Quantitative ergodic theory

Romain Tessera

CNRS, Université Paris Cité et Sorbonne Université

20/02/24

Quantifying orbit equivalence

Quantitative
ergodic
theory

Romain
Tessera

Definition (φ orbit equivalence)
Let $\varphi, \psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be increasing functions tending to ∞. Assume $\Lambda, \Gamma \curvearrowright(X, \mu)$ with same orbits.

Quantifying orbit equivalence

Quantitative ergodic theory

Romain
Tessera

Definition (φ orbit equivalence)
Let $\varphi, \psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be increasing functions tending to ∞. Assume $\Lambda, \Gamma \curvearrowright(X, \mu)$ with same orbits. The actions are (φ, ψ)-OE if

Quantifying orbit equivalence

Quantitative ergodic theory

Romain Tessera

Definition (φ orbit equivalence)

Let $\varphi, \psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be increasing functions tending to ∞. Assume $\Lambda, \Gamma \curvearrowright(X, \mu)$ with same orbits. The actions are (φ, ψ) - $\mathbf{O E}$ if

- for all $\lambda \in \Lambda$,

$$
x \mapsto \varphi\left(|\alpha(x, \lambda)|_{s_{\Gamma}}\right)
$$

is integrable,

Quantifying orbit equivalence

Quantitative ergodic theory

Romain
Tessera

Definition (φ orbit equivalence)

Let $\varphi, \psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be increasing functions tending to ∞. Assume $\Lambda, \Gamma \curvearrowright(X, \mu)$ with same orbits. The actions are (φ, ψ) - $\mathbf{O E}$ if

- for all $\lambda \in \Lambda$,

$$
x \mapsto \varphi\left(|\alpha(x, \lambda)|_{S_{\Gamma}}\right)
$$

is integrable,

- for all $\gamma \in \boldsymbol{\Gamma}$,

$$
x \mapsto \psi\left(|\beta(x, \gamma)| s_{\Lambda}\right)
$$

is integrable.

Quantifying orbit equivalence

Quantitative ergodic theory

Romain
Tessera

Definition (φ orbit equivalence)

Let $\varphi, \psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be increasing functions tending to ∞. Assume $\Lambda, \Gamma \curvearrowright(X, \mu)$ with same orbits. The actions are (φ, ψ) - $\mathbf{O E}$ if

- for all $\lambda \in \Lambda$,

$$
x \mapsto \varphi\left(\left.|\alpha(x, \lambda)|\right|_{S_{\Gamma}}\right)
$$

is integrable,

- for all $\gamma \in \boldsymbol{\Gamma}$,

$$
x \mapsto \psi\left(|\beta(x, \gamma)| s_{\Lambda}\right)
$$

is integrable.

Remark

- Note that for $\varphi(t)=\psi(t)=t^{p}$, this means in $L^{p}-O E$.

Quantifying orbit equivalence

Quantitative ergodic theory

Romain
Tessera

Definition (φ orbit equivalence)

Let $\varphi, \psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be increasing functions tending to ∞. Assume $\Lambda, \Gamma \curvearrowright(X, \mu)$ with same orbits. The actions are (φ, ψ) - $\mathbf{O E}$ if

- for all $\lambda \in \Lambda$,

$$
x \mapsto \varphi\left(|\alpha(x, \lambda)|_{S_{\Gamma}}\right)
$$

is integrable,

- for all $\gamma \in \boldsymbol{\Gamma}$,

$$
x \mapsto \psi\left(|\beta(x, \gamma)| s_{\Lambda}\right)
$$

is integrable.

Remark

- Note that for $\varphi(t)=\psi(t)=t^{p}$, this means in $L^{p}-O E$.
- $L^{0}-O E:$ no integrability condition.

Quantifying orbit equivalence

Quantitative ergodic theory

Romain
Tessera

Definition (φ orbit equivalence)

Let $\varphi, \psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be increasing functions tending to ∞. Assume $\Lambda, \Gamma \curvearrowright(X, \mu)$ with same orbits. The actions are (φ, ψ) - $\mathbf{O E}$ if

- for all $\lambda \in \Lambda$,

$$
x \mapsto \varphi\left(|\alpha(x, \lambda)|_{S_{\Gamma}}\right)
$$

is integrable,

- for all $\gamma \in \boldsymbol{\Gamma}$,

$$
x \mapsto \psi\left(|\beta(x, \gamma)| s_{\Lambda}\right)
$$

is integrable.

Remark

- Note that for $\varphi(t)=\psi(t)=t^{p}$, this means in $L^{p}-O E$.
- $L^{0}-O E:$ no integrability condition.
- The faster φ tends to infinity, the stronger the condition is.

Quantifying orbit equivalence

Quantitative ergodic theory

Romain
Tessera

Definition (φ orbit equivalence)

Let $\varphi, \psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be increasing functions tending to ∞. Assume $\Lambda, \Gamma \curvearrowright(X, \mu)$ with same orbits. The actions are (φ, ψ)-OE if

- for all $\lambda \in \Lambda$,

$$
x \mapsto \varphi\left(\left.|\alpha(x, \lambda)|\right|_{S_{\Gamma}}\right)
$$

is integrable,

- for all $\gamma \in \Gamma$,

$$
x \mapsto \psi\left(|\beta(x, \gamma)|_{s_{\Lambda}}\right)
$$

is integrable.

Remark

- Note that for $\varphi(t)=\psi(t)=t^{p}$, this means in $L^{p}-O E$.
- $L^{0}-O E$: no integrability condition.
- The faster φ tends to infinity, the stronger the condition is. For instance:

$$
\left(L^{\infty}-O E\right) \Rightarrow\left(L^{2}-O E\right)
$$

Quantifying orbit equivalence

Quantitative ergodic theory

Romain
Tessera

Definition (φ orbit equivalence)

Let $\varphi, \psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be increasing functions tending to ∞. Assume $\Lambda, \Gamma \curvearrowright(X, \mu)$ with same orbits. The actions are (φ, ψ) - $\mathbf{O E}$ if

- for all $\lambda \in \Lambda$,

$$
x \mapsto \varphi\left(\left.|\alpha(x, \lambda)|\right|_{S_{\Gamma}}\right)
$$

is integrable,

- for all $\gamma \in \boldsymbol{\Gamma}$,

$$
x \mapsto \psi\left(|\beta(x, \gamma)| s_{\Lambda}\right)
$$

is integrable.

Remark

- Note that for $\varphi(t)=\psi(t)=t^{p}$, this means in $L^{p}-O E$.
- $L^{0}-O E:$ no integrability condition.
- The faster φ tends to infinity, the stronger the condition is. For instance:

$$
\left(L^{\infty}-O E\right) \Rightarrow\left(L^{2}-O E\right) \Rightarrow\left(L^{1}-O E\right)
$$

Quantifying orbit equivalence

Quantitative ergodic theory

Romain
Tessera

Definition (φ orbit equivalence)

Let $\varphi, \psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be increasing functions tending to ∞. Assume $\Lambda, \Gamma \curvearrowright(X, \mu)$ with same orbits. The actions are (φ, ψ) - $\mathbf{O E}$ if

- for all $\lambda \in \Lambda$,

$$
x \mapsto \varphi\left(\left.|\alpha(x, \lambda)|\right|_{S_{\Gamma}}\right)
$$

is integrable,

- for all $\gamma \in \boldsymbol{\Gamma}$,

$$
x \mapsto \psi\left(|\beta(x, \gamma)| s_{\Lambda}\right)
$$

is integrable.

Remark

- Note that for $\varphi(t)=\psi(t)=t^{p}$, this means in $L^{p}-O E$.
- $L^{0}-O E:$ no integrability condition.
- The faster φ tends to infinity, the stronger the condition is. For instance:

$$
\left(L^{\infty}-O E\right) \Rightarrow\left(L^{2}-O E\right) \Rightarrow\left(L^{1}-O E\right) \Rightarrow\left(L^{1 / 2}-O E\right)
$$

Quantifying orbit equivalence

Quantitative ergodic theory

Romain
Tessera

Definition (φ orbit equivalence)

Let $\varphi, \psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be increasing functions tending to ∞. Assume $\Lambda, \Gamma \curvearrowright(X, \mu)$ with same orbits. The actions are (φ, ψ) - $\mathbf{O E}$ if

- for all $\lambda \in \Lambda$,

$$
x \mapsto \varphi\left(\left.|\alpha(x, \lambda)|\right|_{S_{\Gamma}}\right)
$$

is integrable,

- for all $\gamma \in \boldsymbol{\Gamma}$,

$$
x \mapsto \psi\left(|\beta(x, \gamma)| s_{\Lambda}\right)
$$

is integrable.

Remark

- Note that for $\varphi(t)=\psi(t)=t^{p}$, this means in $L^{p}-O E$.
- $L^{0}-O E:$ no integrability condition.
- The faster φ tends to infinity, the stronger the condition is. For instance:

$$
\left(L^{\infty}-O E\right) \Rightarrow\left(L^{2}-O E\right) \Rightarrow\left(L^{1}-O E\right) \Rightarrow\left(L^{1 / 2}-O E\right) \Rightarrow(\log -O E)
$$

FøIner profile and Orbit equivalence

Definition

Let Λ be a group generated by a finite subset S. Define its Følner function

$$
F \varnothing \left\lvert\,(n)=\min \left\{|A| \left\lvert\, \frac{|A s \Delta A|}{|A|} \leq 1 / n\right., \forall s \in S\right\}\right.
$$

FøIner profile and Orbit equivalence

Definition

Let Λ be a group generated by a finite subset S. Define its FøIner function

$$
F \varnothing l(n)=\min \left\{|A| \left\lvert\, \frac{|A s \Delta A|}{|A|} \leq 1 / n\right., \forall s \in S\right\}
$$

Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

- If Λ and Γ are $L^{1}-O E$, then $F \phi I_{\Lambda} \approx F \phi I_{\Gamma}$.

