Quantitative ergodic theory

Romain Tessera

Quantitative ergodic theory

Romain Tessera

CNRS, Université Paris Cité et Sorbonne Université

20/02/24

Quantitative ergodic theory

> Romain Tessera

Definition (φ orbit equivalence)

Let $\varphi, \psi : \mathbb{R}_+ \to \mathbb{R}_+$ be increasing functions tending to ∞ . Assume $\Lambda, \Gamma \curvearrowright (X, \mu)$ with same orbits.

Quantitative ergodic theory

> Romain Tessera

Definition (φ orbit equivalence)

Let $\varphi, \psi: \mathbb{R}_+ \to \mathbb{R}_+$ be increasing functions tending to ∞ . Assume $\Lambda, \Gamma \curvearrowright (X, \mu)$ with same orbits. The actions are (φ, ψ) -OE if

Quantitative ergodic theory

> Romain Tessera

Definition (φ orbit equivalence)

Let $\varphi, \psi : \mathbb{R}_+ \to \mathbb{R}_+$ be increasing functions tending to ∞ . Assume $\Lambda, \Gamma \curvearrowright (X, \mu)$ with same orbits. The actions are (φ, ψ) -OE if

• for all $\lambda \in \Lambda$,

$$x \mapsto \varphi(|\alpha(x,\lambda)|_{S_{\Gamma}})$$

is **integrable**,

Quantitative ergodic theory

> Romain Tessera

Definition (φ orbit equivalence)

Let $\varphi, \psi : \mathbb{R}_+ \to \mathbb{R}_+$ be increasing functions tending to ∞ . Assume $\Lambda, \Gamma \curvearrowright (X, \mu)$ with same orbits. The actions are (φ, ψ) -OE if

• for all $\lambda \in \Lambda$,

$$x \mapsto \varphi(|\alpha(x,\lambda)|_{S_{\Gamma}})$$

is integrable,

• for all $\gamma \in \Gamma$,

$$x \mapsto \psi(|\beta(x,\gamma)|_{S_{\Lambda}})$$

is integrable.

Quantitative ergodic theory

> Romain Tessera

Definition (φ orbit equivalence)

Let $\varphi, \psi : \mathbb{R}_+ \to \mathbb{R}_+$ be increasing functions tending to ∞ . Assume $\Lambda, \Gamma \curvearrowright (X, \mu)$ with same orbits. The actions are (φ, ψ) -OE if

• for all $\lambda \in \Lambda$,

$$x \mapsto \varphi(|\alpha(x,\lambda)|_{S_{\Gamma}})$$

is **integrable**,

 $\quad \blacksquare \ \, \text{for all} \,\, \gamma \in \Gamma,$

$$x \mapsto \psi(|\beta(x,\gamma)|_{S_{\Lambda}})$$

is integrable.

Remark

• Note that for $\varphi(t) = \psi(t) = t^p$, this means in L^p -OE.

Quantitative ergodic theory

> Romain Tessera

Definition (φ orbit equivalence)

Let $\varphi, \psi : \mathbb{R}_+ \to \mathbb{R}_+$ be increasing functions tending to ∞ . Assume $\Lambda, \Gamma \curvearrowright (X, \mu)$ with same orbits. The actions are (φ, ψ) -OE if

• for all $\lambda \in \Lambda$,

$$x \mapsto \varphi(|\alpha(x,\lambda)|_{S_{\Gamma}})$$

is **integrable**,

 $\quad \blacksquare \ \, \text{for all} \,\, \gamma \in \Gamma,$

$$x \mapsto \psi(|\beta(x,\gamma)|_{S_{\Lambda}})$$

is integrable.

- Note that for $\varphi(t) = \psi(t) = t^p$, this means in L^p -OE.
- L⁰-OE: no integrability condition.

Quantitative ergodic theory

> Romain Tessera

Definition (φ orbit equivalence)

Let $\varphi, \psi : \mathbb{R}_+ \to \mathbb{R}_+$ be increasing functions tending to ∞ . Assume $\Lambda, \Gamma \curvearrowright (X, \mu)$ with same orbits. The actions are (φ, ψ) -OE if

• for all $\lambda \in \Lambda$,

$$x \mapsto \varphi(|\alpha(x,\lambda)|_{S_{\Gamma}})$$

is **integrable**,

 $\quad \blacksquare \ \, \text{for all} \,\, \gamma \in \Gamma,$

$$x \mapsto \psi(|\beta(x,\gamma)|_{S_{\Lambda}})$$

is integrable.

- Note that for $\varphi(t) = \psi(t) = t^p$, this means in L^p -OE.
- L⁰-OE: no integrability condition.
- The faster φ tends to infinity, the stronger the condition is.

Quantitative ergodic theory

> Romain Tessera

Definition (φ orbit equivalence)

Let $\varphi, \psi : \mathbb{R}_+ \to \mathbb{R}_+$ be increasing functions tending to ∞ . Assume $\Lambda, \Gamma \curvearrowright (X, \mu)$ with same orbits. The actions are (φ, ψ) -OE if

• for all $\lambda \in \Lambda$,

$$x \mapsto \varphi(|\alpha(x,\lambda)|_{S_{\Gamma}})$$

is integrable,

 $\quad \blacksquare \ \, \text{for all} \,\, \gamma \in \Gamma,$

$$x \mapsto \psi(|\beta(x,\gamma)|_{S_{\Lambda}})$$

is integrable.

- Note that for $\varphi(t) = \psi(t) = t^p$, this means in L^p -OE.
- L⁰-OE: no integrability condition.
- **The faster** φ tends to infinity, the **stronger** the condition is. For instance:

$$(L^{\infty} - OE) \Rightarrow (L^2 - OE)$$

Quantitative ergodic theory

> Romain Tessera

Definition (φ orbit equivalence)

Let $\varphi, \psi : \mathbb{R}_+ \to \mathbb{R}_+$ be increasing functions tending to ∞ . Assume $\Lambda, \Gamma \curvearrowright (X, \mu)$ with same orbits. The actions are (φ, ψ) -OE if

• for all $\lambda \in \Lambda$,

$$x \mapsto \varphi(|\alpha(x,\lambda)|_{S_{\Gamma}})$$

is integrable,

 $\quad \blacksquare \ \, \text{for all} \,\, \gamma \in \Gamma,$

$$x \mapsto \psi(|\beta(x,\gamma)|_{S_{\Lambda}})$$

is integrable.

- Note that for $\varphi(t) = \psi(t) = t^p$, this means in L^p -OE.
- L⁰-OE: no integrability condition.
- The faster φ tends to infinity, the stronger the condition is. For instance:

$$(L^{\infty} - OE) \Rightarrow (L^2 - OE) \Rightarrow (L^1 - OE)$$

Quantitative ergodic theory

> Romain Tessera

Definition (φ orbit equivalence)

Let $\varphi, \psi : \mathbb{R}_+ \to \mathbb{R}_+$ be increasing functions tending to ∞ . Assume $\Lambda, \Gamma \curvearrowright (X, \mu)$ with same orbits. The actions are (φ, ψ) -OE if

• for all $\lambda \in \Lambda$,

$$x \mapsto \varphi(|\alpha(x,\lambda)|_{S_{\Gamma}})$$

is integrable,

• for all $\gamma \in \Gamma$,

$$x \mapsto \psi(|\beta(x,\gamma)|_{S_{\Lambda}})$$

is integrable.

- Note that for $\varphi(t) = \psi(t) = t^p$, this means in L^p -OE.
- L⁰-OE: no integrability condition.
- The faster φ tends to infinity, the stronger the condition is. For instance:

$$(L^{\infty} - OE) \Rightarrow (L^2 - OE) \Rightarrow (L^1 - OE) \Rightarrow (L^{1/2} - OE)$$

Quantitative ergodic theory

> Romain Tessera

Definition (φ orbit equivalence)

Let $\varphi, \psi : \mathbb{R}_+ \to \mathbb{R}_+$ be increasing functions tending to ∞ . Assume $\Lambda, \Gamma \curvearrowright (X, \mu)$ with same orbits. The actions are (φ, ψ) -OE if

• for all $\lambda \in \Lambda$,

$$x \mapsto \varphi(|\alpha(x,\lambda)|_{S_{\Gamma}})$$

is integrable,

• for all $\gamma \in \Gamma$,

$$x \mapsto \psi(|\beta(x,\gamma)|_{S_{\Lambda}})$$

is integrable.

