{|\gamma T_k \setminus T_k|}{|T_k|} = 0.$

イロト イヨト イヨト イヨト

Quantitative ergodic theory

> Romain Tessera

Definition

 $T_0 = F_0$ and $T_{k+1} = T_k F_{k+1}$ satisfies the following conditions:

1 (tiling condition) for all $k \in \mathbb{N}$, T_{k+1} is a *disjoint* union:

$$T_{k+1} = \bigsqcup_{\gamma \in F_{k+1}} T_k \gamma;$$

2 (Følner condition) (T_k) is a left Følner sequence: for all $\gamma \in \Gamma$, $\lim_{k \to +\infty} \frac{|\gamma T_k \setminus T_k|}{|T_k|} = 0.$

For \mathbb{Z} , tilings by diadic integers: $T_k = [0, 2^{k+1} - 1]$. We have $F_k = \{0, 2^k\}$.

Quantitative ergodic theory

> Romain Tessera

Definition

 $T_0 = F_0$ and $T_{k+1} = T_k F_{k+1}$ satisfies the following conditions:

1 (tiling condition) for all $k \in \mathbb{N}$, T_{k+1} is a *disjoint* union:

$$T_{k+1} = \bigsqcup_{\gamma \in F_{k+1}} T_k \gamma;$$

2 (Følner condition) (T_k) is a left Følner sequence: for all $\gamma \in \Gamma$, $\lim_{k \to +\infty} \frac{|\gamma T_k \setminus T_k|}{|T_k|} = 0.$

For \mathbb{Z} , tilings by diadic integers: $T_k = [0, 2^{k+1} - 1]$. We have $F_k = \{0, 2^k\}$.

The writing $t = f_0 \cdots f_k$ (where $t \in T_k$), corresponds to the diadic decomposition of $t \in \mathbb{N}$:

$$t=\sum_{i=0}^k \varepsilon_i 2^i$$

э

where $\varepsilon_i = 0$ if $f_i = 0$, or $\varepsilon_i = 1$ if $f_i = 2^i$.

Quantitative ergodic theory

> Romain Tessera

Definition

 $T_0 = F_0$ and $T_{k+1} = T_k F_{k+1}$ satisfies the following conditions:

1 (tiling condition) for all $k \in \mathbb{N}$, T_{k+1} is a *disjoint* union:

$$T_{k+1} = \bigsqcup_{\gamma \in F_{k+1}} T_k \gamma;$$

2 (Følner condition) (T_k) is a left Følner sequence: for all $\gamma \in \Gamma$, $\lim_{k \to +\infty} \frac{|\gamma T_k \setminus T_k|}{|T_k|} = 0.$

For \mathbb{Z} , tilings by diadic integers: $T_k = [0, 2^{k+1} - 1]$. We have $F_k = \{0, 2^k\}$.

The writing $t = f_0 \cdots f_k$ (where $t \in T_k$), corresponds to the diadic decomposition of $t \in \mathbb{N}$:

$$t=\sum_{i=0}^k \varepsilon_i 2^i$$

э

where $\varepsilon_i = 0$ if $f_i = 0$, or $\varepsilon_i = 1$ if $f_i = 2^i$.

pmp actions and OE

Quantitative ergodic theory

Romain Tessera

Proposition

Assume that (F_k) is a Følner tiling sequence for Γ . Then Γ has a measure-preserving action on the infinite product probability space $(X = \prod_k F_k, \mu)$, which almost surely generates the cofinite equivalence relation on this product.

イロン 不同 とうほう 不同 とう

pmp actions and OE

Quantitative ergodic theory

Romain Tessera

Proposition

Assume that (F_k) is a Følner tiling sequence for Γ . Then Γ has a measure-preserving action on the infinite product probability space $(X = \prod_k F_k, \mu)$, which almost surely generates the cofinite equivalence relation on this product.

Definition

The cofinite equivalence relation on $(X = \prod_k F_k, \mu)$ is the equivalence relation of equality except on a finite set of indices.

<ロ> (四) (四) (三) (三) (三)

pmp actions and OE

Quantitative ergodic theory

Romain Tessera

Proposition

Assume that (F_k) is a Følner tiling sequence for Γ . Then Γ has a measure-preserving action on the infinite product probability space $(X = \prod_k F_k, \mu)$, which almost surely generates the cofinite equivalence relation on this product.

Definition

The cofinite equivalence relation on $(X = \prod_k F_k, \mu)$ is the equivalence relation of equality except on a finite set of indices.

Remark (Orbit equivalence)

Consider two amenable groups Γ and Γ' admitting respective Følner tiling sequences (F_k) and (F'_k) such that $|F_k| = |F'_k|$. Then the proposition provides us with free measure-preserving actions of Γ and Γ' on $X = \prod_k \{1, \ldots, |F_k|\}$, with same orbits.

(日) (四) (三) (三) (三)

Quantitative ergodic theory

> Romain Tessera

• We consider the product probability space $(X = \prod_k F_k, \mu)$, where each factor is equipped with the normalized counting measure.

イロト イヨト イヨト イヨト

æ

Quantitative ergodic theory

> Romain Tessera

• We consider the product probability space $(X = \prod_k F_k, \mu)$, where each factor is equipped with the normalized counting measure. We need to define a free pmp action of Γ .

イロト イヨト イヨト イヨト

Quantitative ergodic theory

> Romain Tessera

- We consider the product probability space $(X = \prod_k F_k, \mu)$, where each factor is equipped with the normalized counting measure. We need to define a free pmp action of Γ .
- Each element x = (x_k)_{k∈ℕ} of X defines a sequence (g_k(x))_{k∈ℕ} of elements of Γ given by g_k(x) = x₀ ··· x_k ∈ T_k.

Quantitative ergodic theory

> Romain Tessera

- We consider the product probability space $(X = \prod_k F_k, \mu)$, where each factor is equipped with the normalized counting measure. We need to define a free pmp action of Γ .
- Each element x = (x_k)_{k∈ℕ} of X defines a sequence (g_k(x))_{k∈ℕ} of elements of Γ given by g_k(x) = x₀ ··· x_k ∈ T_k.
- By condition (1), each g_k is an equidistributed random element of T_k . Hence g_n induces $(X_n = \prod_{k=0}^n F_k, \mu_n) \simeq (T_n, \text{uniform measure}).$

Quantitative ergodic theory

> Romain Tessera

- We consider the product probability space ($X = \prod_k F_k, \mu$), where each factor is equipped with the normalized counting measure. We need to define a free pmp action of Γ .
- Each element x = (x_k)_{k∈ℕ} of X defines a sequence (g_k(x))_{k∈ℕ} of elements of Γ given by g_k(x) = x₀ ··· x_k ∈ T_k.
- By condition (1), each g_k is an equidistributed random element of T_k . Hence g_n induces $(X_n = \prod_{k=0}^n F_k, \mu_n) \simeq (T_n, \text{uniform measure}).$
- In particular, the probability that $\gamma g_n(x) \notin T_n$ is

$$\frac{|\gamma T_n \vartriangle T_n|}{|T_n|}$$

Quantitative ergodic theory

> Romain Tessera

- We consider the product probability space ($X = \prod_k F_k, \mu$), where each factor is equipped with the normalized counting measure. We need to define a free pmp action of Γ .
- Each element x = (x_k)_{k∈ℕ} of X defines a sequence (g_k(x))_{k∈ℕ} of elements of Γ given by g_k(x) = x₀ ··· x_k ∈ T_k.
- By condition (1), each g_k is an equidistributed random element of T_k . Hence g_n induces $(X_n = \prod_{k=0}^n F_k, \mu_n) \simeq (T_n, \text{uniform measure}).$
- In particular, the probability that $\gamma g_n(x) \notin T_n$ is

$$\frac{|\gamma T_n \vartriangle T_n|}{|T_n|}.$$

Since (T_n) is a left Følner sequence, we deduce that for every $\gamma \in \Gamma$ and almost every $x \in X$, there exists *n* such that $\gamma g_n(x) \in T_n$.