FøIner profile and Orbit equivalence

Quantitative ergodic theory

Romain
Tessera

Definition

Let Λ be a group generated by a finite subset S. Define its FøIner function

$$
F \varnothing l(n)=\min \left\{|A| \left\lvert\, \frac{|A s \Delta A|}{|A|} \leq 1 / n\right., \forall s \in S\right\}
$$

Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

- If Λ and Γ are $L^{1}-O E$, then $F \phi I_{\Lambda} \approx F \phi l_{\Gamma}$.
- More generally, if Λ and Γ are $\left(\varphi, L^{0}\right)-O E$ for some concave increasing function φ, then

FøIner profile and Orbit equivalence

Quantitative ergodic theory

Romain
Tessera

Definition

Let Λ be a group generated by a finite subset S. Define its FøIner function

$$
F \varnothing l(n)=\min \left\{|A| \left\lvert\, \frac{|A s \Delta A|}{|A|} \leq 1 / n\right., \forall s \in S\right\}
$$

Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

- If Λ and Γ are $L^{1}-O E$, then $F \phi I_{\Lambda} \approx F \phi l_{\Gamma}$.
- More generally, if Λ and Γ are $\left(\varphi, L^{0}\right)-O E$ for some concave increasing function φ, then

$$
F \phi I_{\Lambda} \circ \varphi \lesssim F \varnothing I_{\Gamma} .
$$

FøIner profile and Orbit equivalence

Quantitative ergodic theory

Romain
Tessera

Definition

Let Λ be a group generated by a finite subset S. Define its Følner function

$$
F \varnothing l(n)=\min \left\{|A| \left\lvert\, \frac{|A s \Delta A|}{|A|} \leq 1 / n\right., \forall s \in S\right\}
$$

Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

- If Λ and Γ are $L^{1}-O E$, then $F \phi I_{\Lambda} \approx F \phi I_{\Gamma}$.
- More generally, if Λ and Γ are $\left(\varphi, L^{0}\right)$-OE for some concave increasing function φ, then

$$
F \phi I_{\Lambda} \circ \varphi \lesssim F \varnothing I_{\Gamma} .
$$

The second statement implies the first one: Λ and Γ are L^{1}-OE means that there exists a (id, id)-OE from Λ to Γ. Note that id is concave and increasing (!).

Preparation for the proof (1): Følner profile

Quantitative ergodic theory

Romain Tessera

Definition

Let Λ be a group generated by a finite subset S. Define its FøIner function

$$
F \varnothing I_{\Lambda}(n)=\min \left\{|A| \left\lvert\, \frac{|A s \Delta A|}{|A|} \leq 1 / n\right., \forall s \in S\right\}
$$

Preparation for the proof (1): Følner profile

Quantitative ergodic theory

Romain
Tessera

Definition

Let Λ be a group generated by a finite subset S. Define its F \varnothing Iner function

$$
F \phi I_{\Lambda}(n)=\min \left\{|A| \left\lvert\, \frac{|A s \Delta A|}{|A|} \leq 1 / n\right., \forall s \in S\right\}
$$

Given a function $f: \Lambda \rightarrow \mathbb{R}$, we define the ℓ^{1}-norm of its (right) gradient by the equation

$$
\left\|\nabla_{S} f\right\|_{1}:=\max _{s \in S} \sum_{g \in \Lambda}|f(g s)-f(g)|
$$

Preparation for the proof (1): Følner profile

Quantitative ergodic theory

Romain
Tessera

Definition

Let Λ be a group generated by a finite subset S. Define its FøIner function

$$
F \phi I_{\Lambda}(n)=\min \left\{|A| \left\lvert\, \frac{|A s \Delta A|}{|A|} \leq 1 / n\right., \forall s \in S\right\}
$$

Given a function $f: \Lambda \rightarrow \mathbb{R}$, we define the ℓ^{1}-norm of its (right) gradient by the equation

$$
\begin{aligned}
\left\|\nabla_{S} f\right\|_{1} & :=\max _{s \in S} \sum_{g \in \Lambda}|f(g s)-f(g)| \\
& =\max _{s \in S}\|\rho(s) f-f\|_{1}
\end{aligned}
$$

where ρ is the action by right translations of Λ on $\ell^{1}(\Lambda)$.

Preparation for the proof (1): Følner profile

Quantitative ergodic theory

Romain
Tessera

Definition

Let Λ be a group generated by a finite subset S. Define its FøIner function

$$
F \phi I_{\Lambda}(n)=\min \left\{|A| \left\lvert\, \frac{|A s \Delta A|}{|A|} \leq 1 / n\right., \forall s \in S\right\}
$$

Given a function $f: \Lambda \rightarrow \mathbb{R}$, we define the ℓ^{1}-norm of its (right) gradient by the equation

$$
\begin{aligned}
\left\|\nabla_{S} f\right\|_{1} & :=\max _{s \in S} \sum_{g \in \Lambda}|f(g s)-f(g)| \\
& =\max _{s \in S}\|\rho(s) f-f\|_{1},
\end{aligned}
$$

where ρ is the action by right translations of Λ on $\ell^{1}(\Lambda)$.
Lemma (Folklore)

$$
\left.F \varnothing\right|_{\Lambda}(n)=\min \left\{|\operatorname{supp}(f)| \left\lvert\, \frac{\left\|\nabla_{S} f\right\|_{1}}{\|f\|_{1}} \leq 1 / n\right.\right\} .
$$

Preparation for the proof (2): cocycle

■ $\Lambda, \Gamma \curvearrowright X$ with (a.e.) same orbits. Define $\alpha: \Lambda \times X \rightarrow \Gamma$ by:

Preparation for the proof (2): cocycle

■ $\Lambda, \Gamma \curvearrowright X$ with (a.e.) same orbits. Define $\alpha: \Lambda \times X \rightarrow \Gamma$ by:

$$
\alpha(\lambda, x) \cdot x=\lambda \cdot x
$$

for a.e. $x \in X, \lambda \in \Lambda$.

Preparation for the proof (2): cocycle

Quantitative ergodic theory

Romain
Tessera

■ $\Lambda, \Gamma \curvearrowright X$ with (a.e.) same orbits. Define $\alpha: \Lambda \times X \rightarrow \Gamma$ by:

$$
\alpha(\lambda, x) \cdot x=\lambda \cdot x
$$

for a.e. $x \in X, \lambda \in \Lambda$.
■ "cocycle relation" : $\alpha\left(\lambda^{\prime} \lambda, x\right)=\alpha\left(\lambda^{\prime}, \lambda \cdot x\right) \alpha(\lambda, x)$.

Preparation for the proof (2): cocycle

Quantitative ergodic theory

Romain
Tessera

- $\Lambda, \Gamma \curvearrowright X$ with (a.e.) same orbits. Define $\alpha: \Lambda \times X \rightarrow \Gamma$ by:

$$
\alpha(\lambda, x) \cdot x=\lambda \cdot x
$$

for a.e. $x \in X, \lambda \in \Lambda$.
■ "cocycle relation": $\alpha\left(\lambda^{\prime} \lambda, x\right)=\alpha\left(\lambda^{\prime}, \lambda \cdot x\right) \alpha(\lambda, x)$.
■ action of Λ on $\Gamma \times X: \lambda \star(\gamma, x):=(\alpha(\lambda, x) \gamma, \lambda \cdot x)$: this action is free, measure-preserving, with fundamental domain $\{1\} \times X$.

Preparation for the proof (2): cocycle

Quantitative ergodic theory

Romain
Tessera

■ $\Lambda, \Gamma \curvearrowright X$ with (a.e.) same orbits. Define $\alpha: \Lambda \times X \rightarrow \Gamma$ by:

$$
\alpha(\lambda, x) \cdot x=\lambda \cdot x
$$

for a.e. $x \in X, \lambda \in \Lambda$.
■ "cocycle relation": $\alpha\left(\lambda^{\prime} \lambda, x\right)=\alpha\left(\lambda^{\prime}, \lambda \cdot x\right) \alpha(\lambda, x)$.
■ action of Λ on $\Gamma \times X: \lambda \star(\gamma, x):=(\alpha(\lambda, x) \gamma, \lambda \cdot x)$: this action is free, measure-preserving, with fundamental domain $\{1\} \times X$.

General strategy:

(1) start with a function $f: \Gamma \rightarrow \mathbb{R}$ realizing $F \varnothing I_{\Gamma}(k)$;

Preparation for the proof (2): cocycle

Quantitative ergodic theory

Romain
Tessera

■ $\Lambda, \Gamma \curvearrowright X$ with (a.e.) same orbits. Define $\alpha: \Lambda \times X \rightarrow \Gamma$ by:

$$
\alpha(\lambda, x) \cdot x=\lambda \cdot x
$$

for a.e. $x \in X, \lambda \in \Lambda$.
■ "cocycle relation": $\alpha\left(\lambda^{\prime} \lambda, x\right)=\alpha\left(\lambda^{\prime}, \lambda \cdot x\right) \alpha(\lambda, x)$.
■ action of Λ on $\Gamma \times X: \lambda \star(\gamma, x):=(\alpha(\lambda, x) \gamma, \lambda \cdot x)$: this action is free, measure-preserving, with fundamental domain $\{1\} \times X$.

General strategy:

(1) start with a function $f: \Gamma \rightarrow \mathbb{R}$ realizing $F \varnothing I_{\Gamma}(k)$;
(2) extend it to a function $F: \Gamma \times X \rightarrow \mathbb{R}$;

Preparation for the proof (2): cocycle

Quantitative ergodic theory

Romain
Tessera

■ $\Lambda, \Gamma \curvearrowright X$ with (a.e.) same orbits. Define $\alpha: \Lambda \times X \rightarrow \Gamma$ by:

$$
\alpha(\lambda, x) \cdot x=\lambda \cdot x
$$

for a.e. $x \in X, \lambda \in \Lambda$.
■ "cocycle relation": $\alpha\left(\lambda^{\prime} \lambda, x\right)=\alpha\left(\lambda^{\prime}, \lambda \cdot x\right) \alpha(\lambda, x)$.
■ action of Λ on $\Gamma \times X: \lambda \star(\gamma, x):=(\alpha(\lambda, x) \gamma, \lambda \cdot x)$: this action is free, measure-preserving, with fundamental domain $\{1\} \times X$.