- Note that for $\varphi(t) = \psi(t) = t^p$, this means in L^p -OE.
- L⁰-OE: no integrability condition.
- The faster φ tends to infinity, the stronger the condition is. For instance:

$$(L^{\infty} - OE) \Rightarrow (L^2 - OE) \Rightarrow (L^1 - OE) \Rightarrow (L^{1/2} - OE) \Rightarrow (\log - OE).$$

Quantitative ergodic theory

> Romain Tessera

Definition

Let Λ be a group generated by a finite subset S. Define its Følner function

$$F \emptyset I(n) = \min \left\{ |A| \mid \frac{|As \triangle A|}{|A|} \leq 1/n, \ \forall s \in S \right\}$$

Quantitative ergodic theory

Romain Tessera

Definition

Let Λ be a group generated by a finite subset S. Define its Følner function

$$F \emptyset I(n) = \min \left\{ |A| \mid \frac{|As \triangle A|}{|A|} \leq 1/n, \ \forall s \in S \right\}$$

Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

■ If Λ and Γ are L^1 -OE, then $F \emptyset I_{\Lambda} \approx F \emptyset I_{\Gamma}$.

Quantitative ergodic theory

> Romain Tessera

Definition

Let Λ be a group generated by a finite subset S. Define its Følner function

$$F \emptyset I(n) = \min \left\{ |A| \mid \frac{|As \triangle A|}{|A|} \leq 1/n, \ \forall s \in S \right\}$$

Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

- If Λ and Γ are L^1 -OE, then $F \emptyset I_{\Lambda} \approx F \emptyset I_{\Gamma}$.
- More generally, if Λ and Γ are (φ, L^0) -OE for some concave increasing function φ , then

Quantitative ergodic theory

> Romain Tessera

Definition

Let Λ be a group generated by a finite subset S. Define its Følner function

$$F \emptyset I(n) = \min \left\{ |A| \mid \frac{|As \triangle A|}{|A|} \le 1/n, \ \forall s \in S \right\}$$

Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

- If Λ and Γ are L^1 -OE, then $F \emptyset I_{\Lambda} \approx F \emptyset I_{\Gamma}$.
- More generally, if Λ and Γ are (φ, L^0) -OE for some concave increasing function φ , then

$$F \emptyset I_{\Lambda} \circ \varphi \lesssim F \emptyset I_{\Gamma}.$$

Quantitative ergodic theory

> Romain Tessera

Definition

Let Λ be a group generated by a finite subset S. Define its Følner function

$$F \emptyset I(n) = \min \left\{ |A| \mid \frac{|As \triangle A|}{|A|} \leq 1/n, \ \forall s \in S \right\}$$

Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

- If Λ and Γ are L^1 -OE, then $F \emptyset I_{\Lambda} \approx F \emptyset I_{\Gamma}$.
- More generally, if Λ and Γ are (φ, L^0) -OE for some concave increasing function φ , then

$$F \emptyset I_{\Lambda} \circ \varphi \lesssim F \emptyset I_{\Gamma}$$
.

The second statement implies the first one: Λ and Γ are L^1 -OE means that there exists a (id, id)-OE from Λ to Γ . Note that id is concave and increasing (!).

Quantitative ergodic theory

> Romain Tessera

Definition

Let Λ be a group generated by a finite subset S. Define its Følner function

$$F \emptyset I_{\Lambda}(n) = \min \left\{ |A| \mid \frac{|As \triangle A|}{|A|} \le 1/n, \ \forall s \in S \right\}$$

Quantitative ergodic theory

> Romain Tessera

Definition

Let Λ be a group generated by a finite subset S. Define its Følner function

$$F \emptyset I_{\Lambda}(n) = \min \left\{ |A| \mid \frac{|As \triangle A|}{|A|} \le 1/n, \ \forall s \in S \right\}$$

Given a function $f:\Lambda \to \mathbb{R}$, we define the ℓ^1 -norm of its (right) gradient by the equation

$$\|\nabla_S f\|_1 := \max_{s \in S} \sum_{g \in \Lambda} |f(gs) - f(g)|$$

Quantitative ergodic theory

Romain Tessera

Definition

Let Λ be a group generated by a finite subset S. Define its Følner function

$$F \emptyset \mathit{I}_{\Lambda}(\mathit{n}) = \min \left\{ |A| \mid \dfrac{|As \triangle A|}{|A|} \leq 1/\mathit{n}, \ \forall s \in S \right\}$$

Given a function $f:\Lambda\to\mathbb{R}$, we define the ℓ^1 -norm of its (right) gradient by the equation

$$\begin{split} \|\nabla_S f\|_1 &:= \max_{s \in S} \sum_{g \in \Lambda} |f(gs) - f(g)| \\ &= \max_{s \in S} \|\rho(s)f - f\|_1, \end{split}$$

where ρ is the action by right translations of Λ on $\ell^1(\Lambda)$.

Quantitative ergodic theory

> Romain Tessera

Definition

Let Λ be a group generated by a finite subset S. Define its Følner function

$$F \emptyset I_{\Lambda}(n) = \min \left\{ |A| \mid \frac{|As \triangle A|}{|A|} \leq 1/n, \ \forall s \in S \right\}$$

Given a function $f:\Lambda \to \mathbb{R}$, we define the ℓ^1 -norm of its (right) gradient by the equation

$$\begin{split} \|\nabla_S f\|_1 &:= \max_{s \in S} \sum_{g \in \Lambda} |f(gs) - f(g)| \\ &= \max_{s \in S} \|\rho(s)f - f\|_1, \end{split}$$

where ρ is the action by right translations of Λ on $\ell^1(\Lambda)$.

Lemma (Folklore)

$$F \emptyset I_{\Lambda}(n) = \min \left\{ |\operatorname{supp}(f)| \mid \frac{\|\nabla_S f\|_1}{\|f\|_1} \leq 1/n \right\}.$$

Quantitative ergodic theory

Romain Tessera ■ $\Lambda, \Gamma \curvearrowright X$ with (a.e.) same orbits. Define $\alpha : \Lambda \times X \to \Gamma$ by:

Quantitative ergodic theory

> Romain Tessera

■ $\Lambda, \Gamma \curvearrowright X$ with (a.e.) same orbits. Define $\alpha : \Lambda \times X \to \Gamma$ by:

$$\alpha(\lambda,x)\cdot x=\lambda\cdot x,$$

for a.e.
$$x \in X$$
, $\lambda \in \Lambda$.

Quantitative ergodic theory

> Romain Tessera

■ $\Lambda, \Gamma \curvearrowright X$ with (a.e.) same orbits. Define $\alpha : \Lambda \times X \to \Gamma$ by:

$$\alpha(\lambda,x)\cdot x=\lambda\cdot x,$$

for a.e. $x \in X$, $\lambda \in \Lambda$.

• "cocycle relation": $\alpha(\lambda'\lambda, x) = \alpha(\lambda', \lambda \cdot x)\alpha(\lambda, x)$.

Quantitative ergodic theory

> Romain Tessera

■ $\Lambda, \Gamma \curvearrowright X$ with (a.e.) same orbits. Define $\alpha : \Lambda \times X \to \Gamma$ by:

$$\alpha(\lambda, x) \cdot x = \lambda \cdot x,$$

for a.e. $x \in X$, $\lambda \in \Lambda$.

- "cocycle relation": $\alpha(\lambda'\lambda, x) = \alpha(\lambda', \lambda \cdot x)\alpha(\lambda, x)$.
- action of Λ on $\Gamma \times X$: $\lambda \star (\gamma, x) := (\alpha(\lambda, x)\gamma, \lambda \cdot x)$: this action is free, measure-preserving, with fundamental domain $\{1\} \times X$.

Quantitative ergodic theory

> Romain Tessera

■ $\Lambda, \Gamma \curvearrowright X$ with (a.e.) same orbits. Define $\alpha : \Lambda \times X \to \Gamma$ by:

$$\alpha(\lambda, x) \cdot x = \lambda \cdot x,$$

for a.e. $x \in X$, $\lambda \in \Lambda$.

- "cocycle relation": $\alpha(\lambda'\lambda, x) = \alpha(\lambda', \lambda \cdot x)\alpha(\lambda, x)$.
- **a** action of Λ on $\Gamma \times X$: $\lambda \star (\gamma, x) := (\alpha(\lambda, x)\gamma, \lambda \cdot x)$: this action is free, measure-preserving, with fundamental domain $\{1\} \times X$.

General strategy:

(1) start with a function $f: \Gamma \to \mathbb{R}$ realizing $F \emptyset I_{\Gamma}(k)$;

Quantitative ergodic theory

> Romain Tessera

■ $\Lambda, \Gamma \curvearrowright X$ with (a.e.) same orbits. Define $\alpha : \Lambda \times X \to \Gamma$ by:

$$\alpha(\lambda, x) \cdot x = \lambda \cdot x,$$

for a.e. $x \in X$, $\lambda \in \Lambda$.

- "cocycle relation": $\alpha(\lambda'\lambda, x) = \alpha(\lambda', \lambda \cdot x)\alpha(\lambda, x)$.
- **a** action of Λ on $\Gamma \times X$: $\lambda \star (\gamma, x) := (\alpha(\lambda, x)\gamma, \lambda \cdot x)$: this action is free, measure-preserving, with fundamental domain $\{1\} \times X$.

