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As A A
Fgl(n) = min {\A| \ % <1/n, Vse€ 5}

v

Theorem (Delabie-Koivisto-Le Maitre-Tessera 20)

m IfA and T are L1-OE, then Fgly ~ Fglr.

m More generally, if A and T are (¢, L°)-OE for some concave increasing
function ¢, then

Fgly oo < Folr.

<

The second statement implies the first one: A and I' are L1-OE means that there
exists a (id,id)-OE from A to I'. Note that id is concave and increasing (!).
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where p is the action by right translations of A on £1(A).

Lemma (Folklore)

. Vsf
F@ir(n) = min {|supp(f)| | I Tl Il < 1/n} .
1
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m action of Aon I X X: Ax (v,x) := (a(X, x)y, A - x): this action is free,
measure-preserving, with fundamental domain {1} x X.
General strategy:
(1) start with a function f : I — R realizing Fglr(k);

(2) extend it to a function F: T x X — R;

(3) use the action of A on I x X to define ||V5AF||1.

(4) use the integrability of the cocycle to dominate ||V5/\F||1 by ||V5|_f||1.
(5) by pigeonhole, find a A-orbit such that the restriction of F defines a

function on A whose gradient is controlled by ||V5AF||1.
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Start with a function f : [ — R realizing Fgl-(k).
“Extend” it to a function F: T x X — R by F(v,x) = f(y71).
(3) define

||V$AF||1 = sn;asji/xz;|F(s*('y,x))—F('y,x)|dx

= F(sx:)—F
Sn;asﬁll (sx)=Fll

(4) use the integrability of the cocycle to dominate ||V5AF||1 by ||V5I_f||1.

SES)

Vs, Fll, = max/X;w(s*(%x))—F(w,x)|dx

= max/XZ|F(o¢(s,x)'y,s~x))—F('y,x)\dx

SES)

Romain Tessera Quantitative ergodic theory




Quantitative
ergodic
theory

Proof of the Theorem: case of (t) =

Start with a function f : [ — R realizing Fgl-(k).
(2) “Extend” it to a function F: T x X — R by F(y,x) = f(y71).
(3) define

IVs,Fll, = max /X ST UF(s * (1, %)) — F(3, %)) dx

SESp

= F(sx:)—F
max [F(s ) — Fl
(4) use the integrability of the cocycle to dominate ||V5AF||1 by ||V5I_f||1.

Vs, Fll, = max/XZ|F<s*(w,x))—F(w,x)|dx

SES)

= max/Z|F(o¢sx)'y,s x)) — F(v, x)|dx

SESA

= max/ Z|f’y La(s,x)71) — F(y 1) |dx

SES)

Romain Tessera Quantitative ergodic theory




Proof of the Theorem: case of (t) =

Quantitative Start with a function f : [ — R realizing Fgl-(k).
oy (2) “Extend” it to a function F : T x X — R by F(v,x) = f(y~1).
(3) define

IVs,Fll, = max /X ST UF(s * (1, %)) — F(3, %)) dx

SESp

F(sx-)—F
max [F(s ) — Fl
(4) use the integrability of the cocycle to dominate ||V5AF||1 by ||V5I_f||1.

Vs, Fll, = max/XZ|F<s*(w,x))—F(w,x)|dx

SES)

= max/Z|F(o¢sx)'y,s x)) — F(v, x)|dx

SESA

= max/ Z|f’y La(s,x)71) — F(y 1) |dx

SES)

= max [ llp(a(s, )7 = fladx
SESA X

Romain Tessera Quantitative ergodic theory



Proof of the Theorem: case of (t) =

Quantitative Start with a function f : [ — R realizing Fgl-(k).
oy (2) “Extend” it to a function F : T x X — R by F(v,x) = f(y~1).
(3) define

IVs,Fll, = max /X ST UF(s * (1, %)) — F(3, %)) dx

SESp

F(sx-)—F
max [F(s ) — Fl
(4) use the integrability of the cocycle to dominate ||V5AF||1 by ||V5I_f||1.

Vs, Fll, = max/XZ|F<s*(w,x))—F(w,x)|dx

SES)

= max/Z|F(o¢sx)'y,s x)) — F(v, x)|dx

SESA

= max/ Z|f’y La(s,x)71) — F(y 1) |dx

SES)

= max [ llp(a(s, )7 = fladx
SESA X

Romain Tessera Quantitative ergodic theory



Proof of the Theorem: case of p(t) =t

Quantitative For each x, write a(s, A= x) ™1 = t,...t1, where t; € Sr, and n = |a(s, X - x)|s; -
ergodic
theory
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Quantitative For each x, write a(s, A= x) ™1 = t,...t1, where t; € Sr, and n = |a(s, X - x)|s; -
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Proof of the Theorem:

Inject it:

llo(als, x)~)f — fllx

IVspFll, =

Romain Tessera

For each x, write a(s, A - x)*1 =th...

max
SES)

case of p(t) =

t1, where t; € Sr, and n = |a(s, A - x)|s,.
||P( < tn)f =l

ZHP ti)f —p(tic1. .- t1)f|a

E llp(ti)f — fll1
i=1

t)f — f
n;gasin( )f —fla

lo(s, A= x)|s ||V5|.f||1

[ Itats0) 7 e
X
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Proof of the Theorem: case of (t) =

Inject it:

llo(als, x)~)f — fllx

V50 Flly

Romain Tessera

IN

Let C := maxses, [y la(s, X - x)|s; < o0, we get: ||V5/\F“1 < C||V5I_f||1.