Quantitative ergodic theory

> Romain Tessera

- We consider the product probability space ($X = \prod_k F_k, \mu$), where each factor is equipped with the normalized counting measure. We need to define a free pmp action of Γ .
- Each element x = (x_k)_{k∈ℕ} of X defines a sequence (g_k(x))_{k∈ℕ} of elements of Γ given by g_k(x) = x₀ ··· x_k ∈ T_k.
- By condition (1), each g_k is an equidistributed random element of T_k . Hence g_n induces $(X_n = \prod_{k=0}^n F_k, \mu_n) \simeq (T_n, \text{uniform measure}).$
- In particular, the probability that $\gamma g_n(x) \notin T_n$ is

$$\frac{|\gamma T_n \vartriangle T_n|}{|T_n|}.$$

- Since (T_n) is a left Følner sequence, we deduce that for every $\gamma \in \Gamma$ and almost every $x \in X$, there exists *n* such that $\gamma g_n(x) \in T_n$.
- We can then write uniquely $\gamma g_n(x) = x'_0 \cdots x'_n$ where $x'_i \in F_i$, and we then define

$$\gamma \cdot (x_k)_{k \in \mathbb{N}} = (x'_0, ..., x'_n, x_{n+1}, x_{n+2}, ...).$$

Quantitative ergodic theory

> Romain Tessera

- We consider the product probability space ($X = \prod_k F_k, \mu$), where each factor is equipped with the normalized counting measure. We need to define a free pmp action of Γ .
- Each element $x = (x_k)_{k \in \mathbb{N}}$ of X defines a sequence $(g_k(x))_{k \in \mathbb{N}}$ of elements of Γ given by $g_k(x) = x_0 \cdots x_k \in T_k$.
- By condition (1), each g_k is an equidistributed random element of T_k . Hence g_n induces $(X_n = \prod_{k=0}^n F_k, \mu_n) \simeq (T_n, \text{uniform measure}).$
- In particular, the probability that $\gamma g_n(x) \notin T_n$ is

$$\frac{|\gamma T_n \vartriangle T_n|}{|T_n|}.$$

- Since (T_n) is a left Følner sequence, we deduce that for every $\gamma \in \Gamma$ and almost every $x \in X$, there exists *n* such that $\gamma g_n(x) \in T_n$.
- We can then write uniquely $\gamma g_n(x) = x'_0 \cdots x'_n$ where $x'_i \in F_i$, and we then define

$$\gamma \cdot (x_k)_{k \in \mathbb{N}} = (x'_0, ..., x'_n, x_{n+1}, x_{n+2}, ...).$$

Note that this does not depend on the **choice** of *n* because we have $\gamma g_{n+1}(x) = \gamma g_n(x) x_{n+1} \in T_{n+1}.$

Quantitative ergodic theory

> Romain Tessera

- We consider the product probability space ($X = \prod_k F_k, \mu$), where each factor is equipped with the normalized counting measure. We need to define a free pmp action of Γ .
- Each element $x = (x_k)_{k \in \mathbb{N}}$ of X defines a sequence $(g_k(x))_{k \in \mathbb{N}}$ of elements of Γ given by $g_k(x) = x_0 \cdots x_k \in T_k$.
- By condition (1), each g_k is an equidistributed random element of T_k . Hence g_n induces $(X_n = \prod_{k=0}^n F_k, \mu_n) \simeq (T_n, \text{uniform measure}).$
- In particular, the probability that $\gamma g_n(x) \notin T_n$ is

$$\frac{|\gamma T_n \vartriangle T_n|}{|T_n|}.$$

- Since (T_n) is a left Følner sequence, we deduce that for every $\gamma \in \Gamma$ and almost every $x \in X$, there exists *n* such that $\gamma g_n(x) \in T_n$.
- We can then write uniquely $\gamma g_n(x) = x'_0 \cdots x'_n$ where $x'_i \in F_i$, and we then define

$$\gamma \cdot (x_k)_{k \in \mathbb{N}} = (x'_0, ..., x'_n, x_{n+1}, x_{n+2}, ...).$$

Note that this does not depend on the **choice** of *n* because we have $\gamma g_{n+1}(x) = \gamma g_n(x) x_{n+1} \in T_{n+1}.$

Quantitative ergodic theory

> Romain Tessera

■ In other words, the action of Γ on X is such that for every $\gamma \in \Gamma$ and a.e. $x \in X$, for all *n* large enough,

$$g_n(\gamma \cdot x) = \gamma g_n(x).$$

イロト イヨト イヨト イヨト

Quantitative ergodic theory

> Romain Tessera

■ In other words, the action of Γ on X is such that for every $\gamma \in \Gamma$ and a.e. $x \in X$, for all n large enough,

$$g_n(\gamma \cdot x) = \gamma g_n(x). \tag{1}$$

イロト イポト イヨト イヨト

Geometrically: there exists a scale n at which γ moves x within the same tile T_n. Hence multiplication by γ does not affects the sequence of larger tiles to which x belongs.

Quantitative ergodic theory

> Romain Tessera

■ In other words, the action of Γ on X is such that for every $\gamma \in \Gamma$ and a.e. $x \in X$, for all n large enough,

$$g_n(\gamma \cdot x) = \gamma g_n(x). \tag{1}$$

- Geometrically: there exists a scale n at which γ moves x within the same tile T_n. Hence multiplication by γ does not affects the sequence of larger tiles to which x belongs.
- We claim that up to measure zero, this group action induces the cofinite equivalence relation.

Quantitative ergodic theory

> Romain Tessera

■ In other words, the action of Γ on X is such that for every $\gamma \in \Gamma$ and a.e. $x \in X$, for all n large enough,

$$g_n(\gamma \cdot x) = \gamma g_n(x). \tag{1}$$

- Geometrically: there exists a scale n at which γ moves x within the same tile T_n. Hence multiplication by γ does not affects the sequence of larger tiles to which x belongs.
- We claim that up to measure zero, this group action induces the cofinite equivalence relation.
- Indeed, we have just seen that for almost every $x \in X$ and all $\gamma \in \Gamma$, x and $\gamma \cdot x$ are equal up to a finite set of indices.

Quantitative ergodic theory

> Romain Tessera

■ In other words, the action of Γ on X is such that for every $\gamma \in \Gamma$ and a.e. $x \in X$, for all n large enough,

$$g_n(\gamma \cdot x) = \gamma g_n(x). \tag{1}$$

- Geometrically: there exists a scale n at which γ moves x within the same tile T_n. Hence multiplication by γ does not affects the sequence of larger tiles to which x belongs.
- We claim that up to measure zero, this group action induces the cofinite equivalence relation.
- Indeed, we have just seen that for almost every $x \in X$ and all $\gamma \in \Gamma$, x and $\gamma \cdot x$ are equal up to a finite set of indices.
- Conversely, if x and x' are such that $x_j = x'_j$ for all $j \ge k + 1$, the element $\gamma = g_k(x)g_k(x')^{-1} \in G$ satisfies $\gamma g_k(x) = g_k(x') \in T_k$, and hence $\gamma \cdot x = x'$.