- (1) start with a function $f: \Gamma \to \mathbb{R}$ realizing $F \emptyset I_{\Gamma}(k)$;
- (2) extend it to a function $F: \Gamma \times X \to \mathbb{R}$;

Quantitative ergodic theory

> Romain Tessera

■ $\Lambda, \Gamma \curvearrowright X$ with (a.e.) same orbits. Define $\alpha : \Lambda \times X \to \Gamma$ by:

$$\alpha(\lambda, x) \cdot x = \lambda \cdot x,$$

for a.e. $x \in X$, $\lambda \in \Lambda$.

- "cocycle relation": $\alpha(\lambda'\lambda, x) = \alpha(\lambda', \lambda \cdot x)\alpha(\lambda, x)$.
- **a** action of Λ on $\Gamma \times X$: $\lambda \star (\gamma, x) := (\alpha(\lambda, x)\gamma, \lambda \cdot x)$: this action is free, measure-preserving, with fundamental domain $\{1\} \times X$.

- (1) start with a function $f: \Gamma \to \mathbb{R}$ realizing $F \emptyset I_{\Gamma}(k)$;
- (2) extend it to a function $F: \Gamma \times X \to \mathbb{R}$;
- (3) use the action of Λ on $\Gamma \times X$ to define $\|\nabla_{S_{\Lambda}} F\|_{1}$.

Quantitative ergodic theory

> Romain Tessera

■ $\Lambda, \Gamma \curvearrowright X$ with (a.e.) same orbits. Define $\alpha : \Lambda \times X \to \Gamma$ by:

$$\alpha(\lambda, x) \cdot x = \lambda \cdot x,$$

for a.e. $x \in X$, $\lambda \in \Lambda$.

- "cocycle relation": $\alpha(\lambda'\lambda, x) = \alpha(\lambda', \lambda \cdot x)\alpha(\lambda, x)$.
- **a** action of Λ on $\Gamma \times X$: $\lambda \star (\gamma, x) := (\alpha(\lambda, x)\gamma, \lambda \cdot x)$: this action is free, measure-preserving, with fundamental domain $\{1\} \times X$.

- (1) start with a function $f: \Gamma \to \mathbb{R}$ realizing $F \emptyset I_{\Gamma}(k)$;
- (2) extend it to a function $F : \Gamma \times X \to \mathbb{R}$;
- (3) use the action of Λ on $\Gamma \times X$ to define $\|\nabla_{S_{\Lambda}} F\|_{1}$.
- (4) use the integrability of the cocycle to dominate $\|\nabla_{S_{\Lambda}}F\|_{1}$ by $\|\nabla_{S_{\Gamma}}f\|_{1}$.

Quantitative ergodic theory

Romain Tessera ■ $\Lambda, \Gamma \curvearrowright X$ with (a.e.) same orbits. Define $\alpha : \Lambda \times X \to \Gamma$ by:

$$\alpha(\lambda, x) \cdot x = \lambda \cdot x,$$

for a.e. $x \in X$, $\lambda \in \Lambda$.

- "cocycle relation": $\alpha(\lambda'\lambda, x) = \alpha(\lambda', \lambda \cdot x)\alpha(\lambda, x)$.
- **a** action of Λ on $\Gamma \times X$: $\lambda \star (\gamma, x) := (\alpha(\lambda, x)\gamma, \lambda \cdot x)$: this action is free, measure-preserving, with fundamental domain $\{1\} \times X$.

- (1) start with a function $f: \Gamma \to \mathbb{R}$ realizing $F \emptyset I_{\Gamma}(k)$;
- (2) extend it to a function $F : \Gamma \times X \to \mathbb{R}$;
- (3) use the action of Λ on $\Gamma \times X$ to define $\|\nabla_{S_{\Lambda}} F\|_{1}$.
- (4) use the integrability of the cocycle to dominate $\|\nabla_{S_{\Lambda}}F\|_{1}$ by $\|\nabla_{S_{\Gamma}}f\|_{1}$.
- (5) by pigeonhole, find a Λ -orbit such that the restriction of F defines a function on Λ whose gradient is controlled by $\|\nabla_{S_{\Lambda}}F\|_{1}$.

Quantitative ergodic theory

> Romain Tessera

(1) Start with a function $f:\Gamma\to\mathbb{R}$ realizing $F\emptyset I_{\Gamma}(k)$.

Quantitative ergodic theory

Romain Tessera

- (1) Start with a function $f:\Gamma\to\mathbb{R}$ realizing $F\emptyset I_{\Gamma}(k)$.
- (2) "Extend" it to a function $F: \Gamma \times X \to \mathbb{R}$ by $F(\gamma, x) = f(\gamma^{-1})$.

Quantitative ergodic theory

> Romain Tessera

- (1) Start with a function $f: \Gamma \to \mathbb{R}$ realizing $F \emptyset I_{\Gamma}(k)$.
- (2) "Extend" it to a function $F: \Gamma \times X \to \mathbb{R}$ by $F(\gamma, x) = f(\gamma^{-1})$.
- (3) define

$$\|\nabla_{S_{\Lambda}}F\|_{1} = \max_{s \in S_{\Lambda}} \int_{X} \sum_{\gamma} |F(s \star (\gamma, x)) - F(\gamma, x)| dx$$
$$= \max_{s \in S_{\Lambda}} \|F(s \star \cdot) - F\|_{1}$$

Quantitative ergodic theory

> Romain Tessera

- (1) Start with a function $f: \Gamma \to \mathbb{R}$ realizing $F \emptyset I_{\Gamma}(k)$.
- (2) "Extend" it to a function $F: \Gamma \times X \to \mathbb{R}$ by $F(\gamma, x) = f(\gamma^{-1})$.
- (3) define

$$\begin{aligned} \left\| \nabla_{S_{\Lambda}} F \right\|_{1} &= \max_{s \in S_{\Lambda}} \int_{X} \sum_{\gamma} |F(s \star (\gamma, x)) - F(\gamma, x)| dx \\ &= \max_{s \in S_{\Lambda}} \|F(s \star \cdot) - F\|_{1} \end{aligned}$$

(4) use the integrability of the cocycle to dominate $\|\nabla_{S_{\Lambda}} F\|_{1}$ by $\|\nabla_{S_{\Gamma}} f\|_{1}$.

Quantitative ergodic theory

> Romain Tessera

- (1) Start with a function $f: \Gamma \to \mathbb{R}$ realizing $F \emptyset I_{\Gamma}(k)$.
- (2) "Extend" it to a function $F: \Gamma \times X \to \mathbb{R}$ by $F(\gamma, x) = f(\gamma^{-1})$.
- (3) define

$$\begin{aligned} \|\nabla s_{\Lambda} F\|_{1} &= \max_{s \in S_{\Lambda}} \int_{X} \sum_{\gamma} |F(s \star (\gamma, x)) - F(\gamma, x)| dx \\ &= \max_{s \in S_{\Lambda}} \|F(s \star \cdot) - F\|_{1} \end{aligned}$$

(4) use the integrability of the cocycle to dominate $\|\nabla_{S_{\Lambda}} F\|_1$ by $\|\nabla_{S_{\Gamma}} f\|_1$.

$$\|\nabla_{S_{\Lambda}}F\|_{1} = \max_{s \in S_{\Lambda}} \int_{X} \sum_{\gamma} |F(s \star (\gamma, x)) - F(\gamma, x)| dx$$

Quantitative ergodic theory

> Romain Tessera

- (1) Start with a function $f: \Gamma \to \mathbb{R}$ realizing $F \emptyset I_{\Gamma}(k)$.
- (2) "Extend" it to a function $F: \Gamma \times X \to \mathbb{R}$ by $F(\gamma, x) = f(\gamma^{-1})$.
- (3) define

$$\begin{aligned} \|\nabla_{S_{\Lambda}}F\|_{1} &= \max_{s \in S_{\Lambda}} \int_{X} \sum_{\gamma} |F(s \star (\gamma, x)) - F(\gamma, x)| dx \\ &= \max_{s \in S_{\Lambda}} \|F(s \star \cdot) - F\|_{1} \end{aligned}$$

(4) use the integrability of the cocycle to dominate $\|\nabla_{S_{\Lambda}}F\|_{1}$ by $\|\nabla_{S_{\Gamma}}f\|_{1}$.

$$\begin{aligned} \|\nabla_{S_{\Lambda}} F\|_{1} &= \max_{s \in S_{\Lambda}} \int_{X} \sum_{\gamma} |F(s \star (\gamma, x)) - F(\gamma, x)| dx \\ &= \max_{s \in S_{\Lambda}} \int_{X} \sum_{\gamma} |F(\alpha(s, x)\gamma, s \cdot x)) - F(\gamma, x)| dx \end{aligned}$$

