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OE between free abelian groups

Theorem (Delabie-Koivisto-Le Mâıtre-Tessera 20)

Let d , k ∈ N. There is no Lp-OE from Zd+k to Zd for p > d/(d + k).

Today, we will focus on the following converse:

Theorem (Delabie-Koivisto-Le Mâıtre-Tessera 20)

Let d , k ′ ∈ N. Then Zd and Zd+k are Lp-OE for all p < d/(d + k).

Problem

What happens for p = d/(d + k)?
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Construction of quantitative OE: Følner tilings

Definition

Let Γ be an amenable group and (Fk ) be a sequence of finite subsets of Γ. We
call (Fk ) a (left) Følner tiling sequence if the sequence of tiles (Tk ) defined
inductively by T0 = F0 and Tk+1 = TkFk+1 satisfies the following conditions:

1 (tiling condition) for all k ∈ N, Tk+1 is a disjoint union:

Tk+1 =
⊔

γ∈Fk+1

Tkγ;

2 (Følner condition) (Tk ) is a left Følner sequence: for all γ ∈ Γ,

lim
k→+∞

|γTk \ Tk |
|Tk |

= 0.

Remark

The first condition amounts to saying that every element of Tk can uniquely be
written as f0 · · · fk where each fi belongs to Fi .
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Example: the case of Z

Definition

T0 = F0 and Tk+1 = TkFk+1 satisfies the following conditions:

1 (tiling condition) for all k ∈ N, Tk+1 is a disjoint union:

Tk+1 =
⊔

γ∈Fk+1

Tkγ;

2 (Følner condition) (Tk ) is a left Følner sequence: for all γ ∈ Γ,

lim
k→+∞

|γTk \ Tk |
|Tk |

= 0.

For Z, tilings by diadic integers: Tk = [0, 2k+1 − 1]. We have Fk = {0, 2k}.
The writing t = f0 · · · fk (where t ∈ Tk ), corresponds to the diadic
decomposition of t ∈ N:

t =
k∑

i=0

εi2
i

where εi = 0 if fi = 0, or εi = 1 if fi = 2i .
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pmp actions and OE

Proposition

Assume that (Fk ) is a Følner tiling sequence for Γ. Then Γ has a
measure-preserving action on the infinite product probability space
(X =

∏
k Fk , µ), which almost surely generates the cofinite equivalence relation

on this product.

Definition

The cofinite equivalence relation on (X =
∏

k Fk , µ) is the equivalence relation of
equality except on a finite set of indices.

Remark (Orbit equivalence)

Consider two amenable groups Γ and Γ′ admitting respective Følner tiling
sequences (Fk ) and (F ′k ) such that |Fk | =

∣∣F ′k ∣∣. Then the proposition provides us
with free measure-preserving actions of Γ and Γ′ on X =

∏
k{1, . . . , |Fk |}, with

same orbits.
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Construction of the free pmp action

We consider the product probability space (X =
∏

k Fk , µ), where each
factor is equipped with the normalized counting measure.

We need to
define a free pmp action of Γ.

Each element x = (xk )k∈N of X defines a sequence (gk (x))k∈N of elements
of Γ given by gk (x) = x0 · · · xk ∈ Tk .

By condition (1), each gk is an equidistributed random element of Tk .
Hence gn induces (Xn =

∏n
k=0 Fk , µn) ' (Tn, uniform measure).

In particular, the probability that γgn(x) /∈ Tn is

|γTn M Tn|
|Tn|

.

Since (Tn) is a left Følner sequence, we deduce that for every γ ∈ Γ and
almost every x ∈ X , there exists n such that γgn(x) ∈ Tn.

We can then write uniquely γgn(x) = x ′0 · · · x ′n where x ′i ∈ Fi , and we then
define

γ · (xk )k∈N = (x ′0, ..., x
′
n, xn+1, xn+2, ...).

