Quantitative ergodic theory

Romain Tessera

CNRS, Université Paris Cité et Sorbonne Université

20/02/24

Group actions preserving a probability

- Λ a countable group (examples: $\mathbb{Z}, \mathbb{Z}^{d}$, free group on k generators F_{k}),

Group actions preserving a probability

Quantitative ergodic theory

Romain

- Λ a countable group (examples: $\mathbb{Z}, \mathbb{Z}^{d}$, free group on k generators F_{k}),

Tessera
■ (X, μ) probability space (example: $\left(S^{1}, \lambda\right)$ where λ is Lebesgue measure, $\{0,1\}^{\wedge}$, equipped with the product measure),

Group actions preserving a probability

Quantitative ergodic theory

Romain
Tessera

■ Λ a countable group (examples: $\mathbb{Z}, \mathbb{Z}^{d}$, free group on k generators F_{k}),
■ (X, μ) probability space (example: $\left(S^{1}, \lambda\right)$ where λ is Lebesgue measure, $\{0,1\}^{\wedge}$, equipped with the product measure),

- An pmp action $\Lambda \curvearrowright(X, \mu)$: i.e. a free measure-preserving action.

Group actions preserving a probability

Quantitative ergodic theory

Romain
Tessera

■ Λ a countable group (examples: $\mathbb{Z}, \mathbb{Z}^{d}$, free group on k generators F_{k}),

- (X, μ) probability space (example: $\left(S^{1}, \lambda\right)$ where λ is Lebesgue measure, $\{0,1\}^{\wedge}$, equipped with the product measure),
- An pmp action $\Lambda \curvearrowright(X, \mu)$: i.e. a free measure-preserving action.

Exemples

- Rotations: $\mathbb{Z} \curvearrowright\left(S^{1}, \lambda\right)$ generated by an irrational rotation,

Group actions preserving a probability

Quantitative ergodic theory

Romain
Tessera

■ Λ a countable group (examples: $\mathbb{Z}, \mathbb{Z}^{d}$, free group on k generators F_{k}),

- (X, μ) probability space (example: $\left(S^{1}, \lambda\right)$ where λ is Lebesgue measure, $\{0,1\}^{\wedge}$, equipped with the product measure),
- An pmp action $\Lambda \curvearrowright(X, \mu)$: i.e. a free measure-preserving action.

Exemples

- Rotations: $\mathbb{Z} \curvearrowright\left(S^{1}, \lambda\right)$ generated by an irrational rotation,
- Bernoulli shift: $\wedge \curvearrowright\{0,1\}^{\wedge}$.

Group actions preserving a probability

Quantitative ergodic theory

Romain
Tessera

- Λ a countable group (examples: $\mathbb{Z}, \mathbb{Z}^{d}$, free group on k generators F_{k}),
- (X, μ) probability space (example: $\left(S^{1}, \lambda\right)$ where λ is Lebesgue measure, $\{0,1\}^{\wedge}$, equipped with the product measure),
- An pmp action $\Lambda \curvearrowright(X, \mu)$: i.e. a free measure-preserving action.

Exemples

- Rotations: $\mathbb{Z} \curvearrowright\left(S^{1}, \lambda\right)$ generated by an irrational rotation,
- Bernoulli shift: $\wedge \curvearrowright\{0,1\}^{\wedge}$.

Context:

- Ergodic theory,
- Representation theory,
- Operator algebras,
- Percolation theory (probabilities),
- Lattices in Lie groups...

Orbit equivalence

Quantitative ergodic theory

Romain
Tessera

Definition (Isomorphism)

Two pmp actions $\Lambda \curvearrowright(X, \mu)$ and $\Gamma \curvearrowright(Y, \nu)$ are isomorphic, if there exist isomorphisms $\Psi:(X, \mu) \rightarrow(Y, \nu)$, and $\theta: \Lambda \rightarrow \Gamma$ such that

Orbit equivalence

Quantitative
ergodic
theory

Romain
Tessera

Definition (Isomorphism)

Two pmp actions $\Lambda \curvearrowright(X, \mu)$ and $\Gamma \curvearrowright(Y, \nu)$ are isomorphic, if there exist isomorphisms $\Psi:(X, \mu) \rightarrow(Y, \nu)$, and $\theta: \Lambda \rightarrow \Gamma$ such that for a.e. $x \in X$, and all $\lambda \in \Lambda$,

Orbit equivalence

Quantitative
ergodic
theory

Romain
Tessera

Definition (Isomorphism)

Two pmp actions $\Lambda \curvearrowright(X, \mu)$ and $\Gamma \curvearrowright(Y, \nu)$ are isomorphic, if there exist isomorphisms $\Psi:(X, \mu) \rightarrow(Y, \nu)$, and $\theta: \Lambda \rightarrow \Gamma$ such that for a.e. $x \in X$, and all $\lambda \in \Lambda$,

$$
\Psi(\lambda \cdot x)=\theta(\lambda) \cdot \Psi(x)
$$

Orbit equivalence

Quantitative
ergodic
theory

Romain
Tessera

Definition (Isomorphism)

Two pmp actions $\Lambda \curvearrowright(X, \mu)$ and $\Gamma \curvearrowright(Y, \nu)$ are isomorphic, if there exist isomorphisms $\Psi:(X, \mu) \rightarrow(Y, \nu)$, and $\theta: \Lambda \rightarrow \Gamma$ such that for a.e. $x \in X$, and all $\lambda \in \Lambda$,

$$
\Psi(\lambda \cdot x)=\theta(\lambda) \cdot \Psi(x)
$$

Orbit equivalence

Quantitative ergodic theory

Romain
Tessera

Definition (Isomorphism)