Quantitative ergodic theory

> Romain Tessera

- (1) Start with a function $f: \Gamma \to \mathbb{R}$ realizing $F \emptyset I_{\Gamma}(k)$.
- (2) "Extend" it to a function $F: \Gamma \times X \to \mathbb{R}$ by $F(\gamma, x) = f(\gamma^{-1})$.
- (3) define

$$\begin{aligned} \|\nabla s_{\Lambda} F\|_{1} &= \max_{s \in S_{\Lambda}} \int_{X} \sum_{\gamma} |F(s \star (\gamma, x)) - F(\gamma, x)| dx \\ &= \max_{s \in S_{\Lambda}} \|F(s \star \cdot) - F\|_{1} \end{aligned}$$

(4) use the integrability of the cocycle to dominate $\|\nabla_{S_{\Lambda}}F\|_{1}$ by $\|\nabla_{S_{\Gamma}}f\|_{1}$.

$$\begin{split} \|\nabla_{S_{\Lambda}} F\|_{1} &= \max_{s \in S_{\Lambda}} \int_{X} \sum_{\gamma} |F(s \star (\gamma, x)) - F(\gamma, x)| dx \\ &= \max_{s \in S_{\Lambda}} \int_{X} \sum_{\gamma} |F(\alpha(s, x)\gamma, s \cdot x)) - F(\gamma, x)| dx \\ &= \max_{s \in S_{\Lambda}} \int_{X} \sum_{\gamma} |f(\gamma^{-1}\alpha(s, x)^{-1}) - f(\gamma^{-1})| dx \end{split}$$

Quantitative ergodic theory

> Romain Tessera

- (1) Start with a function $f: \Gamma \to \mathbb{R}$ realizing $F \emptyset I_{\Gamma}(k)$.
- (2) "Extend" it to a function $F: \Gamma \times X \to \mathbb{R}$ by $F(\gamma, x) = f(\gamma^{-1})$.
- (3) define

$$\begin{aligned} \|\nabla s_{\Lambda} F\|_{1} &= \max_{s \in S_{\Lambda}} \int_{X} \sum_{\gamma} |F(s \star (\gamma, x)) - F(\gamma, x)| dx \\ &= \max_{s \in S_{\Lambda}} \|F(s \star \cdot) - F\|_{1} \end{aligned}$$

(4) use the integrability of the cocycle to dominate $\|\nabla_{S_{\Lambda}} F\|_{1}$ by $\|\nabla_{S_{\Gamma}} f\|_{1}$.

$$\begin{split} \left\| \nabla_{S_{\Lambda}} F \right\|_{1} &= \max_{s \in S_{\Lambda}} \int_{X} \sum_{\gamma} |F(s \star (\gamma, x)) - F(\gamma, x)| dx \\ &= \max_{s \in S_{\Lambda}} \int_{X} \sum_{\gamma} |F(\alpha(s, x)\gamma, s \cdot x)) - F(\gamma, x)| dx \\ &= \max_{s \in S_{\Lambda}} \int_{X} \sum_{\gamma} |f(\gamma^{-1}\alpha(s, x)^{-1}) - f(\gamma^{-1})| dx \\ &= \max_{s \in S_{\Lambda}} \int_{X} \|\rho(\alpha(s, x)^{-1})f - f\|_{1} dx \end{split}$$

Quantitative ergodic theory

> Romain Tessera

- (1) Start with a function $f: \Gamma \to \mathbb{R}$ realizing $F \emptyset I_{\Gamma}(k)$.
- (2) "Extend" it to a function $F: \Gamma \times X \to \mathbb{R}$ by $F(\gamma, x) = f(\gamma^{-1})$.
- (3) define

$$\begin{aligned} \|\nabla s_{\Lambda} F\|_{1} &= \max_{s \in S_{\Lambda}} \int_{X} \sum_{\gamma} |F(s \star (\gamma, x)) - F(\gamma, x)| dx \\ &= \max_{s \in S_{\Lambda}} \|F(s \star \cdot) - F\|_{1} \end{aligned}$$

(4) use the integrability of the cocycle to dominate $\|\nabla_{S_{\Lambda}} F\|_{1}$ by $\|\nabla_{S_{\Gamma}} f\|_{1}$.

$$\begin{split} \left\| \nabla_{S_{\Lambda}} F \right\|_{1} &= \max_{s \in S_{\Lambda}} \int_{X} \sum_{\gamma} |F(s \star (\gamma, x)) - F(\gamma, x)| dx \\ &= \max_{s \in S_{\Lambda}} \int_{X} \sum_{\gamma} |F(\alpha(s, x)\gamma, s \cdot x)) - F(\gamma, x)| dx \\ &= \max_{s \in S_{\Lambda}} \int_{X} \sum_{\gamma} |f(\gamma^{-1}\alpha(s, x)^{-1}) - f(\gamma^{-1})| dx \\ &= \max_{s \in S_{\Lambda}} \int_{X} \|\rho(\alpha(s, x)^{-1})f - f\|_{1} dx \end{split}$$

Quantitative ergodic theory

Romain Tessera

 $\|\rho(\alpha(s,x)^{-1})f - f\|_1 = \|\rho(t_1 \dots t_n)f - f\|_1$

Quantitative ergodic theory

For each
$$x$$
, write $\alpha(s, \lambda \cdot x)^{-1} = t_n \dots t_1$, where $t_i \in S_{\Gamma}$, and $n = |\alpha(s, \lambda \cdot x)|_{S_{\Gamma}}$.

Quantitative ergodic theory

> Romain Tessera

$$\|\rho(\alpha(s,x)^{-1})f - f\|_1 = \|\rho(t_1 \dots t_n)f - f\|_1$$

$$\leq \sum_{i=1}^n \|\rho(t_i \dots t_1)f - \rho(t_{i-1} \dots t_1)f\|_1$$

Quantitative ergodic theory

> Romain Tessera

$$\|\rho(\alpha(s,x)^{-1})f - f\|_{1} = \|\rho(t_{1} \dots t_{n})f - f\|_{1}$$

$$\leq \sum_{i=1}^{n} \|\rho(t_{i} \dots t_{1})f - \rho(t_{i-1} \dots t_{1})f\|_{1}$$

$$= \sum_{i=1}^{n} \|\rho(t_{i})f - f\|_{1}$$

Quantitative ergodic theory

> Romain Tessera

$$\|\rho(\alpha(s,x)^{-1})f - f\|_{1} = \|\rho(t_{1} \dots t_{n})f - f\|_{1}$$

$$\leq \sum_{i=1}^{n} \|\rho(t_{i} \dots t_{1})f - \rho(t_{i-1} \dots t_{1})f\|_{1}$$

$$= \sum_{i=1}^{n} \|\rho(t_{i})f - f\|_{1}$$

$$\leq n \max_{t \in S_{\Gamma}} \|\rho(t)f - f\|_{1}$$

Quantitative ergodic theory

> Romain Tessera

$$\|\rho(\alpha(s,x)^{-1})f - f\|_{1} = \|\rho(t_{1} \dots t_{n})f - f\|_{1}$$

$$\leq \sum_{i=1}^{n} \|\rho(t_{i} \dots t_{1})f - \rho(t_{i-1} \dots t_{1})f\|_{1}$$

$$= \sum_{i=1}^{n} \|\rho(t_{i})f - f\|_{1}$$

$$\leq \max_{t \in S_{\Gamma}} \|\rho(t)f - f\|_{1}$$

$$= |\alpha(s,\lambda \cdot x)|_{S_{\Gamma}} \|\nabla_{S_{\Gamma}} f\|_{1}$$

Quantitative ergodic theory

> Romain Tessera

For each x, write $\alpha(s, \lambda \cdot x)^{-1} = t_n \dots t_1$, where $t_i \in S_{\Gamma}$, and $n = |\alpha(s, \lambda \cdot x)|_{S_{\Gamma}}$.

$$\|\rho(\alpha(s,x)^{-1})f - f\|_{1} = \|\rho(t_{1} \dots t_{n})f - f\|_{1}$$

$$\leq \sum_{i=1}^{n} \|\rho(t_{i} \dots t_{1})f - \rho(t_{i-1} \dots t_{1})f\|_{1}$$

$$= \sum_{i=1}^{n} \|\rho(t_{i})f - f\|_{1}$$

$$\leq n \max_{t \in S_{\Gamma}} \|\rho(t)f - f\|_{1}$$

$$= |\alpha(s,\lambda \cdot x)|_{S_{\Gamma}} \|\nabla_{S_{\Gamma}} f\|_{1}$$

Inject it:

$$\|\nabla_{S_{\Lambda}}F\|_{1} = \max_{s \in S_{\Lambda}} \int_{Y} \|\rho(\alpha(s,x)^{-1})f - f\|_{1} dx$$

Quantitative ergodic theory

> Romain Tessera

For each x, write $\alpha(s, \lambda \cdot x)^{-1} = t_n \dots t_1$, where $t_i \in S_{\Gamma}$, and $n = |\alpha(s, \lambda \cdot x)|_{S_{\Gamma}}$.