General strategy:

(1) start with a function $f: \Gamma \rightarrow \mathbb{R}$ realizing $F \varnothing I_{\Gamma}(k)$;
(2) extend it to a function $F: \Gamma \times X \rightarrow \mathbb{R}$;
(3) use the action of Λ on $\Gamma \times X$ to define $\left\|\nabla_{S_{\Lambda}} F\right\|_{1}$.

Preparation for the proof (2): cocycle

Quantitative ergodic theory

Romain
Tessera

- $\Lambda, \Gamma \curvearrowright X$ with (a.e.) same orbits. Define $\alpha: \Lambda \times X \rightarrow \Gamma$ by:

$$
\alpha(\lambda, x) \cdot x=\lambda \cdot x
$$

for a.e. $x \in X, \lambda \in \Lambda$.
■ "cocycle relation": $\alpha\left(\lambda^{\prime} \lambda, x\right)=\alpha\left(\lambda^{\prime}, \lambda \cdot x\right) \alpha(\lambda, x)$.
■ action of Λ on $\Gamma \times X: \lambda \star(\gamma, x):=(\alpha(\lambda, x) \gamma, \lambda \cdot x)$: this action is free, measure-preserving, with fundamental domain $\{1\} \times X$.

General strategy:

(1) start with a function $f: \Gamma \rightarrow \mathbb{R}$ realizing $F \varnothing I_{\Gamma}(k)$;
(2) extend it to a function $F: \Gamma \times X \rightarrow \mathbb{R}$;
(3) use the action of Λ on $\Gamma \times X$ to define $\left\|\nabla_{S_{\Lambda}} F\right\|_{1}$.
(4) use the integrability of the cocycle to dominate $\left\|\nabla_{S_{\Lambda}} F\right\|_{1}$ by $\left\|\nabla_{S_{\Gamma}} f\right\|_{1}$.

Preparation for the proof (2): cocycle

Quantitative ergodic theory

Romain
Tessera

■ $\Lambda, \Gamma \curvearrowright X$ with (a.e.) same orbits. Define $\alpha: \Lambda \times X \rightarrow \Gamma$ by:

$$
\alpha(\lambda, x) \cdot x=\lambda \cdot x
$$

for a.e. $x \in X, \lambda \in \Lambda$.
■ "cocycle relation": $\alpha\left(\lambda^{\prime} \lambda, x\right)=\alpha\left(\lambda^{\prime}, \lambda \cdot x\right) \alpha(\lambda, x)$.
■ action of Λ on $\Gamma \times X: \lambda \star(\gamma, x):=(\alpha(\lambda, x) \gamma, \lambda \cdot x)$: this action is free, measure-preserving, with fundamental domain $\{1\} \times X$.

General strategy:

(1) start with a function $f: \Gamma \rightarrow \mathbb{R}$ realizing $F \varnothing I_{\Gamma}(k)$;
(2) extend it to a function $F: \Gamma \times X \rightarrow \mathbb{R}$;
(3) use the action of Λ on $\Gamma \times X$ to define $\left\|\nabla_{S_{\Lambda}} F\right\|_{1}$.
(4) use the integrability of the cocycle to dominate $\left\|\nabla_{S_{\Lambda}} F\right\|_{1}$ by $\left\|\nabla_{S_{\Gamma}} f\right\|_{1}$.
(5) by pigeonhole, find a Λ-orbit such that the restriction of F defines a function on Λ whose gradient is controlled by $\left\|\nabla_{S_{\Lambda}} F\right\|_{1}$.

Proof of the Theorem: case of $\varphi(t)=t$

Quantitative ergodic theory

Romain
Tessera
(1) Start with a function $f: \Gamma \rightarrow \mathbb{R}$ realizing $F \varnothing I_{\Gamma}(k)$.

Proof of the Theorem: case of $\varphi(t)=t$

Quantitative ergodic theory

Romain
Tessera
(1) Start with a function $f: \Gamma \rightarrow \mathbb{R}$ realizing $F \phi I_{\Gamma}(k)$.
(2) "Extend" it to a function $F: \Gamma \times X \rightarrow \mathbb{R}$ by $F(\gamma, x)=f\left(\gamma^{-1}\right)$.

Proof of the Theorem: case of $\varphi(t)=t$

Quantitative ergodic theory

Romain Tessera
(1) Start with a function $f: \Gamma \rightarrow \mathbb{R}$ realizing $\left.F \varnothing\right|_{\Gamma}(k)$.
(2) "Extend" it to a function $F: \Gamma \times X \rightarrow \mathbb{R}$ by $F(\gamma, x)=f\left(\gamma^{-1}\right)$.
(3) define

$$
\begin{aligned}
\left\|\nabla_{s_{\Lambda}} F\right\|_{1} & =\max _{s \in S_{\Lambda}} \int_{X} \sum_{\gamma}|F(s \star(\gamma, x))-F(\gamma, x)| d x \\
& =\max _{s \in S_{\Lambda}}\|F(s \star \cdot)-F\|_{1}
\end{aligned}
$$

Proof of the Theorem: case of $\varphi(t)=t$

Quantitative ergodic theory

Romain Tessera
(1) Start with a function $f: \Gamma \rightarrow \mathbb{R}$ realizing $F \varnothing I_{\Gamma}(k)$.
(2) "Extend" it to a function $F: \Gamma \times X \rightarrow \mathbb{R}$ by $F(\gamma, x)=f\left(\gamma^{-1}\right)$.
(3) define

$$
\begin{aligned}
\left\|\nabla_{S_{\Lambda}} F\right\|_{1} & =\max _{s \in S_{\Lambda}} \int_{X} \sum_{\gamma}|F(s \star(\gamma, x))-F(\gamma, x)| d x \\
& =\max _{s \in S_{\Lambda}}\|F(s \star \cdot)-F\|_{1}
\end{aligned}
$$

(4) use the integrability of the cocycle to dominate $\left\|\nabla_{S_{\Lambda}} F\right\|_{1}$ by $\left\|\nabla_{S_{\Gamma}} f\right\|_{1}$.

Proof of the Theorem: case of $\varphi(t)=t$

Quantitative ergodic theory

Romain Tessera
(1) Start with a function $f: \Gamma \rightarrow \mathbb{R}$ realizing $F \phi I_{\Gamma}(k)$.
(2) "Extend" it to a function $F: \Gamma \times X \rightarrow \mathbb{R}$ by $F(\gamma, x)=f\left(\gamma^{-1}\right)$.
(3) define

$$
\begin{aligned}
\left\|\nabla_{S_{\Lambda}} F\right\|_{1} & =\max _{s \in S_{\Lambda}} \int_{X} \sum_{\gamma}|F(s \star(\gamma, x))-F(\gamma, x)| d x \\
& =\max _{s \in S_{\Lambda}}\|F(s \star \cdot)-F\|_{1}
\end{aligned}
$$

(4) use the integrability of the cocycle to dominate $\left\|\nabla_{S_{\Lambda}} F\right\|_{1}$ by $\left\|\nabla_{S_{\Gamma}} f\right\|_{1}$.

$$
\left\|\nabla_{S_{\Lambda}} F\right\|_{1}=\max _{s \in S_{\Lambda}} \int_{X} \sum_{\gamma}|F(s \star(\gamma, x))-F(\gamma, x)| d x
$$

Proof of the Theorem: case of $\varphi(t)=t$

Quantitative ergodic theory

Romain Tessera
(1) Start with a function $f: \Gamma \rightarrow \mathbb{R}$ realizing $F \phi l_{\Gamma}(k)$.
(2) "Extend" it to a function $F: \Gamma \times X \rightarrow \mathbb{R}$ by $F(\gamma, x)=f\left(\gamma^{-1}\right)$.
(3) define

$$
\begin{aligned}
\left\|\nabla_{S_{\Lambda}} F\right\|_{1} & =\max _{s \in S_{\Lambda}} \int_{X} \sum_{\gamma}|F(s \star(\gamma, x))-F(\gamma, x)| d x \\
& =\max _{s \in S_{\Lambda}}\|F(s \star \cdot)-F\|_{1}
\end{aligned}
$$

(4) use the integrability of the cocycle to dominate $\left\|\nabla_{S_{\Lambda}} F\right\|_{1}$ by $\left\|\nabla_{S_{\Gamma}} f\right\|_{1}$.

$$
\begin{aligned}
\left\|\nabla_{S_{\Lambda}} F\right\|_{1} & =\max _{s \in S_{\Lambda}} \int_{X} \sum_{\gamma}|F(s \star(\gamma, x))-F(\gamma, x)| d x \\
& \left.=\max _{s \in S_{\Lambda}} \int_{X} \sum_{\gamma} \mid F(\alpha(s, x) \gamma, s \cdot x)\right)-F(\gamma, x) \mid d x
\end{aligned}
$$

Proof of the Theorem: case of $\varphi(t)=t$

Quantitative ergodic theory

Romain Tessera
(1) Start with a function $f: \Gamma \rightarrow \mathbb{R}$ realizing $F \phi l_{\Gamma}(k)$.
(2) "Extend" it to a function $F: \Gamma \times X \rightarrow \mathbb{R}$ by $F(\gamma, x)=f\left(\gamma^{-1}\right)$.
(3) define

$$
\begin{aligned}
\left\|\nabla_{S_{\Lambda}} F\right\|_{1} & =\max _{s \in S_{\Lambda}} \int_{X} \sum_{\gamma}|F(s \star(\gamma, x))-F(\gamma, x)| d x \\
& =\max _{s \in S_{\Lambda}}\|F(s \star \cdot)-F\|_{1}
\end{aligned}
$$