Note that this does not depend on the choice of n because we have
γgn+1(x) = γgn(x)xn+1 ∈ Tn+1.
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Construction of the free pmp action

In other words, the action of Γ on X is such that for every γ ∈ Γ and a.e.
x ∈ X , for all n large enough,

gn(γ · x) = γgn(x).

(1)

Geometrically: there exists a scale n at which γ moves x within the same
tile Tn. Hence multiplication by γ does not affects the sequence of larger
tiles to which x belongs.

We claim that up to measure zero, this group action induces the cofinite
equivalence relation.

Indeed, we have just seen that for almost every x ∈ X and all γ ∈ Γ, x and
γ · x are equal up to a finite set of indices.

Conversely, if x and x ′ are such that xj = x ′j for all j ≥ k + 1, the element

γ = gk (x)gk (x ′)−1 ∈ G satisfies γgk (x) = gk (x ′) ∈ Tk , and hence
γ · x = x ′.

In particular the action is measure preserving: indeed the cofinite
equivalence relation can be realized through the natural action of the direct
sum

⊕
k S(Fk ), which is obviously measure preserving.

The proposition is proved!
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Revisiting the 2-odometer

The 2-odometer: consider the action of Z on the {0, 1}N, defined as
follows.

The generator a of Z acts as:
a · (0, 0, 0, 1, . . .) = (1, 0, 0, 1 . . .)
a · (1, 0, 0, . . .) = (0, 1, 0, . . .)
a · (1, 1, 1, 0, . . .) = (0, 0, 0, 1, . . .)

This corresponds to X = Z2 = {
∑∞

k=0 ak2k | ak ∈ {0, 1}}, the ring of
2-adic numbers.

The 2-odometer is the restriction to the subring Z ⊂ Z2 of the action of Z2

on itself by addition.

As a measure space, Z2 =
∏

k{0, 2k}.
We recognize the pmp action of Γ = Z associated to Fk = {0, 2k}, the tiles
being Tk = {0, ..., 2k+1 − 1}, with the product measure.

Note that the presence of an initial sequence (1, 1, . . . , 1) (of length n)
means that the corresponding xn = f0 . . . fn lies in the boundary of Tn

(hence adding 1 make it jump to the neighboring tile
2n + Tn = [2n, 2n+1 − 1].
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Profinite Følner tilings and profinite actions

Definition (Følner tilings)

Let Γ be an amenable group and (Fk ) be a sequence of finite subsets of Γ. We
call (Fk ) a (left) Følner tiling sequence if the sequence of tiles (Tk ) defined
inductively by by T0 = F0 and Tk+1 = TkFk+1 satisfies the following conditions:

1 (tiling condition) for all k ∈ N, Tk+1 is a disjoint union:

Tk+1 =
⊔

γ∈Fk+1

Tkγ;

2 (Fo lner condition) (Tk ) is a left Følner sequence: for all γ ∈ Γ,

lim
k→+∞

|γTk \ Tk |
|Tk |

= 0.

Definition (Profinite Følner tilings)

If in addition there exists a decreasing sequence of finite index subgroups Γk such
that each Fk is a set of left coset representatives of Γk−1 modulo Γk , then we call
(Fk ) a profinite Følner tiling sequence associated to (Γk ).
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Profinite Følner tilings and profinite actions

Definition (Profinite Følner tilings)

A Følner tiling sequence (Fk )k∈N is profinite if there exists a decreasing sequence
of finite index subgroups Γk such that each Fk is a set of left coset
representatives of Γk−1 modulo Γk .

Note that each tile Tk is then a set of
coset-representatives of Γ modulo Γk .

Proposition

If (Fk ) is a profinite Følner tiling sequence associated to (Γk ), then the
corresponding pmp action is isomorphic to the profinite action of Γ on lim←− Γ/Γk .