$$\begin{split} \|\rho(\alpha(s,x)^{-1})f - f\|_{1} &= \|\rho(t_{1} \dots t_{n})f - f\|_{1} \\ &\leq \sum_{i=1}^{n} \|\rho(t_{i} \dots t_{1})f - \rho(t_{i-1} \dots t_{1})f\|_{1} \\ &= \sum_{i=1}^{n} \|\rho(t_{i})f - f\|_{1} \\ &\leq n \max_{t \in S_{\Gamma}} \|\rho(t)f - f\|_{1} \\ &= |\alpha(s,\lambda \cdot x)|_{S_{\Gamma}} \|\nabla_{S_{\Gamma}} f\|_{1} \end{split}$$

Inject it:

$$\begin{split} \left\| \nabla_{S_{\Lambda}} F \right\|_{1} &= \max_{s \in S_{\Lambda}} \int_{X} \| \rho(\alpha(s, x)^{-1}) f - f \|_{1} dx \\ &\leq \left(\max_{s \in S_{\Lambda}} \int_{X} |\alpha(s, \lambda \cdot x)|_{S_{\Gamma}} \right) \left\| \nabla_{S_{\Gamma}} f \right\|_{1} \end{split}$$

Let $C := \max_{s \in S_{\Lambda}} \int_{X} |\alpha(s, \lambda \cdot x)|_{S_{\Gamma}} < \infty$, we get: $\|\nabla_{S_{\Lambda}} F\|_{1} \le C \|\nabla_{S_{\Gamma}} f\|_{1}$.

Quantitative ergodic theory

> Romain Tessera

(5) by pigeonhole, find a Λ -orbit such that the restriction of F defines a function on Λ whose gradient is controlled by $\left\|\nabla_{S_{\Lambda}}F\right\|_{1}$.

Quantitative ergodic theory

> Romain Tessera

(5) by pigeonhole, find a Λ -orbit such that the restriction of F defines a function on Λ whose gradient is controlled by $\left\|\nabla_{S_{\Lambda}}F\right\|_{1}$. Recall that $\{1_{\Gamma}\}\times X$ is a fundamental domain for the action of Λ . So write for each $x\in X$, $F(\lambda\star(1_{\Gamma},x))=f^{x}(\lambda)$. Note that

$$\left\|\nabla_{S_{\Lambda}}F\right\|_{1} = \int_{X} \left\|\nabla_{S_{\Lambda}}f^{x}\right\|_{1} dx$$

Hence there exists x such that $\|\nabla_{S_{\Lambda}} f^{x}\|_{1} \leq \|\nabla_{S_{\Lambda}} F\|_{1}$

Quantitative ergodic theory

> Romain Tessera

(5) by pigeonhole, find a Λ -orbit such that the restriction of F defines a function on Λ whose gradient is controlled by $\|\nabla_{S_{\Lambda}}F\|_{1}$. Recall that $\{1_{\Gamma}\} \times X$ is a fundamental domain for the action of Λ . So write for each $x \in X$, $F(\lambda \star (1_{\Gamma}, x)) = f^{x}(\lambda)$. Note that

$$\left\|\nabla_{S_{\Lambda}}F\right\|_{1} = \int_{X} \left\|\nabla_{S_{\Lambda}}f^{x}\right\|_{1} dx$$

Hence there exists x such that $\|\nabla_{S_{\Lambda}}f^{x}\|_{1} \leq \|\nabla_{S_{\Lambda}}F\|_{1} \leq C \|\nabla_{S_{\Gamma}}f\|_{1}$.

(6) Now we must show that $||f_x|| \ge ||f||$, and that $|\text{supp}(f_x)| \le |\text{supp}(f)|$.

Quantitative ergodic theory

> Romain Tessera

(5) by pigeonhole, find a Λ-orbit such that the restriction of F defines a function on Λ whose gradient is controlled by ||∇_{SΛ}F||₁. Recall that {1_Γ} × X is a fundamental domain for the action of Λ. So write for each x ∈ X, F(λ * (1_Γ, x)) = f^x(λ). Note that

$$\left\|\nabla_{S_{\Lambda}}F\right\|_{1} = \int_{X} \left\|\nabla_{S_{\Lambda}}f^{x}\right\|_{1} dx$$

Hence there exists x such that $\|\nabla_{S_{\Lambda}}f^{x}\|_{1} \leq \|\nabla_{S_{\Lambda}}F\|_{1} \leq C \|\nabla_{S_{\Gamma}}f\|_{1}$.

(6) Now we must show that $||f_x|| \ge ||f||$, and that $|\operatorname{supp}(f_x)| \le |\operatorname{supp}(f)|$. But we actually have equality in both cases!

Quantitative ergodic theory

> Romain Tessera

(5) by pigeonhole, find a Λ-orbit such that the restriction of F defines a function on Λ whose gradient is controlled by ||∇_{SΛ}F||₁. Recall that {1_Γ} × X is a fundamental domain for the action of Λ. So write for each x ∈ X, F(λ * (1_Γ, x)) = f^x(λ). Note that

$$\left\|\nabla_{S_{\Lambda}}F\right\|_{1} = \int_{X} \left\|\nabla_{S_{\Lambda}}f^{x}\right\|_{1} dx$$

Hence there exists x such that $\|\nabla_{S_{\Lambda}} f^{x}\|_{1} \leq \|\nabla_{S_{\Lambda}} F\|_{1} \leq C \|\nabla_{S_{\Gamma}} f\|_{1}$.

(6) Now we must show that $||f_x|| \ge ||f||$, and that $|\operatorname{supp}(f_x)| \le |\operatorname{supp}(f)|$. But we actually have equality in both cases! Indeed:

$$f^{\times}(\lambda) = F(\lambda \star (1_{\Gamma}, x)) = F(\alpha(\lambda, x), x) = f(\alpha(x, \lambda)^{-1}).$$

Quantitative ergodic theory

> Romain Tessera

(5) by pigeonhole, find a Λ -orbit such that the restriction of F defines a function on Λ whose gradient is controlled by $\left\|\nabla_{S_{\Lambda}}F\right\|_{1}$. Recall that $\{1_{\Gamma}\} \times X$ is a fundamental domain for the action of Λ . So write for each $x \in X$, $F(\lambda \star (1_{\Gamma}, x)) = f^{x}(\lambda)$. Note that

$$\left\|\nabla_{S_{\Lambda}}F\right\|_{1} = \int_{X} \left\|\nabla_{S_{\Lambda}}f^{x}\right\|_{1} dx$$

Hence there exists x such that $\|\nabla_{S_{\Lambda}}f^{x}\|_{1} \leq \|\nabla_{S_{\Lambda}}F\|_{1} \leq C \|\nabla_{S_{\Gamma}}f\|_{1}$.

(6) Now we must show that $||f_x|| \ge ||f||$, and that $||\sup(f_x)| \le |\sup(f)|$. But we actually have equality in both cases! Indeed:

$$f^{\times}(\lambda) = F(\lambda \star (1_{\Gamma}, x)) = F(\alpha(\lambda, x), x) = f(\alpha(x, \lambda)^{-1}).$$

Since $\alpha(\cdot, x)$ is a bijection, we deduce that $||f_x|| = ||f||$ and $|\operatorname{supp}(f_x)| = |\operatorname{supp}(f)|$.

Quantitative ergodic theory

Romain Tessera

Quantitative ergodic theory

- (7) Put things together:
 - Since f realizes $F \emptyset I_{\Gamma}(k)$, we have $k = \frac{\|f\|}{\|\nabla S_{\Gamma} f\|_{1}}$ and $F \emptyset I_{\Gamma}(k) = |\text{supp}(f)|$.

Quantitative ergodic theory

- (7) Put things together:
 - Since f realizes $F \emptyset I_{\Gamma}(k)$, we have $k = \frac{\|f\|}{\|\nabla S_{\Gamma} f\|_{1}}$ and $F \emptyset I_{\Gamma}(k) = |\text{supp}(f)|$.
 - We have proved (5) that $\left\| \nabla_{\mathcal{S}_{\Lambda}} f^{x} \right\|_{1} \leq C \left\| \nabla_{\mathcal{S}_{\Gamma}} f \right\|_{1}$.

Quantitative ergodic theory

- (7) Put things together:
 - Since f realizes $F \emptyset I_{\Gamma}(k)$, we have $k = \frac{\|f\|}{\|\nabla_{S_{\Gamma}} f\|_{\bullet}}$ and $F \emptyset I_{\Gamma}(k) = |\text{supp}(f)|$.
 - We have proved (5) that $\|\nabla_{S_{\Lambda}} f^{\times}\|_{1} \leq C \|\nabla_{S_{\Gamma}} f\|_{1}$.
 - We have proved (6) that $||f_x|| = ||f||$ and $|\operatorname{supp}(f_x)| = |\operatorname{supp}(f)|$.