(4) use the integrability of the cocycle to dominate $\left\|\nabla_{S_{\Lambda}} F\right\|_{1}$ by $\left\|\nabla_{S_{\Gamma}} f\right\|_{1}$.

$$
\begin{aligned}
\left\|\nabla_{S_{\Lambda}} F\right\|_{1} & =\max _{s \in S_{\Lambda}} \int_{X} \sum_{\gamma}|F(s \star(\gamma, x))-F(\gamma, x)| d x \\
& \left.=\max _{s \in S_{\Lambda}} \int_{X} \sum_{\gamma} \mid F(\alpha(s, x) \gamma, s \cdot x)\right)-F(\gamma, x) \mid d x \\
& =\max _{s \in S_{\Lambda}} \int_{X} \sum_{\gamma}\left|f\left(\gamma^{-1} \alpha(s, x)^{-1}\right)-f\left(\gamma^{-1}\right)\right| d x
\end{aligned}
$$

Proof of the Theorem: case of $\varphi(t)=t$

Quantitative ergodic theory

Romain Tessera
(1) Start with a function $f: \Gamma \rightarrow \mathbb{R}$ realizing $F \phi l_{\Gamma}(k)$.
(2) "Extend" it to a function $F: \Gamma \times X \rightarrow \mathbb{R}$ by $F(\gamma, x)=f\left(\gamma^{-1}\right)$.
(3) define

$$
\begin{aligned}
\left\|\nabla_{S_{\Lambda}} F\right\|_{1} & =\max _{s \in S_{\Lambda}} \int_{X} \sum_{\gamma}|F(s \star(\gamma, x))-F(\gamma, x)| d x \\
& =\max _{s \in S_{\Lambda}}\|F(s \star \cdot)-F\|_{1}
\end{aligned}
$$

(4) use the integrability of the cocycle to dominate $\left\|\nabla_{S_{\Lambda}} F\right\|_{1}$ by $\left\|\nabla_{S_{\Gamma}} f\right\|_{1}$.

$$
\begin{aligned}
\left\|\nabla_{S_{\Lambda}} F\right\|_{1} & =\max _{s \in S_{\Lambda}} \int_{X} \sum_{\gamma}|F(s \star(\gamma, x))-F(\gamma, x)| d x \\
& \left.=\max _{s \in S_{\Lambda}} \int_{X} \sum_{\gamma} \mid F(\alpha(s, x) \gamma, s \cdot x)\right)-F(\gamma, x) \mid d x \\
& =\max _{s \in S_{\Lambda}} \int_{X} \sum_{\gamma}\left|f\left(\gamma^{-1} \alpha(s, x)^{-1}\right)-f\left(\gamma^{-1}\right)\right| d x \\
& =\max _{s \in S_{\Lambda}} \int_{X}\left\|\rho\left(\alpha(s, x)^{-1}\right) f-f\right\|_{1} d x
\end{aligned}
$$

Proof of the Theorem: case of $\varphi(t)=t$

Quantitative ergodic theory

Romain Tessera
(1) Start with a function $f: \Gamma \rightarrow \mathbb{R}$ realizing $F \phi l_{\Gamma}(k)$.
(2) "Extend" it to a function $F: \Gamma \times X \rightarrow \mathbb{R}$ by $F(\gamma, x)=f\left(\gamma^{-1}\right)$.
(3) define

$$
\begin{aligned}
\left\|\nabla_{S_{\Lambda}} F\right\|_{1} & =\max _{s \in S_{\Lambda}} \int_{X} \sum_{\gamma}|F(s \star(\gamma, x))-F(\gamma, x)| d x \\
& =\max _{s \in S_{\Lambda}}\|F(s \star \cdot)-F\|_{1}
\end{aligned}
$$

(4) use the integrability of the cocycle to dominate $\left\|\nabla_{S_{\Lambda}} F\right\|_{1}$ by $\left\|\nabla_{S_{\Gamma}} f\right\|_{1}$.

$$
\begin{aligned}
\left\|\nabla_{S_{\Lambda}} F\right\|_{1} & =\max _{s \in S_{\Lambda}} \int_{X} \sum_{\gamma}|F(s \star(\gamma, x))-F(\gamma, x)| d x \\
& \left.=\max _{s \in S_{\Lambda}} \int_{X} \sum_{\gamma} \mid F(\alpha(s, x) \gamma, s \cdot x)\right)-F(\gamma, x) \mid d x \\
& =\max _{s \in S_{\Lambda}} \int_{X} \sum_{\gamma}\left|f\left(\gamma^{-1} \alpha(s, x)^{-1}\right)-f\left(\gamma^{-1}\right)\right| d x \\
& =\max _{s \in S_{\Lambda}} \int_{X}\left\|\rho\left(\alpha(s, x)^{-1}\right) f-f\right\|_{1} d x
\end{aligned}
$$

Proof of the Theorem: case of $\varphi(t)=t$

Quantitative ergodic theory

Romain Tessera

For each x, write $\alpha(s, \lambda \cdot x)^{-1}=t_{n} \ldots t_{1}$, where $t_{i} \in S_{\Gamma}$, and $n=|\alpha(s, \lambda \cdot x)| s_{\Gamma}$.

Proof of the Theorem: case of $\varphi(t)=t$

Quantitative ergodic theory

Romain Tessera

For each x, write $\alpha(s, \lambda \cdot x)^{-1}=t_{n} \ldots t_{1}$, where $t_{i} \in S_{\Gamma}$, and $n=|\alpha(s, \lambda \cdot x)| s_{\Gamma}$.

$$
\left\|\rho\left(\alpha(s, x)^{-1}\right) f-f\right\|_{1}=\left\|\rho\left(t_{1} \ldots t_{n}\right) f-f\right\|_{1}
$$

Proof of the Theorem: case of $\varphi(t)=t$

$$
\begin{aligned}
& \text { Quantitative } \\
& \text { ergodic } \\
& \text { theory } \\
& \text { Romain } \\
& \text { Tessera } \\
& \text { For each } x \text {, write } \alpha(s, \lambda \cdot x)^{-1}=t_{n} \ldots t_{1} \text {, where } t_{i} \in S_{\Gamma} \text {, and } n=|\alpha(s, \lambda \cdot x)| s_{\Gamma} \text {. } \\
& \left\|\rho\left(\alpha(s, x)^{-1}\right) f-f\right\|_{1}=\left\|\rho\left(t_{1} \ldots t_{n}\right) f-f\right\|_{1} \\
& \leq \sum_{i=1}^{n}\left\|\rho\left(t_{i} \ldots t_{1}\right) f-\rho\left(t_{i-1} \ldots t_{1}\right) f\right\|_{1}
\end{aligned}
$$

Proof of the Theorem: case of $\varphi(t)=t$

$$
\begin{aligned}
& \text { Quantitative } \\
& \text { ergodic } \\
& \text { theory } \\
& \text { Romain } \\
& \text { Tessera } \\
& \text { For each } x \text {, write } \alpha(s, \lambda \cdot x)^{-1}=t_{n} \ldots t_{1} \text {, where } t_{i} \in S_{\Gamma} \text {, and } n=|\alpha(s, \lambda \cdot x)| s_{\Gamma} \text {. } \\
& \left\|\rho\left(\alpha(s, x)^{-1}\right) f-f\right\|_{1}=\left\|\rho\left(t_{1} \ldots t_{n}\right) f-f\right\|_{1} \\
& \leq \sum_{i=1}^{n}\left\|\rho\left(t_{i} \ldots t_{1}\right) f-\rho\left(t_{i-1} \ldots t_{1}\right) f\right\|_{1} \\
& =\sum_{i=1}^{n}\left\|\rho\left(t_{i}\right) f-f\right\|_{1}
\end{aligned}
$$

Proof of the Theorem: case of $\varphi(t)=t$

$$
\begin{aligned}
& \text { Quantitative } \\
& \text { ergodic } \\
& \text { theory } \\
& \text { Romain } \\
& \text { Tessera } \\
& \text { For each } x \text {, write } \alpha(s, \lambda \cdot x)^{-1}=t_{n} \ldots t_{1} \text {, where } t_{i} \in S_{\Gamma} \text {, and } n=|\alpha(s, \lambda \cdot x)| s_{\Gamma} \text {. } \\
& \left\|\rho\left(\alpha(s, x)^{-1}\right) f-f\right\|_{1}=\left\|\rho\left(t_{1} \ldots t_{n}\right) f-f\right\|_{1} \\
& \leq \sum_{i=1}^{n}\left\|\rho\left(t_{i} \ldots t_{1}\right) f-\rho\left(t_{i-1} \ldots t_{1}\right) f\right\|_{1} \\
& =\sum_{i=1}^{n}\left\|\rho\left(t_{i}\right) f-f\right\|_{1} \\
& \leq n \max _{t \in S_{\Gamma}}\|\rho(t) f-f\|_{1}
\end{aligned}
$$

Proof of the Theorem: case of $\varphi(t)=t$

Quantitative ergodic theory

Romain Tessera

For each x, write $\alpha(s, \lambda \cdot x)^{-1}=t_{n} \ldots t_{1}$, where $t_{i} \in S_{\Gamma}$, and $n=|\alpha(s, \lambda \cdot x)| s_{\Gamma}$.

$$
\begin{aligned}
\left\|\rho\left(\alpha(s, x)^{-1}\right) f-f\right\|_{1} & =\left\|\rho\left(t_{1} \ldots t_{n}\right) f-f\right\|_{1} \\
& \leq \sum_{i=1}^{n}\left\|\rho\left(t_{i} \ldots t_{1}\right) f-\rho\left(t_{i-1} \ldots t_{1}\right) f\right\|_{1} \\
& =\sum_{i=1}^{n}\left\|\rho\left(t_{i}\right) f-f\right\|_{1} \\
& \leq n \max _{t \in S_{\Gamma}}\|\rho(t) f-f\|_{1} \\
& =|\alpha(s, \lambda \cdot x)|_{S_{\Gamma}}\left\|\nabla_{S_{\Gamma}} f\right\|_{1}
\end{aligned}
$$