For each x, write a(s, A= x) ™1 = t,...t1, where t; € Sr, and n = |a(s, X - x)|s; -

= ||P( < tn)f =l

< ZHP )f —p(tizy. .- t1)fa

= Z llo(t:)f — fllx
i=1

< tf — f

< npg;\\p( ) Il1

= lo(s, X )l [ Vs £l

max [ llo(as,x)7)f = flladx

(max/ Ja(s, - x)|5|_> ||V5I_f||1
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function on A whose gradient is controlled by ||V5AF||1.
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function on A whose gradient is controlled by ||V5AF||1.
Recall that {1r} x X is a fundamental domain for the action of A. So write
for each x € X, F(A % (1r, x)) = fX(\). Note that

I950Fll = [ 19507

Hence there exists x such that HVS/\ >, < HVS/\F||1
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function on A whose gradient is controlled by ||V5AF||1.

Recall that {1r} x X is a fundamental domain for the action of A. So write
for each x € X, F(A % (1r, x)) = fX(\). Note that

I950Fll = [ 19507

Hence there exists x such that HVS/\fXH1 < HVSAFH1 <C ||V5rf}|1.

Now we must show that ||f|| > ||f]|, and that |supp(f)| < [supp(f)|. But
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(5)

by pigeonhole, find a A-orbit such that the restriction of F defines a
function on A whose gradient is controlled by ||V5AF||1.

Recall that {1r} x X is a fundamental domain for the action of A. So write
for each x € X, F(A % (1r, x)) = fX(\). Note that

I950Fll = [ 19507

Hence there exists x such that HVS/\fXH1 < HVSAFH1 <C ||V5rf}|1.

Now we must show that ||f|| > ||f]|, and that |supp(f)| < [supp(f)|. But
we actually have equality in both cases! Indeed:

X(A) = F(A+ (1, x)) = F(a(X x), x) = f(a(x, )\)71).

Since a(-, x) is a bijection, we deduce that ||| = ||f]| and
|supp(f)| = |supp(f)].
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— We have proved (5) that ||V5Afx||1 <C ||V5|_f||1.

— Since f realizes Fglr(k), we have k = and Fglr(k) = |supp(f)].
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— We have proved (5) that ||V5Afx||1 <C ||V5|_f||1.
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— We have proved (5) that ||V5Afx||1 <C ||V5|_f||1.

— We have proved (6) that ||| = ||f|| and [supp(f)| = |supp(f)|.

— Hence:
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(7) Put things together:

— Since f realizes Fglr(k), we have k = “VH”LH and Fglr(k) = |supp(f)|.
Sr 1

— We have proved (5) that ||V5Afx||1 <C ||V5|_f||1.

— We have proved (6) that ||| = ||f|| and [supp(f)| = |supp(f)|.
— Hence:

Ll

Folr(k) = [supp(f)| = Isupp(f*)| > Foix <||VS Al
A 1

) > Fgln(k/C).
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m Let d, k € N. If there exists an (LP, L°)-OE from 79tk to 74, then
p<d/(d+ k).
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m Let d, k € N. If there exists an (LP, L°)-OE from 79tk to 74, then
p < d/(d+k).

m Let d, k € N. If there exists an (LP, L°)-OE from F1Z9tk to F1Z9, then
p < d/(d+ k).

m If \ has exponential growth and if there is a (i, L°)-OE from A to Z, then
o(n) < log n.

First case: applying the theorem with ¢(t) = tP, we have
Folyak(tP) < Falya(t). Recall that Fglyq(t) ~ t9. Hence we get tP(d+K) < td,
from which we deduce that p(d + k) < d, and p < d/(d + k).
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m Let d, k € N. If there exists an (LP, L°)-OE from 79tk to 74, then
p < d/(d+k).

m Let d, k € N. If there exists an (LP, L°)-OE from F1Z9tk to F1Z9, then
p < d/(d+ k).

m If \ has exponential growth and if there is a (i, L°)-OE from A to Z, then
o(n) < log n.

First case: applying the theorem with ¢(t) = tP, we have
Folyak(tP) < Falya(t). Recall that Fglyq(t) ~ t9. Hence we get tP(d+K) < td,
from which we deduce that p(d + k) < d, and p < d/(d + k).