Quantitative ergodic theory

> Romain Tessera

■ In other words, the action of Γ on X is such that for every $\gamma \in \Gamma$ and a.e. $x \in X$, for all n large enough,

$$g_n(\gamma \cdot x) = \gamma g_n(x). \tag{1}$$

イロン 不同 とくほど 不同 とう

- Geometrically: there exists a scale n at which γ moves x within the same tile T_n. Hence multiplication by γ does not affects the sequence of larger tiles to which x belongs.
- We claim that up to measure zero, this group action induces the cofinite equivalence relation.
- Indeed, we have just seen that for almost every $x \in X$ and all $\gamma \in \Gamma$, x and $\gamma \cdot x$ are equal up to a finite set of indices.
- Conversely, if x and x' are such that $x_j = x'_j$ for all $j \ge k + 1$, the element $\gamma = g_k(x)g_k(x')^{-1} \in G$ satisfies $\gamma g_k(x) = g_k(x') \in T_k$, and hence $\gamma \cdot x = x'$.
- In particular the action is measure preserving: indeed the cofinite equivalence relation can be realized through the natural action of the direct sum ⊕_k 𝔅(*F_k*), which is obviously measure preserving.

Quantitative ergodic theory

> Romain Tessera

■ In other words, the action of Γ on X is such that for every $\gamma \in \Gamma$ and a.e. $x \in X$, for all n large enough,

$$g_n(\gamma \cdot x) = \gamma g_n(x). \tag{1}$$

イロン 不同 とうほう 不同 とう

- Geometrically: there exists a scale n at which γ moves x within the same tile T_n. Hence multiplication by γ does not affects the sequence of larger tiles to which x belongs.
- We claim that up to measure zero, this group action induces the cofinite equivalence relation.
- Indeed, we have just seen that for almost every $x \in X$ and all $\gamma \in \Gamma$, x and $\gamma \cdot x$ are equal up to a finite set of indices.
- Conversely, if x and x' are such that $x_j = x'_j$ for all $j \ge k + 1$, the element $\gamma = g_k(x)g_k(x')^{-1} \in G$ satisfies $\gamma g_k(x) = g_k(x') \in T_k$, and hence $\gamma \cdot x = x'$.
- In particular the action is measure preserving: indeed the cofinite equivalence relation can be realized through the natural action of the direct sum ⊕_k 𝔅(F_k), which is obviously measure preserving.
- The proposition is proved!

イロン 不同 とうほう 不同 とう

Э

イロン 不同 とくほど 不同 とう

Revisiting the 2-odometer

Quantitative ergodic theory

> Romain Tessera

• The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator *a* of \mathbb{Z} acts as: $a \cdot (0,0,0,1,\ldots) = (1,0,0,1\ldots)$ $a \cdot (1,0,0,\ldots) = (0,1,0,\ldots)$

イロト イヨト イヨト イヨト

Revisiting the 2-odometer

Quantitative ergodic theory

> Romain Tessera

- The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator *a* of \mathbb{Z} acts as: $a \cdot (0,0,0,1,\ldots) = (1,0,0,1\ldots)$ $a \cdot (1,0,0,\ldots) = (0,1,0,\ldots)$
 - $a \cdot (1, 1, 1, 0, \ldots) =$

イロト イヨト イヨト イヨト
Quantitative ergodic theory

> Romain Tessera

• The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator *a* of \mathbb{Z} acts as:

$$\begin{aligned} & a \cdot (0, 0, 0, 1, \ldots) = (1, 0, 0, 1, \ldots) \\ & a \cdot (1, 0, 0, \ldots) = (0, 1, 0, \ldots) \\ & a \cdot (1, 1, 1, 0, \ldots) = (0, 0, 0, 1, \ldots) \end{aligned}$$

イロト イヨト イヨト イヨト

臣

Quantitative ergodic theory

> Romain Tessera

- The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator *a* of \mathbb{Z} acts as:
 - $a \cdot (0, 0, 0, 1, \ldots) = (1, 0, 0, 1 \ldots)$
 - $a \cdot (1, 0, 0, \ldots) = (0, 1, 0, \ldots)$
 - $a \cdot (1, 1, 1, 0, \ldots) = (0, 0, 0, 1, \ldots)$
- This corresponds to $X = \mathbb{Z}_2 = \{\sum_{k=0}^{\infty} a_k 2^k \mid a_k \in \{0, 1\}\}$, the ring of 2-adic numbers.

イロト イヨト イヨト イヨト

Quantitative ergodic theory

> Romain Tessera

- The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator *a* of \mathbb{Z} acts as:
 - $a \cdot (0, 0, 0, 1, \ldots) = (1, 0, 0, 1 \ldots)$
 - $a \cdot (1, 0, 0, \ldots) = (0, 1, 0, \ldots)$
 - $a \cdot (1, 1, 1, 0, \ldots) = (0, 0, 0, 1, \ldots)$
- This corresponds to $X = \mathbb{Z}_2 = \{\sum_{k=0}^{\infty} a_k 2^k \mid a_k \in \{0, 1\}\}$, the ring of 2-adic numbers.
- The 2-odometer is the restriction to the subring $\mathbb{Z} \subset \mathbb{Z}_2$ of the action of \mathbb{Z}_2 on itself by addition.

イロト イヨト イヨト イヨト

Quantitative ergodic theory

> Romain Tessera

- The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator *a* of \mathbb{Z} acts as:
 - $a \cdot (0, 0, 0, 1, \ldots) = (1, 0, 0, 1 \ldots)$
 - $a \cdot (1, 0, 0, \ldots) = (0, 1, 0, \ldots)$
 - $a \cdot (1, 1, 1, 0, \ldots) = (0, 0, 0, 1, \ldots)$
- This corresponds to $X = \mathbb{Z}_2 = \{\sum_{k=0}^{\infty} a_k 2^k \mid a_k \in \{0, 1\}\}$, the ring of 2-adic numbers.
- The 2-odometer is the restriction to the subring $\mathbb{Z} \subset \mathbb{Z}_2$ of the action of \mathbb{Z}_2 on itself by addition.
- As a measure space, $\mathbb{Z}_2 = \prod_k \{0, 2^k\}$.

イロト イヨト イヨト イヨト

Quantitative ergodic theory

> Romain Tessera

- The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator *a* of \mathbb{Z} acts as:
 - $a \cdot (0, 0, 0, 1, \ldots) = (1, 0, 0, 1 \ldots)$
 - $a \cdot (1, 0, 0, \ldots) = (0, 1, 0, \ldots)$
 - $a \cdot (1, 1, 1, 0, \ldots) = (0, 0, 0, 1, \ldots)$
- This corresponds to $X = \mathbb{Z}_2 = \{\sum_{k=0}^{\infty} a_k 2^k \mid a_k \in \{0, 1\}\}$, the ring of 2-adic numbers.
- The 2-odometer is the restriction to the subring $\mathbb{Z} \subset \mathbb{Z}_2$ of the action of \mathbb{Z}_2 on itself by addition.
- As a measure space, $\mathbb{Z}_2 = \prod_k \{0, 2^k\}$.
- We recognize the pmp action of Γ = Z associated to F_k = {0, 2^k}, the tiles being T_k = {0,..., 2^{k+1} − 1}, with the product measure.

イロン 不同 とうほう 不同 とう

3

Quantitative ergodic theory

> Romain Tessera

- The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator *a* of \mathbb{Z} acts as:
 - $a \cdot (0, 0, 0, 1, \ldots) = (1, 0, 0, 1 \ldots)$
 - $a \cdot (1, 0, 0, \ldots) = (0, 1, 0, \ldots)$
 - $a \cdot (1, 1, 1, 0, \ldots) = (0, 0, 0, 1, \ldots)$
- This corresponds to $X = \mathbb{Z}_2 = \{\sum_{k=0}^{\infty} a_k 2^k \mid a_k \in \{0, 1\}\}$, the ring of 2-adic numbers.
- The 2-odometer is the restriction to the subring $\mathbb{Z} \subset \mathbb{Z}_2$ of the action of \mathbb{Z}_2 on itself by addition.
- As a measure space, $\mathbb{Z}_2 = \prod_k \{0, 2^k\}$.
- We recognize the pmp action of Γ = Z associated to F_k = {0, 2^k}, the tiles being T_k = {0,..., 2^{k+1} − 1}, with the product measure.