Quantitative ergodic theory

> Romain Tessera

- Since f realizes $F \emptyset I_{\Gamma}(k)$, we have $k = \frac{\|f\|}{\|\nabla_{S_{\Gamma}} f\|_{-}}$ and $F \emptyset I_{\Gamma}(k) = |\text{supp}(f)|$.
- We have proved (5) that $\|\nabla_{S_{\Lambda}}f^{\times}\|_{1} \leq C \|\nabla_{S_{\Gamma}}f\|_{1}$.
- We have proved (6) that $||f_x|| = ||f||$ and $|\operatorname{supp}(f_x)| = |\operatorname{supp}(f)|$.
- Hence:

$$F \emptyset I_{\Gamma}(k) = |\operatorname{supp}(f)|$$

Quantitative ergodic theory

> Romain Tessera

- Since f realizes $F \emptyset I_{\Gamma}(k)$, we have $k = \frac{\|f\|}{\|\nabla_{S_{\Gamma}} f\|_{\bullet}}$ and $F \emptyset I_{\Gamma}(k) = |\text{supp}(f)|$.
- We have proved (5) that $\|\nabla_{S_{\Lambda}}f^{\times}\|_{1} \leq C \|\nabla_{S_{\Gamma}}f\|_{1}$.
- We have proved (6) that $||f_x|| = ||f||$ and $|\operatorname{supp}(f_x)| = |\operatorname{supp}(f)|$.
- Hence:

$$F \emptyset I_{\Gamma}(k) = |\operatorname{supp}(f)| = |\operatorname{supp}(f^{\times})|$$

Quantitative ergodic theory

Romain Tessera

- Since f realizes $F \emptyset I_{\Gamma}(k)$, we have $k = \frac{\|f\|}{\|\nabla S_{\Gamma} f\|_{\bullet}}$ and $F \emptyset I_{\Gamma}(k) = |\text{supp}(f)|$.
- We have proved (5) that $\left\| \nabla_{S_{\Lambda}} f^{\times} \right\|_{1} \leq C \left\| \nabla_{S_{\Gamma}} f \right\|_{1}$.
- We have proved (6) that $||f_x|| = ||f||$ and $|\operatorname{supp}(f_x)| = |\operatorname{supp}(f)|$.
- Hence:

$$F \emptyset I_{\Gamma}(k) = |\operatorname{supp}(f)| = |\operatorname{supp}(f^{\times})| \ge F \emptyset I_{\Lambda} \left(\frac{\|f^{\times}\|}{\|\nabla_{S_{\Lambda}} f^{\times}\|_{1}} \right)$$

Quantitative ergodic theory

- (7) Put things together:
 - Since f realizes $F \emptyset I_{\Gamma}(k)$, we have $k = \frac{\|f\|}{\|\nabla S_{\Gamma} f\|_{\bullet}}$ and $F \emptyset I_{\Gamma}(k) = |\text{supp}(f)|$.
 - We have proved (5) that $\left\| \nabla_{S_{\Lambda}} f^{\times} \right\|_{1} \leq C \left\| \nabla_{S_{\Gamma}} f \right\|_{1}$.
 - We have proved (6) that $||f_x|| = ||f||$ and $|\operatorname{supp}(f_x)| = |\operatorname{supp}(f)|$.
 - Hence:

$$F \emptyset I_{\Gamma}(k) = |\operatorname{supp}(f)| = |\operatorname{supp}(f^{\times})| \ge F \emptyset I_{\Lambda}\left(\frac{\|f^{\times}\|}{\left\|\nabla S_{\Lambda}f^{\times}\right\|_{1}}\right) \ge F \emptyset I_{\Lambda}(k/C).$$

Quantitative ergodic theory

Romain Tessera

Corollary

■ Let $d, k \in \mathbb{N}$. If there exists an (L^p, L^0) -OE from \mathbb{Z}^{d+k} to \mathbb{Z}^d , then $p \le d/(d+k)$.

Quantitative ergodic theory

> Romain Tessera

Corollary

- Let $d, k \in \mathbb{N}$. If there exists an (L^p, L^0) -OE from \mathbb{Z}^{d+k} to \mathbb{Z}^d , then $p \le d/(d+k)$.
- Let $d, k \in \mathbb{N}$. If there exists an (L^p, L^0) -OE from $F \wr \mathbb{Z}^{d+k}$ to $F \wr \mathbb{Z}^d$, then $p \le d/(d+k)$.

Quantitative ergodic theory

> Romain Tessera

Corollary

- Let $d, k \in \mathbb{N}$. If there exists an (L^p, L^0) -OE from \mathbb{Z}^{d+k} to \mathbb{Z}^d , then $p \le d/(d+k)$.
- Let $d, k \in \mathbb{N}$. If there exists an (L^p, L^0) -OE from $F \wr \mathbb{Z}^{d+k}$ to $F \wr \mathbb{Z}^d$, then $p \le d/(d+k)$.
- If Λ has exponential growth and if there is a (φ, L^0) -OE from Λ to \mathbb{Z} , then $\varphi(n) \lesssim \log n$.

Quantitative ergodic theory

> Romain Tessera

Corollary

- Let $d, k \in \mathbb{N}$. If there exists an (L^p, L^0) -OE from \mathbb{Z}^{d+k} to \mathbb{Z}^d , then $p \le d/(d+k)$.
- Let $d, k \in \mathbb{N}$. If there exists an (L^p, L^0) -OE from $F \wr \mathbb{Z}^{d+k}$ to $F \wr \mathbb{Z}^d$, then $p \le d/(d+k)$.
- If Λ has exponential growth and if there is a (φ, L^0) -OE from Λ to \mathbb{Z} , then $\varphi(n) \lesssim \log n$.

First case: applying the theorem with $\varphi(t)=t^p$, we have $F \emptyset I_{\mathbb{Z}^{d+k}}(t^p) \lesssim F \emptyset I_{\mathbb{Z}^d}(t)$. Recall that $F \emptyset I_{\mathbb{Z}^d}(t) \approx t^d$. Hence we get $t^{p(d+k)} \lesssim t^d$, from which we deduce that $p(d+k) \leq d$, and $p \leq d/(d+k)$.

Quantitative ergodic theory

> Romain Tessera

Corollary

- Let $d, k \in \mathbb{N}$. If there exists an (L^p, L^0) -OE from \mathbb{Z}^{d+k} to \mathbb{Z}^d , then $p \le d/(d+k)$.
- Let $d, k \in \mathbb{N}$. If there exists an (L^p, L^0) -OE from $F \wr \mathbb{Z}^{d+k}$ to $F \wr \mathbb{Z}^d$, then $p \le d/(d+k)$.
- If Λ has exponential growth and if there is a (φ, L^0) -OE from Λ to \mathbb{Z} , then $\varphi(n) \lesssim \log n$.

First case: applying the theorem with $\varphi(t)=t^p$, we have $F \emptyset I_{\mathbb{Z}^{d+k}}(t^p) \lesssim F \emptyset I_{\mathbb{Z}^d}(t)$. Recall that $F \emptyset I_{\mathbb{Z}^d}(t) \approx t^d$. Hence we get $t^{p(d+k)} \lesssim t^d$, from which we deduce that $p(d+k) \leq d$, and $p \leq d/(d+k)$.

Second case: same using that $F \emptyset I_{F} \otimes e^{t^d}$.

Quantitative ergodic theory

> Romain Tessera

Corollary

- Let $d, k \in \mathbb{N}$. If there exists an (L^p, L^0) -OE from \mathbb{Z}^{d+k} to \mathbb{Z}^d , then $p \le d/(d+k)$.
- Let $d, k \in \mathbb{N}$. If there exists an (L^p, L^0) -OE from $F \wr \mathbb{Z}^{d+k}$ to $F \wr \mathbb{Z}^d$, then $p \le d/(d+k)$.
- If Λ has exponential growth and if there is a (φ, L^0) -OE from Λ to \mathbb{Z} , then $\varphi(n) \lesssim \log n$.

First case: applying the theorem with $\varphi(t)=t^p$, we have $F \emptyset I_{\mathbb{Z}^{d+k}}(t^p) \lesssim F \emptyset I_{\mathbb{Z}^d}(t)$. Recall that $F \emptyset I_{\mathbb{Z}^d}(t) \approx t^d$. Hence we get $t^{p(d+k)} \lesssim t^d$, from which we deduce that $p(d+k) \leq d$, and $p \leq d/(d+k)$.

Second case: same using that $F \emptyset I_{F \setminus \mathbb{Z}, d}(t) \approx e^{t^d}$.

Third case: using $Vol_{\Lambda} \lesssim F \emptyset l_{\Lambda}$, we get by the theorem $\exp \circ \varphi(t) \lesssim t$. So $\varphi(t) \lesssim \log t$.