Remark

We recover the fact that the 2-odometer is the action of Z on Z2 = lim←−Z/2kZ.
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Profinite Følner tilings and profinite actions

Proposition

If (Fk ) is a profinite Følner tiling sequence associated to (Γk ), then the
corresponding pmp action is isomorphic to the profinite action of Γ on lim←− Γ/Γk .

Proof.

The restriction of the projection Γ→ Γ/Γn to Tn induces a bijection
Φn : Xn → Γ/Γn.

Since Fn ⊆ Γn−1, we have πn−1(gn(x)) = πn−1(gn−1(x)) for all x ∈ X .

Hence, the sequence (Φn) induces a map Φ : X → lim←− Γ/Γk ,
x 7→ (πn(gn(x))), which is an isomorphism of probability spaces.

By Equation (1), for a.e. x ∈ X and all γ ∈ Γ we have gn(γ · x) = γgn(x)
for all large enough n.

Hence Φ intertwines the two Γ-actions and we are done.
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Reminder on quantitative OE

Definition (Word distance on X)

Let Λ be a group generated by a finite subset S and let assume Λ acts freely on
(X , µ), then the word distance on X associated to S is

dS (x , x ′) = min{n ∈ N | x ′ = s±1
1 . . . s±1

n · x},

where si ∈ S if x ′ and x lie in a same orbit,

and dS (x , x ′) =∞ otherwise.

We use the measure µ to compare the word distances associated to two distinct
pmp actions as follows:

Proposition (ϕ-integrable orbit equivalence)

Assume Λ, Γ y (X , µ) with same orbits. The actions are (ϕ,ψ)-OE iff for all
λ ∈ SΛ, ∫

X
ϕ(dSΓ

(x , λ · x))dµ(x) <∞,

and all γ ∈ SΓ, ∫
X
ψ(dSΛ

(x , γ · x))dµ(x) <∞,
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A distance for the cofinite equivalence relation

Consider the following (possibly infinite) measurable distance on X given by

ρ(x , x ′) = inf{n ∈ N : ∀k ≥ n, xk = x ′k}

Observe that x and x ′ are equal up to a finite set of indices if and only if
ρ(x , x ′) < +∞.

Hence the cofinite equivalence relation is defined by ρ(x , x ′) < +∞.

we have that ρ(γ · x , x) > k if and only if γgk (x) 6∈ Tk .

In particular,

µ ({x , ρ(γ · x , x) > k}) =
|Tk \ γ−1Tk |
|Tk |

=
|γTk M Tk |

2|Tk |
. (3)
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Quantitative Følner tiling sequences

Definition

A Følner tiling sequence (Fk ) of Γ is an (εk ,Rk )-Følner tiling sequence if

1 each tile Tk has dSΓ
-diameter at most Rk ,

2 every s ∈ SΓ satisfies |Tk \ sTk | ≤ εk |Tk |.

Lemma

Let (Fk ) be (εk ,Rk )-Følner tiling sequence of a finitely generated group Γ
equipped with a finite generating set SΓ. Then

1 for all s ∈ SΓ and k ≥ 0, µ ({x ∈ X : ρ(s · x , x) > k}) ≤ εk ;

2 for almost every x ∈ X, if |γ|SΓ
> 2Rk , then ρ(γ · x , x) > k.

Proof.

The first item follows from Equation (3):

µ ({x , ρ(s · x , x) > k}) = |γTkMTk |
2|Tk |

.

For the second item, we simply observe that if |γ|SΓ
> 2Rk , then

γTk ∩ Tk = ∅ as diam(Tk ) ≤ Rk .
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Quantitative Følner tiling sequences

Proposition

Suppose that (Fk ), (F ′k ) are (εk ,Rk ), (ε′k ,R
′
k ) Følner tiling sequences for Γ and Γ′,

such that |Fk | =
∣∣F ′k ∣∣ for all k ∈ N.

Let ϕ : [0,∞)→ [0,∞) be a non-decreasing
function such that the sequence (ϕ(2R′k )(εk−1 − εk ))k∈N is summable.