イロト イヨト イヨト イヨト 三日

Note that the presence of an initial sequence (1, 1, ..., 1) (of length n) means that the corresponding x_n = f₀ ... f_n lies in the boundary of T_n (hence adding 1 make it jump to the neighboring tile 2ⁿ + T_n = [2ⁿ, 2ⁿ⁺¹ - 1].

Quantitative ergodic theory

Romain

Let Γ be an amenable group and (F_k) be a sequence of finite subsets of Γ . We call (F_k) a (left) **Følner tiling sequence** if the sequence of *tiles* (T_k) defined inductively by $T_0 = F_0$ and $T_{k+1} = T_k F_{k+1}$ satisfies the following conditions:

1 (tiling condition) for all $k \in \mathbb{N}$, T_{k+1} is a *disjoint* union:

$$T_{k+1} = \bigsqcup_{\gamma \in F_{k+1}} T_k \gamma;$$

Definition (Følner tilings)

2 (Fo lner condition) (T_k) is a left Følner sequence: for all $\gamma \in \Gamma$, $\lim_{k\to+\infty}\frac{|\gamma T_k\setminus T_k|}{|T_k|}=0.$

イロト イヨト イヨト イヨト

Quantitative ergodic theory

> Romain Tessera

Let Γ be an amenable group and (F_k) be a sequence of finite subsets of Γ . We call (F_k) a (left) **Følner tiling sequence** if the sequence of *tiles* (T_k) defined inductively by $T_0 = F_0$ and $T_{k+1} = T_k F_{k+1}$ satisfies the following conditions:

1 (tiling condition) for all $k \in \mathbb{N}$, T_{k+1} is a *disjoint* union:

$$T_{k+1} = \bigsqcup_{\gamma \in F_{k+1}} T_k \gamma;$$

2 (Fo Iner condition) (T_k) is a left Følner sequence: for all $\gamma \in \Gamma$, $\lim_{k \to +\infty} \frac{|\gamma T_k \setminus T_k|}{|T_k|} = 0.$

Definition (Profinite Følner tilings)

Definition (Følner tilings)

If in addition there exists a decreasing sequence of finite index subgroups Γ_k such that each F_k is a set of left coset representatives of Γ_{k-1} modulo Γ_k , then we call (F_k) a **profinite Følner tiling sequence** associated to (Γ_k) .

Quantitative ergodic theory

> Romain Tessera

Definition (Profinite Følner tilings)

A Følner tiling sequence $(F_k)_{k \in \mathbb{N}}$ is **profinite** if there exists a decreasing sequence of finite index subgroups Γ_k such that each F_k is a set of left coset representatives of Γ_{k-1} modulo Γ_k .

イロト イポト イヨト イヨト

Quantitative ergodic theory

> Romain Tessera

Definition (Profinite Følner tilings)

A Følner tiling sequence $(F_k)_{k \in \mathbb{N}}$ is **profinite** if there exists a decreasing sequence of finite index subgroups Γ_k such that each F_k is a set of left coset representatives of Γ_{k-1} modulo Γ_k . Note that each tile T_k is then a set of coset-representatives of Γ modulo Γ_k .

Proposition

If (F_k) is a profinite Følner tiling sequence associated to (Γ_k) , then the corresponding pmp action is isomorphic to the profinite action of Γ on $\lim_{k \to \infty} \Gamma/\Gamma_k$.

Remark

We recover the fact that the 2-odometer is the action of \mathbb{Z} on $\mathbb{Z}_2 = \lim_{k \to \infty} \mathbb{Z}/2^k \mathbb{Z}$.

イロン 不同 とくほど 不同 とう

Quantitative ergodic theory

> Romain Tessera

Proposition

If (F_k) is a profinite Følner tiling sequence associated to (Γ_k) , then the corresponding pmp action is isomorphic to the profinite action of Γ on $\lim_{k \to \infty} \Gamma/\Gamma_k$.

Proof.

- The restriction of the projection $\Gamma \to \Gamma/\Gamma_n$ to T_n induces a bijection $\Phi_n : X_n \to \Gamma/\Gamma_n$.
- Since $F_n \subseteq \Gamma_{n-1}$, we have $\pi_{n-1}(g_n(x)) = \pi_{n-1}(g_{n-1}(x))$ for all $x \in X$.

イロン イヨン イヨン イヨン

Quantitative ergodic theory

> Romain Tessera

Proposition

If (F_k) is a profinite Følner tiling sequence associated to (Γ_k) , then the corresponding pmp action is isomorphic to the profinite action of Γ on $\lim_{k \to \infty} \Gamma/\Gamma_k$.

Proof.

- The restriction of the projection $\Gamma \to \Gamma/\Gamma_n$ to T_n induces a bijection $\Phi_n : X_n \to \Gamma/\Gamma_n$.
- Since $F_n \subseteq \Gamma_{n-1}$, we have $\pi_{n-1}(g_n(x)) = \pi_{n-1}(g_{n-1}(x))$ for all $x \in X$.
- Hence, the sequence (Φ_n) induces a map $\Phi: X \to \lim_{k \to \infty} \Gamma/\Gamma_k$, $x \mapsto (\pi_n(g_n(x)))$, which is an isomorphism of probability spaces.

イロト イヨト イヨト イヨト

Quantitative ergodic theory

> Romain Tessera

Proposition

If (F_k) is a profinite Følner tiling sequence associated to (Γ_k) , then the corresponding pmp action is isomorphic to the profinite action of Γ on $\lim_{k \to \infty} \Gamma/\Gamma_k$.

Proof.

- The restriction of the projection $\Gamma \to \Gamma/\Gamma_n$ to T_n induces a bijection $\Phi_n : X_n \to \Gamma/\Gamma_n$.
- Since $F_n \subseteq \Gamma_{n-1}$, we have $\pi_{n-1}(g_n(x)) = \pi_{n-1}(g_{n-1}(x))$ for all $x \in X$.
- Hence, the sequence (Φ_n) induces a map $\Phi: X \to \lim_{k \to \infty} \Gamma/\Gamma_k$, $x \mapsto (\pi_n(g_n(x)))$, which is an isomorphism of probability spaces.
- By Equation (1), for a.e. $x \in X$ and all $\gamma \in \Gamma$ we have $g_n(\gamma \cdot x) = \gamma g_n(x)$ for all large enough n.

イロト イヨト イヨト イヨト

Quantitative ergodic theory

> Romain Tessera

Proposition

If (F_k) is a profinite Følner tiling sequence associated to (Γ_k) , then the corresponding pmp action is isomorphic to the profinite action of Γ on $\lim_{k \to \infty} \Gamma/\Gamma_k$.

Proof.

- The restriction of the projection $\Gamma \to \Gamma/\Gamma_n$ to T_n induces a bijection $\Phi_n : X_n \to \Gamma/\Gamma_n$.
- Since $F_n \subseteq \Gamma_{n-1}$, we have $\pi_{n-1}(g_n(x)) = \pi_{n-1}(g_{n-1}(x))$ for all $x \in X$.
- Hence, the sequence (Φ_n) induces a map $\Phi: X \to \lim_{k \to \infty} \Gamma/\Gamma_k$, $x \mapsto (\pi_n(g_n(x)))$, which is an isomorphism of probability spaces.
- By Equation (1), for a.e. $x \in X$ and all $\gamma \in \Gamma$ we have $g_n(\gamma \cdot x) = \gamma g_n(x)$ for all large enough n.

ヘロア 人間 アメヨア 人間 アー

æ

Hence Φ intertwines the two Γ-actions and we are done.