Proof of the Theorem: case of $\varphi(t)=t$

Quantitative ergodic theory

Romain Tessera

For each x, write $\alpha(s, \lambda \cdot x)^{-1}=t_{n} \ldots t_{1}$, where $t_{i} \in S_{\Gamma}$, and $n=|\alpha(s, \lambda \cdot x)| s_{\Gamma}$.

$$
\begin{aligned}
\left\|\rho\left(\alpha(s, x)^{-1}\right) f-f\right\|_{1} & =\left\|\rho\left(t_{1} \ldots t_{n}\right) f-f\right\|_{1} \\
& \leq \sum_{i=1}^{n}\left\|\rho\left(t_{i} \ldots t_{1}\right) f-\rho\left(t_{i-1} \ldots t_{1}\right) f\right\|_{1} \\
& =\sum_{i=1}^{n}\left\|\rho\left(t_{i}\right) f-f\right\|_{1} \\
& \leq \max _{t \in S_{\Gamma}}\|\rho(t) f-f\|_{1} \\
& =|\alpha(s, \lambda \cdot x)|_{s_{\Gamma}}\left\|\nabla_{S_{\Gamma}} f\right\|_{1}
\end{aligned}
$$

Inject it:

$$
\left\|\nabla_{s_{\Lambda}} F\right\|_{1}=\max _{s \in S_{\Lambda}} \int_{X}\left\|\rho\left(\alpha(s, x)^{-1}\right) f-f\right\|_{1} d x
$$

Proof of the Theorem: case of $\varphi(t)=t$

Quantitative ergodic theory

Romain Tessera

For each x, write $\alpha(s, \lambda \cdot x)^{-1}=t_{n} \ldots t_{1}$, where $t_{i} \in S_{\Gamma}$, and $n=|\alpha(s, \lambda \cdot x)| s_{\Gamma}$.

$$
\begin{aligned}
\left\|\rho\left(\alpha(s, x)^{-1}\right) f-f\right\|_{1} & =\left\|\rho\left(t_{1} \ldots t_{n}\right) f-f\right\|_{1} \\
& \leq \sum_{i=1}^{n}\left\|\rho\left(t_{i} \ldots t_{1}\right) f-\rho\left(t_{i-1} \ldots t_{1}\right) f\right\|_{1} \\
& =\sum_{i=1}^{n}\left\|\rho\left(t_{i}\right) f-f\right\|_{1} \\
& \leq n \max _{t \in S_{\Gamma}}\|\rho(t) f-f\|_{1} \\
& =|\alpha(s, \lambda \cdot x)|_{S_{\Gamma}}\left\|\nabla_{S_{\Gamma}} f\right\|_{1}
\end{aligned}
$$

Inject it:

$$
\begin{aligned}
\left\|\nabla_{S_{\Lambda}} F\right\|_{1} & =\max _{s \in S_{\Lambda}} \int_{X}\left\|\rho\left(\alpha(s, x)^{-1}\right) f-f\right\|_{1} d x \\
& \leq\left(\max _{s \in S_{\Lambda}} \int_{X}|\alpha(s, \lambda \cdot x)| S_{\Gamma}\right)\left\|\nabla_{S_{\Gamma}} f\right\|_{1}
\end{aligned}
$$

Let $C:=\max _{s \in S_{\Lambda}} \int_{X}|\alpha(s, \lambda \cdot x)| s_{\Gamma}<\infty$, we get: $\left\|\nabla_{S_{\Lambda}} F\right\|_{1} \leq \underline{\underline{\underline{C}}}\left\|\nabla_{S_{\underline{E}}} f\right\|_{1} \cdot{ }_{\underline{\equiv}}$

Proof of the Theorem: case of $\varphi(t)=t$

Quantitative ergodic theory

Romain
Tessera
(5) by pigeonhole, find a Λ-orbit such that the restriction of F defines a function on Λ whose gradient is controlled by $\left\|\nabla_{S_{\Lambda}} F\right\|_{1}$.

Proof of the Theorem: case of $\varphi(t)=t$

Quantitative ergodic theory

Romain
Tessera
(5) by pigeonhole, find a Λ-orbit such that the restriction of F defines a function on Λ whose gradient is controlled by $\left\|\nabla_{S_{\Lambda}} F\right\|_{1}$.
Recall that $\left\{1_{\Gamma}\right\} \times X$ is a fundamental domain for the action of Λ. So write for each $x \in X, F\left(\lambda \star\left(1_{\Gamma}, x\right)\right)=f^{x}(\lambda)$. Note that

$$
\left\|\nabla s_{\Lambda} F\right\|_{1}=\int_{X}\left\|\nabla_{s_{\Lambda}} f^{x}\right\|_{1} d x
$$

Hence there exists x such that $\left\|\nabla_{S_{\Lambda}} f^{x}\right\|_{1} \leq\left\|\nabla s_{\Lambda} F\right\|_{1}$

Proof of the Theorem: case of $\varphi(t)=t$

Quantitative ergodic theory

Romain
Tessera
(5) by pigeonhole, find a Λ-orbit such that the restriction of F defines a function on Λ whose gradient is controlled by $\left\|\nabla_{S_{\Lambda}} F\right\|_{1}$.
Recall that $\left\{1_{\Gamma}\right\} \times X$ is a fundamental domain for the action of Λ. So write for each $x \in X, F\left(\lambda \star\left(1_{\Gamma}, x\right)\right)=f^{x}(\lambda)$. Note that

$$
\left\|\nabla s_{\Lambda} F\right\|_{1}=\int_{X}\left\|\nabla_{s_{\Lambda}} f^{x}\right\|_{1} d x
$$

Hence there exists x such that $\left\|\nabla_{s_{\Lambda}} f^{x}\right\|_{1} \leq\left\|\nabla_{S_{\Lambda}} F\right\|_{1} \leq C\left\|\nabla_{S_{\Gamma}} f\right\|_{1}$.
(6) Now we must show that $\left\|f_{x}\right\| \geq\|f\|$, and that $\left|\operatorname{supp}\left(f_{x}\right)\right| \leq|\operatorname{supp}(f)|$.

Proof of the Theorem: case of $\varphi(t)=t$

Quantitative ergodic theory

Romain
Tessera
(5) by pigeonhole, find a Λ-orbit such that the restriction of F defines a function on Λ whose gradient is controlled by $\left\|\nabla_{S_{\Lambda}} F\right\|_{1}$.
Recall that $\left\{1_{\Gamma}\right\} \times X$ is a fundamental domain for the action of Λ. So write for each $x \in X, F\left(\lambda \star\left(1_{\Gamma}, x\right)\right)=f^{x}(\lambda)$. Note that

$$
\left\|\nabla s_{\Lambda} F\right\|_{1}=\int_{X}\left\|\nabla_{s_{\Lambda}} f^{x}\right\|_{1} d x
$$

Hence there exists x such that $\left\|\nabla_{s_{\Lambda}} f^{x}\right\|_{1} \leq\left\|\nabla_{s_{\Lambda}} F\right\|_{1} \leq C\left\|\nabla_{s_{\Gamma}} f\right\|_{1}$.
(6) Now we must show that $\left\|f_{x}\right\| \geq\|f\|$, and that $\left|\operatorname{supp}\left(f_{x}\right)\right| \leq|\operatorname{supp}(f)|$. But we actually have equality in both cases!

Proof of the Theorem: case of $\varphi(t)=t$

Quantitative ergodic theory

Romain
Tessera
(5) by pigeonhole, find a Λ-orbit such that the restriction of F defines a function on Λ whose gradient is controlled by $\left\|\nabla_{S_{\Lambda}} F\right\|_{1}$.
Recall that $\left\{1_{\Gamma}\right\} \times X$ is a fundamental domain for the action of Λ. So write for each $x \in X, F\left(\lambda \star\left(1_{\Gamma}, x\right)\right)=f^{x}(\lambda)$. Note that

$$
\left\|\nabla s_{\Lambda} F\right\|_{1}=\int_{X}\left\|\nabla_{s_{\Lambda}} f^{x}\right\|_{1} d x
$$

Hence there exists x such that $\left\|\nabla_{s_{\Lambda}} f^{x}\right\|_{1} \leq\left\|\nabla_{s_{\Lambda}} F\right\|_{1} \leq C\left\|\nabla_{s_{\Gamma}} f\right\|_{1}$.
(6) Now we must show that $\left\|f_{x}\right\| \geq\|f\|$, and that $\left|\operatorname{supp}\left(f_{x}\right)\right| \leq|\operatorname{supp}(f)|$. But we actually have equality in both cases! Indeed:

$$
f^{x}(\lambda)=F\left(\lambda \star\left(1_{\Gamma}, x\right)\right)=F(\alpha(\lambda, x), x)=f\left(\alpha(x, \lambda)^{-1}\right) .
$$

Proof of the Theorem: case of $\varphi(t)=t$

Quantitative ergodic theory

Romain
Tessera
(5) by pigeonhole, find a Λ-orbit such that the restriction of F defines a function on Λ whose gradient is controlled by $\left\|\nabla_{S_{\Lambda}} F\right\|_{1}$.
Recall that $\left\{1_{\Gamma}\right\} \times X$ is a fundamental domain for the action of Λ. So write for each $x \in X, F\left(\lambda \star\left(1_{\Gamma}, x\right)\right)=f^{x}(\lambda)$. Note that

$$
\left\|\nabla s_{\Lambda} F\right\|_{1}=\int_{X}\left\|\nabla_{s_{\Lambda}} f^{x}\right\|_{1} d x
$$

Hence there exists x such that $\left\|\nabla_{s_{\Lambda}} f^{x}\right\|_{1} \leq\left\|\nabla_{s_{\Lambda}} F\right\|_{1} \leq C\left\|\nabla_{s_{\Gamma}} f\right\|_{1}$.
(6) Now we must show that $\left\|f_{x}\right\| \geq\|f\|$, and that $\left|\operatorname{supp}\left(f_{x}\right)\right| \leq|\operatorname{supp}(f)|$. But we actually have equality in both cases! Indeed:

$$
f^{x}(\lambda)=F\left(\lambda \star\left(1_{\Gamma}, x\right)\right)=F(\alpha(\lambda, x), x)=f\left(\alpha(x, \lambda)^{-1}\right) .
$$

Since $\alpha(\cdot, x)$ is a bijection, we deduce that $\left\|f_{x}\right\|=\|f\|$ and $\left|\operatorname{supp}\left(f_{x}\right)\right|=|\operatorname{supp}(f)|$.