Then the orbit equivalence coupling from Γ to Γ′ is (ϕ, L0)-integrable.

By the Lemma, for all s ∈ SΓ and for all k ∈ N,

µ
(
{x ∈ X : dSΓ′

(x , s · x) > 2R′k}
)
≤ µ ({x ∈ X : ρ(s · x , x) > k}) ≤ εk .

Using that ϕ is increasing,
∫
X ϕ(dSΓ′

(x , s · x))dµ(x) is less than

ϕ(2R′0) +
∞∑
k=1

ϕ(2R′k )µ
(
{x ∈ X : 2R′k−1 < dSΓ′

(x , s · x) ≤ 2R′k}
)

≤ ϕ(R′0) +
∞∑
k=1

ϕ(2R′k )(εk−1 − εk ),

which is finite by assumption.
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The case of abelian groups

Proposition

Let n be a positive integer. The group Zn (equipped with its standard generating
set) admits a profinite (εk ,Rk )-Følner tiling sequence (Fk ), with |Fk | = 2n,
Rk = n2k+1 and εk = 2−(k+1) for any k ≥ 0.

Proof.

We let Fk = {0, 2k}n for any k ≥ 0.

One can check that Tk = {0, 1, . . . , 2k+1 − 1}n, which is a coset
representative for the finite index subgroup Γk = (2k+1Z)n.

The diameter of Tk is bounded by n2k+1 and its size equals 2n(k+1).

Finally take s a generator of Zn. Without loss of generality, we can assume
that s is the first basis vector in Zn.

Then, we have

Tk \ ((1, 0, . . . , 0) + Tk ) = {0} × {0, 1, . . . , 2k+1 − 1}n−1,

whose cardinality is 2k+1 smaller than that of Tk , so we are done.

Corollary

Let n and m be positive integers. The group Zn (equipped with its standard
generating set) admits a (εk ,Rk )-Følner tiling sequence (F ′k ), with |F ′k | = 2nm,

Rk = n2m(k+1) and εk = 2−m(k+1) for any k ≥ 0.

Proof.

Let (Fk )k be the Følner tilling sequence given in the proposition and for any
k ≥ 0 let F ′k = FmkFmk+1 . . .Fmk+m−1. Note that

F ′k = {0, 2mk , 2 · 2mk , . . . , (2m − 1)2mk}n and T ′k = {0, 1, . . . , 2mk+m − 1}n.
As T ′k is the set Tmk+m−1 from the proposition, we have that the diameter of T ′k
is at most n2mk+m and the set T ′k \ (s + T ′k ) has cardinality at most 2−mk−m|T ′k |
for any standard generator s of Zn.
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The group Zn admits a (εk ,Rk )-Følner tiling sequence (F ′k ), with |F ′k | = 2nm,

Rk = n2m(k+1) and εk = 2−m(k+1) for any k ≥ 0.

Theorem

There exists an OE from Zm to Zn which is (ϕε, ψε)-integrable for every ε > 0,
where

ϕε(x) =
xn/m

log(x)1+ε
and ψε(x) =

xm/n

log(x)1+ε
.

In particular if n < m, the OE is (Lp , Lp
′
) for all p < n

m
and p′ < m

n
.

By the corollary, we find a (εk ,Rk )-Følner tiling sequence (Fk )k for Zm

with |Fk | = 2nm, Rk = m2n(k+1) and εk = 2−n(k+1)+1.

Similarly, we find a (ε′k ,R
′
k )-Følner tiling sequence (F ′k )k for Zn with

|F ′k | = 2nm , R′k = n2m(k+1) and ε′k = 2−m(k+1)+1.

Note that ϕε(R′k )εk−1 = O(k−(1+ε)) and ψε(Rk )ε′k−1 = O(k−(1+ε)).

We obtain an OE from Zm to Zn which is (ϕε, ψε)-integrable.
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