Reminder on quantitative OE

Quantitative ergodic theory

> Romain Tessera

Definition (Word distance on X)

Let Λ be a group generated by a finite subset S and let assume Λ acts freely on (X, μ) , then the word distance on X associated to S is

$$d_{\mathcal{S}}(x,x') = \min\{n \in \mathbb{N} \mid x' = s_1^{\pm 1} \dots s_n^{\pm 1} \cdot x\},\$$

where $s_i \in S$ if x' and x lie in a same orbit,

イロト イヨト イヨト イヨト

臣

Reminder on quantitative OE

Quantitative ergodic theory

> Romain Tessera

Definition (Word distance on X)

Let Λ be a group generated by a finite subset S and let assume Λ acts freely on (X, μ) , then the word distance on X associated to S is

$$d_{\mathcal{S}}(x,x') = \min\{n \in \mathbb{N} \mid x' = s_1^{\pm 1} \dots s_n^{\pm 1} \cdot x\},\$$

where $s_i \in S$ if x' and x lie in a same orbit, and $d_S(x, x') = \infty$ otherwise.

イロト イヨト イヨト イヨト

臣

Reminder on quantitative OE

Quantitative ergodic theory

> Romain Tessera

Definition (Word distance on X)

Let Λ be a group generated by a finite subset S and let assume Λ acts freely on (X, μ) , then the word distance on X associated to S is

$$d_{\mathcal{S}}(x,x') = \min\{n \in \mathbb{N} \mid x' = s_1^{\pm 1} \dots s_n^{\pm 1} \cdot x\},\$$

where $s_i \in S$ if x' and x lie in a same orbit, and $d_S(x, x') = \infty$ otherwise.

We use the measure μ to compare the word distances associated to two distinct pmp actions as follows:

Proposition (φ -integrable orbit equivalence)

Assume $\Lambda, \Gamma \curvearrowright (X, \mu)$ with same orbits. The actions are (φ, ψ) -OE iff for all $\lambda \in S_{\Lambda}$,

$$\int_X \varphi(d_{\mathcal{S}_{\Gamma}}(x,\lambda\cdot x))d\mu(x) < \infty,$$

and all $\gamma \in S_{\Gamma}$,

$$\int_X \psi(d_{S_{\Lambda}}(x,\gamma \cdot x))d\mu(x) < \infty,$$

Quantitative ergodic theory

> Romain Tessera

Consider the following (possibly infinite) measurable distance on X given by

$$\rho(x, x') = \inf\{n \in \mathbb{N} \colon \forall k \ge n, x_k = x'_k\}$$

イロト イヨト イヨト イヨト

Quantitative ergodic theory

> Romain Tessera

Consider the following (possibly infinite) measurable distance on X given by

$$\rho(x, x') = \inf\{n \in \mathbb{N} \colon \forall k \ge n, x_k = x'_k\}$$

• Observe that x and x' are equal up to a finite set of indices if and only if $\rho(x, x') < +\infty$.

イロン イヨン イヨン イヨン

Quantitative ergodic theory

> Romain Tessera

Consider the following (possibly infinite) measurable distance on X given by

$$\rho(x, x') = \inf\{n \in \mathbb{N} \colon \forall k \ge n, x_k = x'_k\}$$

- Observe that x and x' are equal up to a finite set of indices if and only if $\rho(x, x') < +\infty$.
- Hence the cofinite equivalence relation is defined by $\rho(x, x') < +\infty$.

イロン イヨン イヨン イヨン

Quantitative ergodic theory

> Romain Tessera

Consider the following (possibly infinite) measurable distance on X given by

$$\rho(x, x') = \inf\{n \in \mathbb{N} \colon \forall k \ge n, x_k = x'_k\}$$

- Observe that x and x' are equal up to a finite set of indices if and only if $\rho(x, x') < +\infty$.
- Hence the cofinite equivalence relation is defined by $\rho(x, x') < +\infty$.
- we have that $\rho(\gamma \cdot x, x) > k$ if and only if $\gamma g_k(x) \notin T_k$.

Quantitative ergodic theory

> Romain Tessera

Consider the following (possibly infinite) measurable distance on X given by

$$\rho(x, x') = \inf\{n \in \mathbb{N} \colon \forall k \ge n, x_k = x'_k\}$$

• Observe that x and x' are equal up to a finite set of indices if and only if $\rho(x, x') < +\infty$.

• Hence the cofinite equivalence relation is defined by $\rho(x, x') < +\infty$.

• we have that $\rho(\gamma \cdot x, x) > k$ if and only if $\gamma g_k(x) \notin T_k$.

In particular,

$$\mu(\{x, \ \rho(\gamma \cdot x, x) > k\}) = \frac{|T_k \setminus \gamma^{-1} T_k|}{|T_k|} = \frac{|\gamma T_k \bigtriangleup T_k|}{|T_k|}.$$
 (3)

イロト イヨト イヨト イヨト

Quantitative ergodic theory

> Romain Tessera

Definition

A Følner tiling sequence (F_k) of Γ is an (ε_k, R_k) -Følner tiling sequence if **1** each tile T_k has $d_{S_{\Gamma}}$ -diameter at most R_k ,

イロト イヨト イヨト イヨト

臣

Quantitative ergodic theory Definition

Romain Tessera

A Følner tiling sequence (F_k) of Γ is an (ε_k, R_k) -Følner tiling sequence if

1 each tile T_k has $d_{S_{\Gamma}}$ -diameter at most R_k ,

2 every $s \in S_{\Gamma}$ satisfies $|T_k \setminus sT_k| \le \varepsilon_k |T_k|$.

イロト イヨト イヨト イヨト

Quantitative ergodic theory

> Romain Tessera

Definition

A Følner tiling sequence (F_k) of Γ is an (ε_k, R_k) -Følner tiling sequence if

1 each tile T_k has $d_{S_{\Gamma}}$ -diameter at most R_k ,

2 every $s \in S_{\Gamma}$ satisfies $|T_k \setminus sT_k| \le \varepsilon_k |T_k|$.

Lemma

Let (F_k) be (ε_k, R_k) -Følner tiling sequence of a finitely generated group Γ equipped with a finite generating set S_{Γ} . Then

1 for all $s \in S_{\Gamma}$ and $k \ge 0$, $\mu(\{x \in X : \rho(s \cdot x, x) > k\}) \le \varepsilon_k$;

イロン イヨン イヨン イヨン

2

Quantitative ergodic theory

> Romain Tessera

Definition

A Følner tiling sequence (F_k) of Γ is an (ε_k, R_k) -Følner tiling sequence if

1 each tile T_k has $d_{S_{\Gamma}}$ -diameter at most R_k ,

2 every $s \in S_{\Gamma}$ satisfies $|T_k \setminus sT_k| \le \varepsilon_k |T_k|$.

Lemma

Let (F_k) be (ε_k, R_k) -Følner tiling sequence of a finitely generated group Γ equipped with a finite generating set S_{Γ} . Then

1 for all
$$s \in S_{\Gamma}$$
 and $k \ge 0$, $\mu(\{x \in X : \rho(s \cdot x, x) > k\}) \le \varepsilon_k$;

2 for almost every $x \in X$, if $|\gamma|_{S_{\Gamma}} > 2R_k$, then $\rho(\gamma \cdot x, x) > k$.

ヘロア 人間 アメヨア 人間 アー

Quantitative ergodic theory

> Romain Tessera

Definition

A Følner tiling sequence (F_k) of Γ is an (ε_k, R_k) -Følner tiling sequence if

1 each tile T_k has $d_{S_{\Gamma}}$ -diameter at most R_k ,

2 every $s \in S_{\Gamma}$ satisfies $|T_k \setminus sT_k| \le \varepsilon_k |T_k|$.

Lemma

Let (F_k) be (ε_k, R_k) -Følner tiling sequence of a finitely generated group Γ equipped with a finite generating set S_{Γ} . Then

1 for all
$$s \in S_{\Gamma}$$
 and $k \ge 0$, $\mu(\{x \in X : \rho(s \cdot x, x) > k\}) \le \varepsilon_k$;

2 for almost every $x \in X$, if $|\gamma|_{S_{\Gamma}} > 2R_k$, then $\rho(\gamma \cdot x, x) > k$.