Proof of the Theorem: case of $\varphi(t)=t$

Quantitative ergodic theory

Romain
Tessera
(7) Put things together:

Proof of the Theorem: case of $\varphi(t)=t$

Quantitative ergodic theory

Romain Tessera
(7) Put things together:

- Since f realizes $F \phi l_{\Gamma}(k)$, we have $k=\frac{\|f\|}{\left\|\nabla_{S_{\Gamma}} f\right\|_{1}}$ and $F \phi l_{\Gamma}(k)=|\operatorname{supp}(f)|$.

Proof of the Theorem: case of $\varphi(t)=t$

Quantitative ergodic theory

Romain Tessera
(7) Put things together:

- Since f realizes $F \phi I_{\Gamma}(k)$, we have $k=\frac{\|f\|}{\left\|\nabla_{S_{\Gamma} f}\right\|_{1}}$ and $F \phi I_{\Gamma}(k)=|\operatorname{supp}(f)|$.
- We have proved (5) that $\left\|\nabla_{S_{\Lambda}} f^{x}\right\|_{1} \leq C\left\|\nabla_{S_{\Gamma}} f\right\|_{1}$.

Proof of the Theorem: case of $\varphi(t)=t$

Quantitative ergodic theory

Romain Tessera
(7) Put things together:

- Since f realizes $F \phi I_{\Gamma}(k)$, we have $k=\frac{\|f\|}{\left\|\nabla_{S_{\Gamma} f}\right\|_{1}}$ and $F \phi I_{\Gamma}(k)=|\operatorname{supp}(f)|$.
- We have proved (5) that $\left\|\nabla_{S_{\Lambda}} f^{x}\right\|_{1} \leq C\left\|\nabla_{S_{\Gamma}} f\right\|_{1}$.
- We have proved (6) that $\left\|f_{x}\right\|=\|f\|$ and $\left|\operatorname{supp}\left(f_{x}\right)\right|=|\operatorname{supp}(f)|$.

Proof of the Theorem: case of $\varphi(t)=t$

Quantitative ergodic theory

Romain Tessera
(7) Put things together:

- Since f realizes $F \phi I_{\Gamma}(k)$, we have $k=\frac{\|f\|}{\left\|\nabla_{S_{\Gamma} f}\right\|_{1}}$ and $F \phi I_{\Gamma}(k)=|\operatorname{supp}(f)|$.
- We have proved (5) that $\left\|\nabla_{S_{\Lambda}} f^{x}\right\|_{1} \leq C\left\|\nabla_{S_{\Gamma}} f\right\|_{1}$.
- We have proved (6) that $\left\|f_{x}\right\|=\|f\|$ and $\left|\operatorname{supp}\left(f_{x}\right)\right|=|\operatorname{supp}(f)|$.
- Hence:

$$
F \phi I_{\Gamma}(k)=|\operatorname{supp}(f)|
$$

Proof of the Theorem: case of $\varphi(t)=t$

Quantitative ergodic theory

Romain Tessera
(7) Put things together:

- Since f realizes $F \phi I_{\Gamma}(k)$, we have $k=\frac{\|f\|}{\left\|\nabla_{S_{\Gamma} f}\right\|_{1}}$ and $F \phi I_{\Gamma}(k)=|\operatorname{supp}(f)|$.
- We have proved (5) that $\left\|\nabla_{S_{\Lambda}} f^{x}\right\|_{1} \leq C\left\|\nabla_{S_{\Gamma}} f\right\|_{1}$.
- We have proved (6) that $\left\|f_{x}\right\|=\|f\|$ and $\left|\operatorname{supp}\left(f_{x}\right)\right|=|\operatorname{supp}(f)|$.
- Hence:

$$
F \phi I_{\Gamma}(k)=|\operatorname{supp}(f)|=\left|\operatorname{supp}\left(f^{x}\right)\right|
$$

Romain Tessera

Proof of the Theorem: case of $\varphi(t)=t$

Quantitative ergodic theory

Romain
Tessera
(7) Put things together:

- Since f realizes $F \phi l_{\Gamma}(k)$, we have $k=\frac{\|f\|}{\left\|\nabla_{S_{\Gamma}} f\right\|_{1}}$ and $F \phi l_{\Gamma}(k)=|\operatorname{supp}(f)|$.
- We have proved (5) that $\left\|\nabla_{S_{\Lambda}} f^{x}\right\|_{1} \leq C\left\|\nabla_{S_{\Gamma}} f\right\|_{1}$.
- We have proved (6) that $\left\|f_{x}\right\|=\|f\|$ and $\left|\operatorname{supp}\left(f_{x}\right)\right|=|\operatorname{supp}(f)|$.
- Hence:

$$
F \phi I_{\Gamma}(k)=|\operatorname{supp}(f)|=\left|\operatorname{supp}\left(f^{x}\right)\right| \geq F \phi I_{\Lambda}\left(\frac{\left\|f^{x}\right\|}{\left\|\nabla{ }_{S_{\Lambda}} f^{x}\right\|_{1}}\right)
$$

Proof of the Theorem: case of $\varphi(t)=t$

(7) Put things together:

- Since f realizes $F \phi l_{\Gamma}(k)$, we have $k=\frac{\|f\|}{\left\|\nabla_{S_{\Gamma}} f\right\|_{1}}$ and $F \phi l_{\Gamma}(k)=|\operatorname{supp}(f)|$.
- We have proved (5) that $\left\|\nabla_{S_{\Lambda}} f^{x}\right\|_{1} \leq C\left\|\nabla_{S_{\Gamma}} f\right\|_{1}$.
- We have proved (6) that $\left\|f_{x}\right\|=\|f\|$ and $\left|\operatorname{supp}\left(f_{x}\right)\right|=|\operatorname{supp}(f)|$.
- Hence:

$$
F \phi I_{\Gamma}(k)=|\operatorname{supp}(f)|=\left|\operatorname{supp}\left(f^{x}\right)\right| \geq F \phi I_{\Lambda}\left(\frac{\left\|f^{x}\right\|}{\left\|\nabla_{S_{\Lambda}} f^{x}\right\|_{1}}\right) \geq F \phi I_{\Lambda}(k / C) .
$$

Optimality of the theorem

Quantitative ergodic theory

Romain
Tessera

Corollary

- Let $d, k \in \mathbb{N}$. If there exists an $\left(L^{p}, L^{0}\right)-O E$ from \mathbb{Z}^{d+k} to \mathbb{Z}^{d}, then $p \leq d /(d+k)$.

Optimality of the theorem

Quantitative ergodic theory

Romain
Tessera

Corollary

- Let $d, k \in \mathbb{N}$. If there exists an $\left(L^{p}, L^{0}\right)-O E$ from \mathbb{Z}^{d+k} to \mathbb{Z}^{d}, then $p \leq d /(d+k)$.
- Let $d, k \in \mathbb{N}$. If there exists an $\left(L^{p}, L^{0}\right)-O E$ from $F \imath \mathbb{Z}^{d+k}$ to $F \imath \mathbb{Z}^{d}$, then $p \leq d /(d+k)$.

Optimality of the theorem

Corollary

- Let $d, k \in \mathbb{N}$. If there exists an $\left(L^{p}, L^{0}\right)-O E$ from \mathbb{Z}^{d+k} to \mathbb{Z}^{d}, then $p \leq d /(d+k)$.
- Let $d, k \in \mathbb{N}$. If there exists an $\left(L^{p}, L^{0}\right)-O E$ from $F \imath \mathbb{Z}^{d+k}$ to $F \imath \mathbb{Z}^{d}$, then $p \leq d /(d+k)$.
- If \wedge has exponential growth and if there is a $\left(\varphi, L^{0}\right)-O E$ from \wedge to \mathbb{Z}, then $\varphi(n) \lesssim \log n$.

Optimality of the theorem

Quantitative ergodic theory

Romain
Tessera

Corollary

- Let $d, k \in \mathbb{N}$. If there exists an $\left(L^{p}, L^{0}\right)-O E$ from \mathbb{Z}^{d+k} to \mathbb{Z}^{d}, then $p \leq d /(d+k)$.
- Let $d, k \in \mathbb{N}$. If there exists an $\left(L^{p}, L^{0}\right)-O E$ from $F \imath \mathbb{Z}^{d+k}$ to $F \imath \mathbb{Z}^{d}$, then $p \leq d /(d+k)$.
- If \wedge has exponential growth and if there is a $\left(\varphi, L^{0}\right)-O E$ from \wedge to \mathbb{Z}, then $\varphi(n) \lesssim \log n$.

First case: applying the theorem with $\varphi(t)=t^{p}$, we have $F \phi I_{\mathbb{Z}^{d+k}}\left(t^{p}\right) \lesssim F \phi I_{\mathbb{Z}^{d}}(t)$. Recall that $F \phi_{\mathbb{Z}^{d}}(t) \approx t^{d}$. Hence we get $t^{p(d+k)} \lesssim t^{d}$, from which we deduce that $p(d+k) \leq d$, and $p \leq d /(d+k)$.