Quantitative ergodic theory

> Romain Tessera

Corollary

- Let $d, k \in \mathbb{N}$. If there exists an (L^p, L^0) -OE from \mathbb{Z}^{d+k} to \mathbb{Z}^d , then $p \le d/(d+k)$.
- Let $d, k \in \mathbb{N}$. If there exists an (L^p, L^0) -OE from $F \wr \mathbb{Z}^{d+k}$ to $F \wr \mathbb{Z}^d$, then $p \le d/(d+k)$.
- If Λ has exponential growth and if there is a (φ, L^0) -OE from Λ to \mathbb{Z} , then $\varphi(n) \lesssim \log n$.

The previous result are nearly optimal in a number of situation. For instance

Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

■ Let $d, k' \in \mathbb{N}$. Then \mathbb{Z}^d and \mathbb{Z}^{d+k} are L^p -OE for all p < d/(d+k).

Quantitative ergodic theory

> Romain Tessera

Corollary

- Let $d, k \in \mathbb{N}$. If there exists an (L^p, L^0) -OE from \mathbb{Z}^{d+k} to \mathbb{Z}^d , then $p \le d/(d+k)$.
- Let $d, k \in \mathbb{N}$. If there exists an (L^p, L^0) -OE from $F \wr \mathbb{Z}^{d+k}$ to $F \wr \mathbb{Z}^d$, then $p \le d/(d+k)$.
- If Λ has exponential growth and if there is a (φ, L^0) -OE from Λ to \mathbb{Z} , then $\varphi(n) \lesssim \log n$.

The previous result are nearly optimal in a number of situation. For instance

Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

- Let $d, k' \in \mathbb{N}$. Then \mathbb{Z}^d and \mathbb{Z}^{d+k} are L^p -OE for all p < d/(d+k).
- Let $d, k' \in \mathbb{N}$. Then $F \wr \mathbb{Z}^{d+k}$ and $F \wr \mathbb{Z}^d$ are L^p -OE for all p < d/(d+k).

Quantitative ergodic theory

> Romain Tessera

Corollary

- Let $d, k \in \mathbb{N}$. If there exists an (L^p, L^0) -OE from \mathbb{Z}^{d+k} to \mathbb{Z}^d , then $p \le d/(d+k)$.
- Let $d, k \in \mathbb{N}$. If there exists an (L^p, L^0) -OE from $F \wr \mathbb{Z}^{d+k}$ to $F \wr \mathbb{Z}^d$, then $p \le d/(d+k)$.
- If Λ has exponential growth and if there is a (φ, L^0) -OE from Λ to \mathbb{Z} , then $\varphi(n) \lesssim \log n$.

The previous result are nearly optimal in a number of situation. For instance

Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

- Let $d, k' \in \mathbb{N}$. Then \mathbb{Z}^d and \mathbb{Z}^{d+k} are L^p -OE for all p < d/(d+k).
- Let $d, k' \in \mathbb{N}$. Then $F \wr \mathbb{Z}^{d+k}$ and $F \wr \mathbb{Z}^d$ are L^p -OE for all p < d/(d+k).
- The lamplighter group and $\mathbb Z$ are $\log n^{1-\varepsilon}$ -OE for all $\varepsilon > 0$.

Constructing an OE between \mathbb{Z} and \mathbb{Z}^2

Quantitative ergodic theory

> Romain Tessera

Preliminaries:

■ The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows.

Constructing an OE between \mathbb{Z} and \mathbb{Z}^2

Quantitative ergodic theory

> Romain Tessera

Preliminaries:

■ The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:

$$a \cdot (0,0,0,1,\ldots) = (1,0,0,1\ldots)$$

Quantitative ergodic theory

> Romain Tessera

Preliminaries:

■ The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:

$$\textbf{a} \cdot (0,0,0,1,\ldots) = (1,0,0,1\ldots)$$

$$a \cdot (1,0,0,\ldots) = (0,1,0,\ldots)$$

Quantitative ergodic theory

> Romain Tessera

Preliminaries:

■ The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:

$$a\cdot (0,0,0,1,\ldots) = (1,0,0,1\ldots)$$

$$\textbf{\textit{a}}\cdot(1,0,0,\ldots)=(0,1,0,\ldots)$$

$$a\cdot (1,1,1,0,\ldots) =$$

Quantitative ergodic theory

> Romain Tessera

Preliminaries:

■ The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:

```
\textbf{a} \cdot (0,0,0,1,\ldots) = (1,0,0,1\ldots)
```

$$a \cdot (1,0,0,\ldots) = (0,1,0,\ldots)$$

$$a \cdot (1, 1, 1, 0, \ldots) = (0, 0, 0, 1, \ldots)$$

Quantitative ergodic theory

Romain Tessera

Preliminaries:

■ The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:

```
\begin{array}{l} a \cdot (0,0,0,1,\ldots) = (1,0,0,1\ldots) \\ a \cdot (1,0,0,\ldots) = (0,1,0,\ldots) \\ a \cdot (1,1,1,0,\ldots) = (0,0,0,1,\ldots) \end{array}
```

■ The 4-odometer: : consider the action of \mathbb{Z} on the $\{0,1,2,3\}^{\mathbb{N}}$, defined as follows. $a\cdot (1,2,0,3,\ldots)=$

Quantitative ergodic theory

Romain Tessera

Preliminaries:

■ The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:

```
\begin{array}{l} a \cdot (0,0,0,1,\ldots) = (1,0,0,1\ldots) \\ a \cdot (1,0,0,\ldots) = (0,1,0,\ldots) \\ a \cdot (1,1,1,0,\ldots) = (0,0,0,1,\ldots) \end{array}
```

■ The 4-odometer: : consider the action of \mathbb{Z} on the $\{0,1,2,3\}^{\mathbb{N}}$, defined as follows. $a \cdot (1,2,0,3,\ldots) = (2,2,0,3,\ldots)$

Quantitative ergodic theory

> Romain Tessera

Preliminaries:

■ The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:

```
\begin{array}{l} a \cdot (0,0,0,1,\ldots) = (1,0,0,1\ldots) \\ a \cdot (1,0,0,\ldots) = (0,1,0,\ldots) \\ a \cdot (1,1,1,0,\ldots) = (0,0,0,1,\ldots) \end{array}
```

■ The 4-odometer: : consider the action of \mathbb{Z} on the $\{0,1,2,3\}^{\mathbb{N}}$, defined as follows. $a \cdot (1,2,0,3,\ldots) = (2,2,0,3,\ldots)$ $a \cdot (3,1,2,0,\ldots) =$

Quantitative ergodic theory

> Romain Tessera

Preliminaries:

■ The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:

```
\begin{array}{l} a \cdot (0,0,0,1,\ldots) = (1,0,0,1\ldots) \\ a \cdot (1,0,0,\ldots) = (0,1,0,\ldots) \\ a \cdot (1,1,1,0,\ldots) = (0,0,0,1,\ldots) \end{array}
```

■ The 4-odometer: : consider the action of \mathbb{Z} on the $\{0,1,2,3\}^{\mathbb{N}}$, defined as follows. $a \cdot (1,2,0,3,\ldots) = (2,2,0,3,\ldots)$ $a \cdot (3,1,2,0,\ldots) = (0,2,2,0,\ldots)$

Quantitative ergodic theory

Romain Tessera

Preliminaries:

■ The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:

```
\begin{array}{l} a \cdot (0,0,0,1,\ldots) = (1,0,0,1\ldots) \\ a \cdot (1,0,0,\ldots) = (0,1,0,\ldots) \\ a \cdot (1,1,1,0,\ldots) = (0,0,0,1,\ldots) \end{array}
```

■ The 4-odometer: : consider the action of \mathbb{Z} on the $\{0,1,2,3\}^{\mathbb{N}}$, defined as follows. $a \cdot (1,2,0,3,\ldots) = (2,2,0,3,\ldots)$

$$a \cdot (3, 1, 2, 0, \ldots) = (0, 2, 2, 0, \ldots)$$

$$a \cdot (3,3,3,3,1,0,\ldots) =$$

Quantitative ergodic theory

Romain

Preliminaries:

■ The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:

```
a \cdot (0, 0, 0, 1, \ldots) = (1, 0, 0, 1 \ldots)
a \cdot (1,0,0,\ldots) = (0,1,0,\ldots)
a \cdot (1, 1, 1, 0, \ldots) = (0, 0, 0, 1, \ldots)
```

■ The 4-odometer: : consider the action of \mathbb{Z} on the $\{0,1,2,3\}^{\mathbb{N}}$, defined as follows. $a \cdot (1, 2, 0, 3, ...) = (2, 2, 0, 3, ...)$

```
a \cdot (3, 1, 2, 0, \ldots) = (0, 2, 2, 0, \ldots)
```

$$a \cdot (3,3,3,3,1,0,\ldots) = (0,0,0,0,2,0,\ldots)$$

Quantitative ergodic theory

> Romain Tessera

Preliminaries:

■ The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:

$$\begin{array}{l} a \cdot (0, 0, 0, 1, \ldots) = (1, 0, 0, 1, \ldots) \\ a \cdot (1, 0, 0, \ldots) = (0, 1, 0, \ldots) \\ a \cdot (1, 1, 1, 0, \ldots) = (0, 0, 0, 1, \ldots) \end{array}$$

■ The 4-odometer: : consider the action of \mathbb{Z} on the $\{0,1,2,3\}^{\mathbb{N}}$, defined as follows. $a \cdot (1,2,0,3,\ldots) = (2,2,0,3,\ldots)$

$$a \cdot (3,1,2,0,\ldots) = (0,2,2,0,\ldots) a \cdot (3,3,3,3,1,0,\ldots) = (0,0,0,0,2,0,\ldots)$$

These actions preserve the product measure on $\{0,1\}^{\mathbb{N}}$ and $\{0,1,2,3\}^{\mathbb{N}}.$

Quantitative ergodic theory

> Romain Tessera

Preliminaries:

■ The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:

$$\begin{array}{l} a \cdot (0, 0, 0, 1, \ldots) = (1, 0, 0, 1, \ldots) \\ a \cdot (1, 0, 0, \ldots) = (0, 1, 0, \ldots) \\ a \cdot (1, 1, 1, 0, \ldots) = (0, 0, 0, 1, \ldots) \end{array}$$

■ The 4-odometer: : consider the action of $\mathbb Z$ on the $\{0,1,2,3\}^{\mathbb N}$, defined as follows. $a\cdot(1,2,0,3,\ldots)=(2,2,0,3,\ldots)$

$$\begin{array}{l} a \cdot (3,1,2,0,\ldots) = (0,2,2,0,\ldots) \\ a \cdot (3,3,3,3,1,0,\ldots) = (0,0,0,0,2,0,\ldots) \end{array}$$

These actions preserve the product measure on $\{0,1\}^{\mathbb{N}}$ and $\{0,1,2,3\}^{\mathbb{N}}.$

Two sequences belong to the **same orbit** if and only if they differ by at most finitely many coordinates.

Quantitative ergodic theory

> Romain Tessera

Preliminaries:

■ The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:

$$\begin{array}{l} a \cdot (0,0,0,1,\ldots) = (1,0,0,1\ldots) \\ a \cdot (1,0,0,\ldots) = (0,1,0,\ldots) \\ a \cdot (1,1,1,0,\ldots) = (0,0,0,1,\ldots) \end{array}$$

■ The 4-odometer: : consider the action of $\mathbb Z$ on the $\{0,1,2,3\}^{\mathbb N}$, defined as follows. $a\cdot(1,2,0,3,\ldots)=(2,2,0,3,\ldots)$

$$a \cdot (3, 1, 2, 0, \ldots) = (0, 2, 2, 0, \ldots)$$

$$a \cdot (3, 3, 3, 3, 1, 0, \ldots) = (0, 0, 0, 0, 2, 0, \ldots)$$

These actions preserve the product measure on $\{0,1\}^{\mathbb{N}}$ and $\{0,1,2,3\}^{\mathbb{N}}.$

Two sequences belong to the **same orbit** if and only if they differ by at most finitely many coordinates.

The *d*-odometer is the action of \mathbb{Z} by translation on \mathbb{Z}_d (the ring of d-adic numbers).

Quantitative ergodic theory

> Romain Tessera

The actions of \mathbb{Z} and \mathbb{Z}^2 :

 \blacksquare We let $\mathbb Z$ acts on the 4-odometer: $\{0,1,2,3\}^{\mathbb N}$

Quantitative ergodic theory

> Romain Tessera

The actions of \mathbb{Z} and \mathbb{Z}^2 :

- \blacksquare We let $\mathbb Z$ acts on the 4-odometer: $\{0,1,2,3\}^{\mathbb N}$
- \blacksquare We let \mathbb{Z}^2 acts on a product of 2-odometers: $\{0,1\}^\mathbb{N}\times\{0,1\}^\mathbb{N}.$

Quantitative ergodic theory

> Romain Tessera

The actions of \mathbb{Z} and \mathbb{Z}^2 :

- \blacksquare We let $\mathbb Z$ acts on the 4-odometer: $\{0,1,2,3\}^{\mathbb N}$
- $\blacksquare \mbox{ We let } \mathbb{Z}^2 \mbox{ acts on a product of 2-odometers: } \{0,1\}^\mathbb{N} \times \{0,1\}^\mathbb{N}.$

The orbit equivalence: $F:\{0,1\}^{\mathbb{N}}\times\{0,1\}^{\mathbb{N}}\to\{0,1,2,3\}^{\mathbb{N}}$ is defined

$$F(x,y)=x+2y.$$

Quantitative ergodic theory

> Romain Tessera

The actions of \mathbb{Z} and \mathbb{Z}^2 :

- \blacksquare We let $\mathbb Z$ acts on the 4-odometer: $\{0,1,2,3\}^{\mathbb N}$
- $\blacksquare \ \ \text{We let} \ \mathbb{Z}^2 \ \text{acts on a product of 2-odometers:} \ \{0,1\}^\mathbb{N} \times \{0,1\}^\mathbb{N}.$

The orbit equivalence: $F:\{0,1\}^{\mathbb{N}}\times\{0,1\}^{\mathbb{N}}\to\{0,1,2,3\}^{\mathbb{N}}$ is defined

$$F(x,y)=x+2y.$$

Example: if x = (0, 1, 1, ...), y = (1, 0, 1, ...), then

$$F(x,y) = (0+2,1+0,1+2,\ldots) = (2,1,3,\ldots).$$

Proposition

This OE from \mathbb{Z}^2 to \mathbb{Z} is $(L^{1/2-\varepsilon}, L^{2-\varepsilon})$ for all $\varepsilon > 0$.

Quantitative ergodic theory

Romain Tessera

Prove that the bounds given by the Corollary are optimal.

Quantitative ergodic theory

Romain Tessera

■ Prove that the bounds given by the Corollary are optimal. E.g. construct an OE from \mathbb{Z}^2 to \mathbb{Z} which is $(L^{1/2}, L^0)$.

Quantitative ergodic theory

- Prove that the bounds given by the Corollary are optimal. E.g. construct an OE from \mathbb{Z}^2 to \mathbb{Z} which is $(L^{1/2}, L^0)$.
- \blacksquare Find a OE between different odometers over $\mathbb Z$ (or $\mathbb Z^d)$ with good integrability conditions.

Quantitative ergodic theory

- Prove that the bounds given by the Corollary are optimal. E.g. construct an OE from \mathbb{Z}^2 to \mathbb{Z} which is $(L^{1/2}, L^0)$.
- Find a OE between different odometers over \mathbb{Z} (or \mathbb{Z}^d) with good integrability conditions. E.g. construct an OE from the 2-odometer to the 3-odometer.

Quantitative ergodic theory

- Prove that the bounds given by the Corollary are optimal. E.g. construct an OE from \mathbb{Z}^2 to \mathbb{Z} which is $(L^{1/2}, L^0)$.
- Find a OE between different odometers over \mathbb{Z} (or \mathbb{Z}^d) with good integrability conditions. E.g. construct an OE from the 2-odometer to the 3-odometer.
- What is the best integrability of an OE between the Bernoulli shifts $\{1,2\}^{\mathbb{Z}}$ and $\{1,2,3\}^{\mathbb{Z}}$?

Quantitative ergodic theory

- Prove that the bounds given by the Corollary are optimal. E.g. construct an OE from \mathbb{Z}^2 to \mathbb{Z} which is $(L^{1/2}, L^0)$.
- Find a OE between different odometers over \mathbb{Z} (or \mathbb{Z}^d) with good integrability conditions. E.g. construct an OE from the 2-odometer to the 3-odometer.
- What is the best integrability of an OE between the Bernoulli shifts $\{1,2\}^{\mathbb{Z}}$ and $\{1,2,3\}^{\mathbb{Z}}$? Partial answer: cannot be log-integrable (Kerr-Li), because the entropy is preserved.

Quantitative ergodic theory

- Prove that the bounds given by the Corollary are optimal. E.g. construct an OE from \mathbb{Z}^2 to \mathbb{Z} which is $(L^{1/2}, L^0)$.
- Find a OE between different odometers over \mathbb{Z} (or \mathbb{Z}^d) with good integrability conditions. E.g. construct an OE from the 2-odometer to the 3-odometer.
- What is the best integrability of an OE between the Bernoulli shifts $\{1,2\}^{\mathbb{Z}}$ and $\{1,2,3\}^{\mathbb{Z}}$? Partial answer: cannot be log-integrable (Kerr-Li), because the entropy is preserved.
- What is the best integrability of an OE between the Bernoulli shifts $\{1,2\}^{\mathbb{Z}}$ and $\{1,2\}^{\mathbb{Z}^2}$?