Proof.

• The first item follows from Equation (3): $\mu(\{x, \rho(s \cdot x, x) > k\}) = \frac{|\gamma T_k \triangle T_k|}{2|T_k|}.$

Quantitative ergodic theory

> Romain Tessera

Definition

A Følner tiling sequence (F_k) of Γ is an (ε_k, R_k) -Følner tiling sequence if

1 each tile T_k has $d_{S_{\Gamma}}$ -diameter at most R_k ,

2 every $s \in S_{\Gamma}$ satisfies $|T_k \setminus sT_k| \le \varepsilon_k |T_k|$.

Lemma

Let (F_k) be (ε_k, R_k) -Følner tiling sequence of a finitely generated group Γ equipped with a finite generating set S_{Γ} . Then

1 for all
$$s \in S_{\Gamma}$$
 and $k \ge 0$, $\mu(\{x \in X : \rho(s \cdot x, x) > k\}) \le \varepsilon_k$;

2 for almost every $x \in X$, if $|\gamma|_{S_{\Gamma}} > 2R_k$, then $\rho(\gamma \cdot x, x) > k$.

Proof.

• The first item follows from Equation (3): $\mu(\{x, \ \rho(s \cdot x, x) > k\}) = \frac{|\gamma T_k \triangle T_k|}{2|T_k|}.$

For the second item, we simply observe that if $|\gamma|_{S_{\Gamma}} > 2R_k$, then $\gamma T_k \cap T_k = \emptyset$ as diam $(T_k) \le R_k$.

Quantitative ergodic theory

> Romain Tessera

Proposition

Suppose that (F_k) , (F'_k) are (ε_k, R_k) , (ε'_k, R'_k) Følner tiling sequences for Γ and Γ' , such that $|F_k| = |F'_k|$ for all $k \in \mathbb{N}$.

イロト イヨト イヨト イヨト

Quantitative ergodic theory

Romain Tessera

Proposition

Suppose that (F_k) , (F'_k) are (ε_k, R_k) , (ε'_k, R'_k) Følner tiling sequences for Γ and Γ' , such that $|F_k| = |F'_k|$ for all $k \in \mathbb{N}$. Let $\varphi \colon [0, \infty) \to [0, \infty)$ be a non-decreasing function such that the sequence $(\varphi(2R'_k)(\varepsilon_{k-1} - \varepsilon_k))_{k \in \mathbb{N}}$ is summable.

イロト イポト イヨト イヨト

Proposition

theory Romain Tessera

Quantitative

ergodic

Suppose that (F_k) , (F'_k) are (ε_k, R_k) , (ε'_k, R'_k) Følner tiling sequences for Γ and Γ' , such that $|F_k| = |F'_k|$ for all $k \in \mathbb{N}$. Let $\varphi : [0, \infty) \to [0, \infty)$ be a non-decreasing function such that the sequence $(\varphi(2R'_k)(\varepsilon_{k-1} - \varepsilon_k))_{k \in \mathbb{N}}$ is summable. Then the orbit equivalence coupling from Γ to Γ' is (φ, L^0) -integrable.

• By the Lemma, for all $s \in S_{\Gamma}$ and for all $k \in \mathbb{N}$,

$$\mu\left(\{x\in X\colon d_{S_{\Gamma'}}(x,s\cdot x)>2R'_k\}\right)\leq \mu\left(\{x\in X\colon \rho(s\cdot x,x)>k\}\right)\leq \varepsilon_k.$$

イロト イポト イヨト イヨト

Proposition

theory Romain Tessera

Quantitative

ergodic

Suppose that (F_k) , (F'_k) are (ε_k, R_k) , (ε'_k, R'_k) Følner tiling sequences for Γ and Γ' , such that $|F_k| = |F'_k|$ for all $k \in \mathbb{N}$. Let $\varphi \colon [0, \infty) \to [0, \infty)$ be a non-decreasing function such that the sequence $(\varphi(2R'_k)(\varepsilon_{k-1} - \varepsilon_k))_{k \in \mathbb{N}}$ is summable. Then the orbit equivalence coupling from Γ to Γ' is (φ, L^0) -integrable.

• By the Lemma, for all $s \in S_{\Gamma}$ and for all $k \in \mathbb{N}$,

$$\mu\left(\{x \in X \colon d_{\mathcal{S}_{\Gamma'}}(x, s \cdot x) > 2R'_k\}\right) \leq \mu\left(\{x \in X \colon \rho(s \cdot x, x) > k\}\right) \leq \varepsilon_k.$$

• Using that φ is increasing, $\int_X \varphi(d_{S_{\Gamma'}}(x, s \cdot x)) d\mu(x)$ is less than

$$\begin{split} \varphi(2R'_0) + \sum_{k=1}^{\infty} \varphi(2R'_k) \mu \left(\{ x \in X : 2R'_{k-1} < d_{S_{\Gamma'}}(x, s \cdot x) \le 2R'_k \} \right) \\ \le \varphi(R'_0) + \sum_{k=1}^{\infty} \varphi(2R'_k) (\varepsilon_{k-1} - \varepsilon_k), \end{split}$$

イロト イポト イヨト イヨト

which is finite by assumption.

Quantitative ergodic theory

> Romain Tessera

Proposition

Let n be a positive integer. The group \mathbb{Z}^n (equipped with its standard generating set) admits a profinite (ε_k, R_k) -Følner tiling sequence (F_k) , with $|F_k| = 2^n$, $R_k = n2^{k+1}$ and $\varepsilon_k = 2^{-(k+1)}$ for any $k \ge 0$.

イロト イヨト イヨト イヨト

Quantitative ergodic theory

> Romain Tessera

Proposition

Let n be a positive integer. The group \mathbb{Z}^n (equipped with its standard generating set) admits a profinite (ε_k, R_k) -Følner tiling sequence (F_k) , with $|F_k| = 2^n$, $R_k = n2^{k+1}$ and $\varepsilon_k = 2^{-(k+1)}$ for any $k \ge 0$.

Proof.

• We let
$$F_k = \{0, 2^k\}^n$$
 for any $k \ge 0$

Quantitative ergodic theory

> Romain Tessera

Proposition

Let n be a positive integer. The group \mathbb{Z}^n (equipped with its standard generating set) admits a profinite (ε_k, R_k) -Følner tiling sequence (F_k) , with $|F_k| = 2^n$, $R_k = n2^{k+1}$ and $\varepsilon_k = 2^{-(k+1)}$ for any $k \ge 0$.

Proof.

- We let $F_k = \{0, 2^k\}^n$ for any $k \ge 0$.
- One can check that $T_k = \{0, 1, \dots, 2^{k+1} 1\}^n$, which is a coset representative for the finite index subgroup $\Gamma_k = (2^{k+1}\mathbb{Z})^n$.

Quantitative ergodic theory

> Romain Tessera

Proposition

Let n be a positive integer. The group \mathbb{Z}^n (equipped with its standard generating set) admits a profinite (ε_k, R_k) -Følner tiling sequence (F_k) , with $|F_k| = 2^n$, $R_k = n2^{k+1}$ and $\varepsilon_k = 2^{-(k+1)}$ for any $k \ge 0$.

Proof.

- We let $F_k = \{0, 2^k\}^n$ for any $k \ge 0$.
- One can check that $T_k = \{0, 1, \dots, 2^{k+1} 1\}^n$, which is a coset representative for the finite index subgroup $\Gamma_k = (2^{k+1}\mathbb{Z})^n$.
- The diameter of T_k is bounded by $n2^{k+1}$ and its size equals $2^{n(k+1)}$.
Quantitative ergodic theory

> Romain Tessera

Proposition

Let n be a positive integer. The group \mathbb{Z}^n (equipped with its standard generating set) admits a profinite (ε_k, R_k) -Følner tiling sequence (F_k) , with $|F_k| = 2^n$, $R_k = n2^{k+1}$ and $\varepsilon_k = 2^{-(k+1)}$ for any $k \ge 0$.