Optimality of the theorem

Quantitative ergodic theory

Romain
Tessera

Corollary

- Let $d, k \in \mathbb{N}$. If there exists an $\left(L^{p}, L^{0}\right)-O E$ from \mathbb{Z}^{d+k} to \mathbb{Z}^{d}, then $p \leq d /(d+k)$.
- Let $d, k \in \mathbb{N}$. If there exists an $\left(L^{p}, L^{0}\right)-O E$ from $F \imath \mathbb{Z}^{d+k}$ to $F \imath \mathbb{Z}^{d}$, then $p \leq d /(d+k)$.
- If \wedge has exponential growth and if there is a $\left(\varphi, L^{0}\right)-O E$ from \wedge to \mathbb{Z}, then $\varphi(n) \lesssim \log n$.

First case: applying the theorem with $\varphi(t)=t^{p}$, we have $F \phi I_{\mathbb{Z}^{d+k}}\left(t^{p}\right) \lesssim F \phi I_{\mathbb{Z}^{d}}(t)$. Recall that $F \phi I_{\mathbb{Z}^{d}}(t) \approx t^{d}$. Hence we get $t^{p(d+k)} \lesssim t^{d}$, from which we deduce that $p(d+k) \leq d$, and $p \leq d /(d+k)$.

Second case: same using that $\left.F \phi\right|_{F i \mathbb{Z}^{d}}(t) \approx e^{t^{d}}$.

Optimality of the theorem

Quantitative ergodic theory

Romain
Tessera

Corollary

- Let $d, k \in \mathbb{N}$. If there exists an $\left(L^{p}, L^{0}\right)-O E$ from \mathbb{Z}^{d+k} to \mathbb{Z}^{d}, then $p \leq d /(d+k)$.
- Let $d, k \in \mathbb{N}$. If there exists an $\left(L^{p}, L^{0}\right)-O E$ from $F \imath \mathbb{Z}^{d+k}$ to $F \imath \mathbb{Z}^{d}$, then $p \leq d /(d+k)$.
- If \wedge has exponential growth and if there is a $\left(\varphi, L^{0}\right)-O E$ from \wedge to \mathbb{Z}, then $\varphi(n) \lesssim \log n$.

First case: applying the theorem with $\varphi(t)=t^{p}$, we have $F \phi I_{\mathbb{Z}^{d+k}}\left(t^{p}\right) \lesssim F \varnothing I_{\mathbb{Z}^{d}}(t)$. Recall that $F \phi I_{\mathbb{Z}^{d}}(t) \approx t^{d}$. Hence we get $t^{p(d+k)} \lesssim t^{d}$, from which we deduce that $p(d+k) \leq d$, and $p \leq d /(d+k)$.

Second case: same using that $\left.F \phi\right|_{F i \mathbb{Z}^{d}}(t) \approx e^{t^{d}}$.
Third case: using $\operatorname{Vol}_{\Lambda} \lesssim F \varnothing I_{\Lambda}$, we get by the theorem $\exp \circ \varphi(t) \lesssim t$. So $\varphi(t) \lesssim \log t$.

Optimality of the theorem

Quantitative ergodic theory

Romain
Tessera

Corollary

- Let $d, k \in \mathbb{N}$. If there exists an $\left(L^{p}, L^{0}\right)-O E$ from \mathbb{Z}^{d+k} to \mathbb{Z}^{d}, then $p \leq d /(d+k)$.
- Let $d, k \in \mathbb{N}$. If there exists an $\left(L^{p}, L^{0}\right)-O E$ from $F \imath \mathbb{Z}^{d+k}$ to $F \imath \mathbb{Z}^{d}$, then $p \leq d /(d+k)$.
- If \wedge has exponential growth and if there is a $\left(\varphi, L^{0}\right)-O E$ from \wedge to \mathbb{Z}, then $\varphi(n) \lesssim \log n$.

The previous result are nearly optimal in a number of situation. For instance
Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

- Let $d, k^{\prime} \in \mathbb{N}$. Then \mathbb{Z}^{d} and \mathbb{Z}^{d+k} are $L^{p}-O E$ for all $p<d /(d+k)$.

Optimality of the theorem

Quantitative ergodic theory

Romain
Tessera

Corollary

- Let $d, k \in \mathbb{N}$. If there exists an $\left(L^{p}, L^{0}\right)-O E$ from \mathbb{Z}^{d+k} to \mathbb{Z}^{d}, then $p \leq d /(d+k)$.
- Let $d, k \in \mathbb{N}$. If there exists an $\left(L^{p}, L^{0}\right)-O E$ from $F \imath \mathbb{Z}^{d+k}$ to $F \imath \mathbb{Z}^{d}$, then $p \leq d /(d+k)$.
- If \wedge has exponential growth and if there is a $\left(\varphi, L^{0}\right)-O E$ from \wedge to \mathbb{Z}, then $\varphi(n) \lesssim \log n$.

The previous result are nearly optimal in a number of situation. For instance

Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

- Let $d, k^{\prime} \in \mathbb{N}$. Then \mathbb{Z}^{d} and \mathbb{Z}^{d+k} are $L^{p}-O E$ for all $p<d /(d+k)$.
- Let $d, k^{\prime} \in \mathbb{N}$. Then $F \imath \mathbb{Z}^{d+k}$ and $F \imath \mathbb{Z}^{d}$ are $L^{p}-O E$ for all $p<d /(d+k)$.

Optimality of the theorem

Quantitative ergodic theory

Romain
Tessera

Corollary

- Let $d, k \in \mathbb{N}$. If there exists an $\left(L^{p}, L^{0}\right)-O E$ from \mathbb{Z}^{d+k} to \mathbb{Z}^{d}, then $p \leq d /(d+k)$.
- Let $d, k \in \mathbb{N}$. If there exists an $\left(L^{p}, L^{0}\right)-O E$ from $F \imath \mathbb{Z}^{d+k}$ to $F \imath \mathbb{Z}^{d}$, then $p \leq d /(d+k)$.
- If \wedge has exponential growth and if there is a $\left(\varphi, L^{0}\right)-O E$ from \wedge to \mathbb{Z}, then $\varphi(n) \lesssim \log n$.

The previous result are nearly optimal in a number of situation. For instance

Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

- Let $d, k^{\prime} \in \mathbb{N}$. Then \mathbb{Z}^{d} and \mathbb{Z}^{d+k} are $L^{p}-O E$ for all $p<d /(d+k)$.
- Let $d, k^{\prime} \in \mathbb{N}$. Then $F \imath \mathbb{Z}^{d+k}$ and $F \imath \mathbb{Z}^{d}$ are $L^{p}-O E$ for all $p<d /(d+k)$.
- The lamplighter group and \mathbb{Z} are $\log n^{1-\varepsilon}-O E$ for all $\varepsilon>0$.

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain Tessera

Preliminaries:

- The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows.

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain
Tessera

Preliminaries:

- The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:
$a \cdot(0,0,0,1, \ldots)=(1,0,0,1 \ldots)$

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain
Tessera

Preliminaries:

- The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:
$a \cdot(0,0,0,1, \ldots)=(1,0,0,1 \ldots)$
$a \cdot(1,0,0, \ldots)=(0,1,0, \ldots)$

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain
Tessera

Preliminaries:

- The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:
$a \cdot(0,0,0,1, \ldots)=(1,0,0,1 \ldots)$
$a \cdot(1,0,0, \ldots)=(0,1,0, \ldots)$
$a \cdot(1,1,1,0, \ldots)=$

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain
Tessera

Preliminaries:

- The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:
$a \cdot(0,0,0,1, \ldots)=(1,0,0,1 \ldots)$
$a \cdot(1,0,0, \ldots)=(0,1,0, \ldots)$
$a \cdot(1,1,1,0, \ldots)=(0,0,0,1, \ldots)$

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain Tessera

Preliminaries:

- The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:
$a \cdot(0,0,0,1, \ldots)=(1,0,0,1 \ldots)$
$a \cdot(1,0,0, \ldots)=(0,1,0, \ldots)$
$a \cdot(1,1,1,0, \ldots)=(0,0,0,1, \ldots)$
- The 4-odometer: : consider the action of \mathbb{Z} on the $\{0,1,2,3\}^{\mathbb{N}}$, defined as follows. $a \cdot(1,2,0,3, \ldots)=$

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain
Tessera

Preliminaries:

- The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:
$a \cdot(0,0,0,1, \ldots)=(1,0,0,1 \ldots)$
$a \cdot(1,0,0, \ldots)=(0,1,0, \ldots)$
$a \cdot(1,1,1,0, \ldots)=(0,0,0,1, \ldots)$
- The 4-odometer: : consider the action of \mathbb{Z} on the $\{0,1,2,3\}^{\mathbb{N}}$, defined as follows. $a \cdot(1,2,0,3, \ldots)=(2,2,0,3, \ldots)$

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain
Tessera

Preliminaries:

- The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:
$a \cdot(0,0,0,1, \ldots)=(1,0,0,1 \ldots)$
$a \cdot(1,0,0, \ldots)=(0,1,0, \ldots)$
$a \cdot(1,1,1,0, \ldots)=(0,0,0,1, \ldots)$
- The 4-odometer: : consider the action of \mathbb{Z} on the $\{0,1,2,3\}^{\mathbb{N}}$, defined as follows. $a \cdot(1,2,0,3, \ldots)=(2,2,0,3, \ldots)$ $a \cdot(3,1,2,0, \ldots)=$

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain
Tessera

Preliminaries:

- The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:
$a \cdot(0,0,0,1, \ldots)=(1,0,0,1 \ldots)$
$a \cdot(1,0,0, \ldots)=(0,1,0, \ldots)$
$a \cdot(1,1,1,0, \ldots)=(0,0,0,1, \ldots)$
- The 4-odometer: : consider the action of \mathbb{Z} on the $\{0,1,2,3\}^{\mathbb{N}}$, defined as follows. $a \cdot(1,2,0,3, \ldots)=(2,2,0,3, \ldots)$ $a \cdot(3,1,2,0, \ldots)=(0,2,2,0, \ldots)$

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain
Tessera

Preliminaries:

- The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:
$a \cdot(0,0,0,1, \ldots)=(1,0,0,1 \ldots)$
$a \cdot(1,0,0, \ldots)=(0,1,0, \ldots)$
$a \cdot(1,1,1,0, \ldots)=(0,0,0,1, \ldots)$
- The 4-odometer: : consider the action of \mathbb{Z} on the $\{0,1,2,3\}^{\mathbb{N}}$, defined as follows. $a \cdot(1,2,0,3, \ldots)=(2,2,0,3, \ldots)$
$a \cdot(3,1,2,0, \ldots)=(0,2,2,0, \ldots)$
$a \cdot(3,3,3,3,1,0, \ldots)=$

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain
Tessera

Preliminaries:

- The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:
a $\cdot(0,0,0,1, \ldots)=(1,0,0,1 \ldots)$
$a \cdot(1,0,0, \ldots)=(0,1,0, \ldots)$
$a \cdot(1,1,1,0, \ldots)=(0,0,0,1, \ldots)$
- The 4-odometer: : consider the action of \mathbb{Z} on the $\{0,1,2,3\}^{\mathbb{N}}$, defined as follows. $a \cdot(1,2,0,3, \ldots)=(2,2,0,3, \ldots)$ $a \cdot(3,1,2,0, \ldots)=(0,2,2,0, \ldots)$
$a \cdot(3,3,3,3,1,0, \ldots)=(0,0,0,0,2,0, \ldots)$

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain
Tessera

Preliminaries:

- The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:
$a \cdot(0,0,0,1, \ldots)=(1,0,0,1 \ldots)$
$a \cdot(1,0,0, \ldots)=(0,1,0, \ldots)$
$a \cdot(1,1,1,0, \ldots)=(0,0,0,1, \ldots)$
- The 4-odometer: : consider the action of \mathbb{Z} on the $\{0,1,2,3\}^{\mathbb{N}}$, defined as follows. $a \cdot(1,2,0,3, \ldots)=(2,2,0,3, \ldots)$
$a \cdot(3,1,2,0, \ldots)=(0,2,2,0, \ldots)$
$a \cdot(3,3,3,3,1,0, \ldots)=(0,0,0,0,2,0, \ldots)$
These actions preserve the product measure on $\{0,1\}^{\mathbb{N}}$ and $\{0,1,2,3\}^{\mathbb{N}}$.

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain
Tessera

Preliminaries:

- The 2 -odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:
$a \cdot(0,0,0,1, \ldots)=(1,0,0,1 \ldots)$
$a \cdot(1,0,0, \ldots)=(0,1,0, \ldots)$
$a \cdot(1,1,1,0, \ldots)=(0,0,0,1, \ldots)$
- The 4-odometer: : consider the action of \mathbb{Z} on the $\{0,1,2,3\}^{\mathbb{N}}$, defined as follows. a $\cdot(1,2,0,3, \ldots)=(2,2,0,3, \ldots)$
$a \cdot(3,1,2,0, \ldots)=(0,2,2,0, \ldots)$
$a \cdot(3,3,3,3,1,0, \ldots)=(0,0,0,0,2,0, \ldots)$
These actions preserve the product measure on $\{0,1\}^{\mathbb{N}}$ and $\{0,1,2,3\}^{\mathbb{N}}$.
Two sequences belong to the same orbit if and only if they differ by at most finitely many coordinates.

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain
Tessera

Preliminaries:

- The 2 -odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:
$a \cdot(0,0,0,1, \ldots)=(1,0,0,1 \ldots)$
$a \cdot(1,0,0, \ldots)=(0,1,0, \ldots)$
$a \cdot(1,1,1,0, \ldots)=(0,0,0,1, \ldots)$
- The 4-odometer: : consider the action of \mathbb{Z} on the $\{0,1,2,3\}^{\mathbb{N}}$, defined as follows. a $\cdot(1,2,0,3, \ldots)=(2,2,0,3, \ldots)$
a. $(3,1,2,0, \ldots)=(0,2,2,0, \ldots)$
$a \cdot(3,3,3,3,1,0, \ldots)=(0,0,0,0,2,0, \ldots)$
These actions preserve the product measure on $\{0,1\}^{\mathbb{N}}$ and $\{0,1,2,3\}^{\mathbb{N}}$.
Two sequences belong to the same orbit if and only if they differ by at most finitely many coordinates.

The d-odometer is the action of \mathbb{Z} by translation on \mathbb{Z}_{d} (the ring of d-adic numbers).

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain Tessera

The actions of \mathbb{Z} and \mathbb{Z}^{2} :

- We let \mathbb{Z} acts on the 4-odometer: $\{0,1,2,3\}^{\mathbb{N}}$

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain Tessera

The actions of \mathbb{Z} and \mathbb{Z}^{2} :

- We let \mathbb{Z} acts on the 4-odometer: $\{0,1,2,3\}^{\mathbb{N}}$
- We let \mathbb{Z}^{2} acts on a product of 2-odometers: $\{0,1\}^{\mathbb{N}} \times\{0,1\}^{\mathbb{N}}$.

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain Tessera

The actions of \mathbb{Z} and \mathbb{Z}^{2} :

- We let \mathbb{Z} acts on the 4-odometer: $\{0,1,2,3\}^{\mathbb{N}}$
- We let \mathbb{Z}^{2} acts on a product of 2-odometers: $\{0,1\}^{\mathbb{N}} \times\{0,1\}^{\mathbb{N}}$.

The orbit equivalence: $F:\{0,1\}^{\mathbb{N}} \times\{0,1\}^{\mathbb{N}} \rightarrow\{0,1,2,3\}^{\mathbb{N}}$ is defined

$$
F(x, y)=x+2 y .
$$

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain Tessera

The actions of \mathbb{Z} and \mathbb{Z}^{2} :

- We let \mathbb{Z} acts on the 4-odometer: $\{0,1,2,3\}^{\mathbb{N}}$
- We let \mathbb{Z}^{2} acts on a product of 2-odometers: $\{0,1\}^{\mathbb{N}} \times\{0,1\}^{\mathbb{N}}$.

The orbit equivalence: $F:\{0,1\}^{\mathbb{N}} \times\{0,1\}^{\mathbb{N}} \rightarrow\{0,1,2,3\}^{\mathbb{N}}$ is defined

$$
F(x, y)=x+2 y
$$

Example: if $x=(0,1,1, \ldots), y=(1,0,1, \ldots)$, then

$$
F(x, y)=(0+2,1+0,1+2, \ldots)=(2,1,3, \ldots)
$$

Proposition

This $O E$ from \mathbb{Z}^{2} to \mathbb{Z} is $\left(L^{1 / 2-\varepsilon}, L^{2-\varepsilon}\right)$ for all $\varepsilon>0$.

A few open problems

Quantitative ergodic theory

Romain
Tessera

- Prove that the bounds given by the Corollary are optimal.

A few open problems

Quantitative ergodic theory

Romain
Tessera

- Prove that the bounds given by the Corollary are optimal. E.g. construct an OE from \mathbb{Z}^{2} to \mathbb{Z} which is $\left(L^{1 / 2}, L^{0}\right)$.

A few open problems

Quantitative ergodic theory

Romain
Tessera

- Prove that the bounds given by the Corollary are optimal. E.g. construct an OE from \mathbb{Z}^{2} to \mathbb{Z} which is $\left(L^{1 / 2}, L^{0}\right)$.
- Find a OE between different odometers over \mathbb{Z} (or \mathbb{Z}^{d}) with good integrability conditions.

A few open problems

Quantitative ergodic theory

- Prove that the bounds given by the Corollary are optimal. E.g. construct an OE from \mathbb{Z}^{2} to \mathbb{Z} which is $\left(L^{1 / 2}, L^{0}\right)$.
- Find a OE between different odometers over \mathbb{Z} (or \mathbb{Z}^{d}) with good integrability conditions. E.g. construct an OE from the 2-odometer to the 3 -odometer.

A few open problems

Quantitative ergodic theory

- Prove that the bounds given by the Corollary are optimal. E.g. construct an OE from \mathbb{Z}^{2} to \mathbb{Z} which is $\left(L^{1 / 2}, L^{0}\right)$.
- Find a OE between different odometers over \mathbb{Z} (or \mathbb{Z}^{d}) with good integrability conditions. E.g. construct an OE from the 2-odometer to the 3-odometer.
- What is the best integrability of an OE between the Bernoulli shifts $\{1,2\}^{\mathbb{Z}}$ and $\{1,2,3\}^{\mathbb{Z}}$?

A few open problems

Quantitative ergodic theory

Romain
Tessera

- Prove that the bounds given by the Corollary are optimal. E.g. construct an OE from \mathbb{Z}^{2} to \mathbb{Z} which is $\left(L^{1 / 2}, L^{0}\right)$.
- Find a OE between different odometers over \mathbb{Z} (or \mathbb{Z}^{d}) with good integrability conditions. E.g. construct an OE from the 2-odometer to the 3-odometer.
- What is the best integrability of an OE between the Bernoulli shifts $\{1,2\}^{\mathbb{Z}}$ and $\{1,2,3\}^{\mathbb{Z}}$? Partial answer: cannot be log-integrable (Kerr-Li), because the entropy is preserved.

A few open problems

Quantitative ergodic theory

Romain
Tessera

- Prove that the bounds given by the Corollary are optimal. E.g. construct an OE from \mathbb{Z}^{2} to \mathbb{Z} which is $\left(L^{1 / 2}, L^{0}\right)$.
- Find a OE between different odometers over \mathbb{Z} (or \mathbb{Z}^{d}) with good integrability conditions. E.g. construct an OE from the 2-odometer to the 3-odometer.
- What is the best integrability of an OE between the Bernoulli shifts $\{1,2\}^{\mathbb{Z}}$ and $\{1,2,3\}^{\mathbb{Z}}$? Partial answer: cannot be log-integrable (Kerr-Li), because the entropy is preserved.
- What is the best integrability of an OE between the Bernoulli shifts $\{1,2\}^{\mathbb{Z}}$ and $\{1,2\}^{\mathbb{Z}^{2}}$?