. d
Second case: same using that Fglg,;q(t) ~ e
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m Let d, k € N. If there exists an (LP, L°)-OE from 79tk to 74, then
p < d/(d+k).

m Let d, k € N. If there exists an (LP, L°)-OE from F1Z9tk to F1Z9, then
p < d/(d+ k).

m If \ has exponential growth and if there is a (i, L°)-OE from A to Z, then
o(n) < log n.

First case: applying the theorem with ¢(t) = tP, we have
Folyak(tP) < Falya(t). Recall that Fglyq(t) ~ t9. Hence we get tP(d+K) < td,
from which we deduce that p(d + k) < d, and p < d/(d + k).

. d
Second case: same using that Fglg,;q(t) ~ e

Third case: using Voly S Falp, we get by the theorem expop(t) < t. So
w(t) < logt.
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Optimality of the theorem
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ergodic
theory

m Let d, k € N. If there exists an (LP, L°)-OE from Z9* to 79, then
p < d/(d+ k).

m Let d, k € N. If there exists an (LP, L°)-OE from FZtk to F17Z9, then
p < d/(d+k).

m If A has exponential growth and if there is a (¢, L°)-OE from A to Z, then
(n) < log n.

The previous result are nearly optimal in a number of situation. For instance

Theorem (Delabie-Koivisto-Le Maitre-Tessera 20)

m Let d, k' € N. Then Z9 and Z9+* are LP-OE for all p < d/(d + k).
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m Let d, k € N. If there exists an (LP, L°)-OE from Z9* to 79, then
p < d/(d+ k).

m Let d, k € N. If there exists an (LP, L°)-OE from FZtk to F17Z9, then
p < d/(d+k).

m If A has exponential growth and if there is a (¢, L°)-OE from A to Z, then
(n) < log n.

The previous result are nearly optimal in a number of situation. For instance

Theorem (Delabie-Koivisto-Le Maitre-Tessera 20)
m Let d, k' € N. Then Z9 and Z9+* are LP-OE for all p < d/(d + k).
m Letd, k' € N. Then F1Z9%k and F1Z9 are LP-OE for all p < d/(d + k).
m The lamplighter group and Z are log n'=¢-OE for all € > 0.
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Constructing an OE between Z and Z?

Quantitative
ergodic

ey Preliminaries:

m The 2-odometer: consider the action of Z on the {0, 1}, defined as
follows.
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ey Preliminaries:

m The 2-odometer: consider the action of Z on the {0, 1}, defined as
follows. The generator a of Z acts as:
a-(0,0,0,1,...)=(1,0,0,1...)
a-(1,0,0,...)=(0,1,0,...

a.(17171707"'):(07070717"')
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follows. The generator a of Z acts as:
a-(0,0,0,1,...)=(1,0,0,1...)
a-(1,0,0,...) = (0,1,0,...)
a-(1,1,1,0,...) = (0,0,0,1,...)
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a-(3,1,2,0,...) = (0,2,2,0,...)
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These actions preserve the product measure on {0, 1} and {0, 1,2, 3}

Two sequences belong to the same orbit if and only if they differ by at most
finitely many coordinates.
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Constructing an OE between Z and Z?

Quantitative
ergodic

ey Preliminaries:

m The 2-odometer: consider the action of Z on the {0, 1}, defined as
follows. The generator a of Z acts as:
a-(0,0,0,1,...)=(1,0,0,1...)
a-(1,0,0,...) = (0,1,0,...)
a-(1,1,1,0,...) = (0,0,0,1,...)
m The 4-odometer: : consider the action of Z on the {0,1,2,3}", defined as
follows. a-(1,2,0,3,...) =(2,2,0,3,...)
a-(3,1,2,0,...) = (0,2,2,0,...)
a-(3,3,3,3,1,0,...) = (0,0,0,0,2,0,...)

These actions preserve the product measure on {0, 1} and {0, 1,2, 3}

Two sequences belong to the same orbit if and only if they differ by at most
finitely many coordinates.

The d-odometer is the action of Z by translation on Zg4 (the ring of d-adic
numbers).
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theory The actions of Z and Z2:

m We let Z acts on the 4-odometer: {0,1,2,3}"
m We let Z? acts on a product of 2-odometers: {0,1}" x {0, 1}

The orbit equivalence: F : {0,1}Y x {0,1}N — {0,1,2,3}" is defined

F(x,y) =x+2y.
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Constructing an OE between Z and Z?

Quantitative
ergodic

theory The actions of Z and Z2:

m We let Z acts on the 4-odometer: {0,1,2,3}"
m We let Z? acts on a product of 2-odometers: {0,1}" x {0, 1}

The orbit equivalence: F : {0,1}Y x {0,1}N — {0,1,2,3}" is defined

F(x,y) =x+2y.

Example: if x =(0,1,1,...), y =(1,0,1,...), then

F(x,y)=(0+4+2,14+0,142,...)=(2,1,3,...).

Proposition

This OE from Z? to 7 is (LY/2=2,12==) for all ¢ > 0.
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m Prove that the bounds given by the Corollary are optimal.
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