Proof.

- We let $F_k = \{0, 2^k\}^n$ for any $k \ge 0$.
- One can check that $T_k = \{0, 1, \dots, 2^{k+1} 1\}^n$, which is a coset representative for the finite index subgroup $\Gamma_k = (2^{k+1}\mathbb{Z})^n$.
- The diameter of T_k is bounded by $n2^{k+1}$ and its size equals $2^{n(k+1)}$.
- Finally take s a generator of Zⁿ. Without loss of generality, we can assume that s is the first basis vector in Zⁿ.

Quantitative ergodic theory

> Romain Tessera

Proposition

Let n be a positive integer. The group \mathbb{Z}^n (equipped with its standard generating set) admits a profinite (ε_k, R_k) -Følner tiling sequence (F_k) , with $|F_k| = 2^n$, $R_k = n2^{k+1}$ and $\varepsilon_k = 2^{-(k+1)}$ for any $k \ge 0$.

Proof.

- We let $F_k = \{0, 2^k\}^n$ for any $k \ge 0$.
- One can check that $T_k = \{0, 1, \dots, 2^{k+1} 1\}^n$, which is a coset representative for the finite index subgroup $\Gamma_k = (2^{k+1}\mathbb{Z})^n$.
- The diameter of T_k is bounded by $n2^{k+1}$ and its size equals $2^{n(k+1)}$.
- Finally take *s* a generator of Z^{*n*}. Without loss of generality, we can assume that *s* is the first basis vector in Z^{*n*}.
- Then, we have

$$T_k \setminus ((1,0,\ldots,0) + T_k) = \{0\} \times \{0,1,\ldots,2^{k+1}-1\}^{n-1},$$

whose cardinality is 2^{k+1} smaller than that of T_k , so we are done.

Quantitative ergodic theory

> Romain Tessera

Proposition

Let n be a positive integer. The group \mathbb{Z}^n admits a profinite (ε_k, R_k) -Følner tiling sequence (F_k) , with $|F_k| = 2^n$, $R_k = n2^{k+1}$ and $\varepsilon_k = 2^{-(k+1)}$ for any $k \ge 0$.

Corollary

Let n and m be positive integers. The group \mathbb{Z}^n admits a (ε_k, R_k) -Følner tiling sequence (F'_k) , with $|F'_k| = 2^{nm}$, $R_k = n2^{m(k+1)}$ and $\varepsilon_k = 2^{-m(k+1)}$ for any $k \ge 0$.

イロン 不同 とくほど 不同 とう

Quantitative ergodic theory

> Romain Tessera

Proposition

Let n be a positive integer. The group \mathbb{Z}^n admits a profinite (ε_k, R_k) -Følner tiling sequence (F_k) , with $|F_k| = 2^n$, $R_k = n2^{k+1}$ and $\varepsilon_k = 2^{-(k+1)}$ for any $k \ge 0$.

Corollary

Let n and m be positive integers. The group \mathbb{Z}^n admits a (ε_k, R_k) -Følner tiling sequence (F'_k) , with $|F'_k| = 2^{nm}$, $R_k = n2^{m(k+1)}$ and $\varepsilon_k = 2^{-m(k+1)}$ for any $k \ge 0$.

Proof of Corollary.

• Let $(F_k)_k$ be the Følner tilling sequence given in the proposition and for any $k \ge 0$ let $F'_k = F_{mk}F_{mk+1}\dots F_{mk+m-1}$. Note that $F'_k = \{0, 2^{mk}, 2 \cdot 2^{mk}, \dots, (2^m - 1)2^{mk}\}^n$ and $T'_k = \{0, 1, \dots, 2^{mk+m} - 1\}^n$.

Quantitative ergodic theory

> Romain Tessera

Proposition

Let n be a positive integer. The group \mathbb{Z}^n admits a profinite (ε_k, R_k) -Følner tiling sequence (F_k) , with $|F_k| = 2^n$, $R_k = n2^{k+1}$ and $\varepsilon_k = 2^{-(k+1)}$ for any $k \ge 0$.

Corollary

Let n and m be positive integers. The group \mathbb{Z}^n admits a (ε_k, R_k) -Følner tiling sequence (F'_k) , with $|F'_k| = 2^{nm}$, $R_k = n2^{m(k+1)}$ and $\varepsilon_k = 2^{-m(k+1)}$ for any $k \ge 0$.

Proof of Corollary.

- Let (F_k)_k be the Følner tilling sequence given in the proposition and for any k ≥ 0 let F'_k = F_{mk}F_{mk+1}...F_{mk+m-1}. Note that F'_k = {0, 2^{mk}, 2 · 2^{mk}, ..., (2^m − 1)2^{mk}}ⁿ and T'_k = {0, 1, ..., 2^{mk+m} − 1}ⁿ.
- As T'_k is the set T_{mk+m-1} from the proposition, we have that the diameter of T'_k is at most $n2^{mk+m}$ and the set $T'_k \setminus (s + T'_k)$ has cardinality at most $2^{-mk-m}|T'_k|$ for any standard generator s of \mathbb{Z}^n .

Quantitative ergodic theory

> Romain Tessera

Corollary

The group \mathbb{Z}^n admits a (ε_k, R_k) -Følner tiling sequence (F'_k) , with $|F'_k| = 2^{nm}$, $R_k = n2^{m(k+1)}$ and $\varepsilon_k = 2^{-m(k+1)}$ for any $k \ge 0$.

Theorem

There exists an OE from \mathbb{Z}^m to \mathbb{Z}^n which is $(\varphi_{\epsilon}, \psi_{\epsilon})$ -integrable for every $\varepsilon > 0$, where

$$arphi_\epsilon(x) = rac{x^{n/m}}{\log(x)^{1+arepsilon}} ext{ and } \psi_\epsilon(x) = rac{x^{m/n}}{\log(x)^{1+arepsilon}}$$

イロン 不同 とくほど 不同 とう

æ

Quantitative ergodic theory

> Romain Tessera

Corollary

The group \mathbb{Z}^n admits a (ε_k, R_k) -Følner tiling sequence (F'_k) , with $|F'_k| = 2^{nm}$, $R_k = n2^{m(k+1)}$ and $\varepsilon_k = 2^{-m(k+1)}$ for any $k \ge 0$.

Theorem

There exists an OE from \mathbb{Z}^m to \mathbb{Z}^n which is $(\varphi_{\epsilon}, \psi_{\epsilon})$ -integrable for every $\varepsilon > 0$, where

$$arphi_\epsilon(x) = rac{x^{n/m}}{\log(x)^{1+arepsilon}} ext{ and } \psi_\epsilon(x) = rac{x^{m/n}}{\log(x)^{1+arepsilon}}.$$

In particular if n < m, the OE is $(L^p, L^{p'})$ for all $p < \frac{n}{m}$ and $p' < \frac{m}{n}$.

イロン 不同 とうほう 不同 とう

Quantitative ergodic theory

> Romain Tessera

Corollary

The group \mathbb{Z}^n admits a (ε_k, R_k) -Følner tiling sequence (F'_k) , with $|F'_k| = 2^{nm}$, $R_k = n2^{m(k+1)}$ and $\varepsilon_k = 2^{-m(k+1)}$ for any $k \ge 0$.

Theorem

There exists an OE from \mathbb{Z}^m to \mathbb{Z}^n which is $(\varphi_{\epsilon}, \psi_{\epsilon})$ -integrable for every $\varepsilon > 0$, where

$$arphi_\epsilon(x) = rac{x^{n/m}}{\log(x)^{1+arepsilon}} ext{ and } \psi_\epsilon(x) = rac{x^{m/n}}{\log(x)^{1+arepsilon}}.$$

In particular if n < m, the OE is $(L^p, L^{p'})$ for all $p < \frac{n}{m}$ and $p' < \frac{m}{n}$.

By the corollary, we find a (ε_k, R_k) -Følner tiling sequence $(F_k)_k$ for \mathbb{Z}^m with $|F_k| = 2^{nm}$, $R_k = m2^{n(k+1)}$ and $\varepsilon_k = 2^{-n(k+1)+1}$.

イロト イヨト イヨト イヨト

Quantitative ergodic theory

> Romain Tessera

Corollary

The group \mathbb{Z}^n admits a (ε_k, R_k) -Følner tiling sequence (F'_k) , with $|F'_k| = 2^{nm}$, $R_k = n2^{m(k+1)}$ and $\varepsilon_k = 2^{-m(k+1)}$ for any $k \ge 0$.

Theorem

There exists an OE from \mathbb{Z}^m to \mathbb{Z}^n which is $(\varphi_{\epsilon}, \psi_{\epsilon})$ -integrable for every $\varepsilon > 0$, where

$$arphi_\epsilon(x) = rac{x^{n/m}}{\log(x)^{1+arepsilon}} ext{ and } \psi_\epsilon(x) = rac{x^{m/n}}{\log(x)^{1+arepsilon}}.$$

In particular if n < m, the OE is $(L^p, L^{p'})$ for all $p < \frac{n}{m}$ and $p' < \frac{m}{n}$.

- By the corollary, we find a (ε_k, R_k) -Følner tiling sequence $(F_k)_k$ for \mathbb{Z}^m with $|F_k| = 2^{nm}$, $R_k = m2^{n(k+1)}$ and $\varepsilon_k = 2^{-n(k+1)+1}$.
- Similarly, we find a (ε'_k, R'_k) -Følner tiling sequence $(F'_k)_k$ for \mathbb{Z}^n with $|F'_k| = 2^{nm}$, $R'_k = n2^{m(k+1)}$ and $\varepsilon'_k = 2^{-m(k+1)+1}$.

イロト イヨト イヨト イヨト

Quantitative ergodic theory

> Romain Tessera

Corollary

The group \mathbb{Z}^n admits a (ε_k, R_k) -Følner tiling sequence (F'_k) , with $|F'_k| = 2^{nm}$, $R_k = n2^{m(k+1)}$ and $\varepsilon_k = 2^{-m(k+1)}$ for any $k \ge 0$.

Theorem

There exists an OE from \mathbb{Z}^m to \mathbb{Z}^n which is $(\varphi_{\epsilon}, \psi_{\epsilon})$ -integrable for every $\varepsilon > 0$, where

$$arphi_\epsilon(x) = rac{x^{n/m}}{\log(x)^{1+arepsilon}} ext{ and } \psi_\epsilon(x) = rac{x^{m/n}}{\log(x)^{1+arepsilon}}.$$

In particular if n < m, the OE is $(L^p, L^{p'})$ for all $p < \frac{n}{m}$ and $p' < \frac{m}{n}$.

- By the corollary, we find a (ε_k, R_k) -Følner tiling sequence $(F_k)_k$ for \mathbb{Z}^m with $|F_k| = 2^{nm}$, $R_k = m2^{n(k+1)}$ and $\varepsilon_k = 2^{-n(k+1)+1}$.
- Similarly, we find a (ε'_k, R'_k) -Følner tiling sequence $(F'_k)_k$ for \mathbb{Z}^n with $|F'_k| = 2^{nm}$, $R'_k = n2^{m(k+1)}$ and $\varepsilon'_k = 2^{-m(k+1)+1}$.
- Note that $\varphi_{\varepsilon}(R'_k)\varepsilon_{k-1} = O(k^{-(1+\epsilon)})$ and $\psi_{\varepsilon}(R_k)\varepsilon'_{k-1} = O(k^{-(1+\epsilon)})$.

イロト イヨト イヨト イヨト 二日

Quantitative ergodic theory

> Romain Tessera

Corollary

The group \mathbb{Z}^n admits a (ε_k, R_k) -Følner tiling sequence (F'_k) , with $|F'_k| = 2^{nm}$, $R_k = n2^{m(k+1)}$ and $\varepsilon_k = 2^{-m(k+1)}$ for any $k \ge 0$.

Theorem

There exists an OE from \mathbb{Z}^m to \mathbb{Z}^n which is $(\varphi_{\epsilon}, \psi_{\epsilon})$ -integrable for every $\varepsilon > 0$, where

$$arphi_\epsilon(x) = rac{x^{n/m}}{\log(x)^{1+arepsilon}} ext{ and } \psi_\epsilon(x) = rac{x^{m/n}}{\log(x)^{1+arepsilon}}.$$

In particular if n < m, the OE is $(L^p, L^{p'})$ for all $p < \frac{n}{m}$ and $p' < \frac{m}{n}$.

- By the corollary, we find a (ε_k, R_k) -Følner tiling sequence $(F_k)_k$ for \mathbb{Z}^m with $|F_k| = 2^{nm}$, $R_k = m2^{n(k+1)}$ and $\varepsilon_k = 2^{-n(k+1)+1}$.
- Similarly, we find a (ε'_k, R'_k) -Følner tiling sequence $(F'_k)_k$ for \mathbb{Z}^n with $|F'_k| = 2^{nm}$, $R'_k = n2^{m(k+1)}$ and $\varepsilon'_k = 2^{-m(k+1)+1}$.
- Note that $\varphi_{\varepsilon}(R'_k)\varepsilon_{k-1} = O(k^{-(1+\epsilon)})$ and $\psi_{\varepsilon}(R_k)\varepsilon'_{k-1} = O(k^{-(1+\epsilon)})$.
- We obtain an OE from \mathbb{Z}^m to \mathbb{Z}^n which is $(\varphi_{\varepsilon}, \psi_{\varepsilon})$ -integrable.

Quantitative ergodic theory

> Romain Tessera

Corollary

The group \mathbb{Z}^n admits a (ε_k, R_k) -Følner tiling sequence (F'_k) , with $|F'_k| = 2^{nm}$, $R_k = n2^{m(k+1)}$ and $\varepsilon_k = 2^{-m(k+1)}$ for any $k \ge 0$.

Theorem

There exists an OE from \mathbb{Z}^m to \mathbb{Z}^n which is $(\varphi_{\epsilon}, \psi_{\epsilon})$ -integrable for every $\varepsilon > 0$, where

$$arphi_\epsilon(x) = rac{x^{n/m}}{\log(x)^{1+arepsilon}} ext{ and } \psi_\epsilon(x) = rac{x^{m/n}}{\log(x)^{1+arepsilon}}.$$

In particular if n < m, the OE is $(L^p, L^{p'})$ for all $p < \frac{n}{m}$ and $p' < \frac{m}{n}$.

- By the corollary, we find a (ε_k, R_k) -Følner tiling sequence $(F_k)_k$ for \mathbb{Z}^m with $|F_k| = 2^{nm}$, $R_k = m2^{n(k+1)}$ and $\varepsilon_k = 2^{-n(k+1)+1}$.
- Similarly, we find a (ε'_k, R'_k) -Følner tiling sequence $(F'_k)_k$ for \mathbb{Z}^n with $|F'_k| = 2^{nm}$, $R'_k = n2^{m(k+1)}$ and $\varepsilon'_k = 2^{-m(k+1)+1}$.
- Note that $\varphi_{\varepsilon}(R'_k)\varepsilon_{k-1} = O(k^{-(1+\epsilon)})$ and $\psi_{\varepsilon}(R_k)\varepsilon'_{k-1} = O(k^{-(1+\epsilon)})$.
- We obtain an OE from \mathbb{Z}^m to \mathbb{Z}^n which is $(\varphi_{\varepsilon}, \psi_{\varepsilon})$ -integrable.