Two pmp actions $\Lambda \curvearrowright(X, \mu)$ and $\Gamma \curvearrowright(Y, \nu)$ are isomorphic, if there exist isomorphisms $\Psi:(X, \mu) \rightarrow(Y, \nu)$, and $\theta: \Lambda \rightarrow \Gamma$ such that for a.e. $x \in X$, and all $\lambda \in \Lambda$,

$$
\Psi(\lambda \cdot x)=\theta(\lambda) \cdot \Psi(x)
$$

Definition (Orbit equivalence)

Two (free) pmp actions $\Lambda \curvearrowright(X, \mu)$ and $\Gamma \curvearrowright(Y, \nu)$ are orbit equivalent (OE), if there exists an isomorphism (of measure spaces) $\Psi:(X, \mu) \rightarrow(Y, \nu)$ such that for a.e. $x \in X$,

Orbit equivalence

Quantitative ergodic theory

Romain
Tessera

Definition (Isomorphism)

Two pmp actions $\Lambda \curvearrowright(X, \mu)$ and $\Gamma \curvearrowright(Y, \nu)$ are isomorphic, if there exist isomorphisms $\Psi:(X, \mu) \rightarrow(Y, \nu)$, and $\theta: \Lambda \rightarrow \Gamma$ such that for a.e. $x \in X$, and all $\lambda \in \Lambda$,

$$
\Psi(\lambda \cdot x)=\theta(\lambda) \cdot \Psi(x)
$$

Definition (Orbit equivalence)

Two (free) pmp actions $\Lambda \curvearrowright(X, \mu)$ and $\Gamma \curvearrowright(Y, \nu)$ are orbit equivalent (OE), if there exists an isomorphism (of measure spaces) $\Psi:(X, \mu) \rightarrow(Y, \nu)$ such that for a.e. $x \in X$,

$$
\Psi(\Lambda \cdot x)=\Gamma \cdot \Psi(x)
$$

Orbit equivalence

Quantitative ergodic theory

Romain
Tessera

Definition (Isomorphism)

Two pmp actions $\Lambda \curvearrowright(X, \mu)$ and $\Gamma \curvearrowright(Y, \nu)$ are isomorphic, if there exist isomorphisms $\Psi:(X, \mu) \rightarrow(Y, \nu)$, and $\theta: \Lambda \rightarrow \Gamma$ such that for a.e. $x \in X$, and all $\lambda \in \Lambda$,

$$
\Psi(\lambda \cdot x)=\theta(\lambda) \cdot \Psi(x)
$$

Definition (Orbit equivalence)

Two (free) pmp actions $\Lambda \curvearrowright(X, \mu)$ and $\Gamma \curvearrowright(Y, \nu)$ are orbit equivalent (OE), if there exists an isomorphism (of measure spaces) $\Psi:(X, \mu) \rightarrow(Y, \nu)$ such that for a.e. $x \in X$,

$$
\Psi(\Lambda \cdot x)=\Gamma \cdot \Psi(x)
$$

- $\mathbb{Z} \curvearrowright\left(S^{1}, \lambda\right)$ and $\mathbb{Z} \curvearrowright\{0,1\}^{\mathbb{Z}}$ are not isomorphic (spectrum);

Orbit equivalence

Quantitative ergodic theory

Romain
Tessera

Definition (Isomorphism)

Two pmp actions $\Lambda \curvearrowright(X, \mu)$ and $\Gamma \curvearrowright(Y, \nu)$ are isomorphic, if there exist isomorphisms $\Psi:(X, \mu) \rightarrow(Y, \nu)$, and $\theta: \Lambda \rightarrow \Gamma$ such that for a.e. $x \in X$, and all $\lambda \in \Lambda$,

$$
\Psi(\lambda \cdot x)=\theta(\lambda) \cdot \Psi(x)
$$

Definition (Orbit equivalence)

Two (free) pmp actions $\Lambda \curvearrowright(X, \mu)$ and $\Gamma \curvearrowright(Y, \nu)$ are orbit equivalent (OE), if there exists an isomorphism (of measure spaces) $\Psi:(X, \mu) \rightarrow(Y, \nu)$ such that for a.e. $x \in X$,

$$
\Psi(\Lambda \cdot x)=\Gamma \cdot \Psi(x)
$$

- $\mathbb{Z} \curvearrowright\left(S^{1}, \lambda\right)$ and $\mathbb{Z} \curvearrowright\{0,1\}^{\mathbb{Z}}$ are not isomorphic (spectrum);
- $\mathbb{Z} \curvearrowright\{0,1\}^{\mathbb{Z}}$ and $\mathbb{Z} \curvearrowright\{0,1,2\}^{\mathbb{Z}}$ are not isomorphic (Kolmogorov-Sinai).

Orbit equivalence

Quantitative ergodic theory

Romain
Tessera

Definition (Isomorphism)

Two pmp actions $\Lambda \curvearrowright(X, \mu)$ and $\Gamma \curvearrowright(Y, \nu)$ are isomorphic, if there exist isomorphisms $\Psi:(X, \mu) \rightarrow(Y, \nu)$, and $\theta: \Lambda \rightarrow \Gamma$ such that for a.e. $x \in X$, and all $\lambda \in \Lambda$,

$$
\Psi(\lambda \cdot x)=\theta(\lambda) \cdot \Psi(x)
$$

Definition (Orbit equivalence)

Two (free) pmp actions $\Lambda \curvearrowright(X, \mu)$ and $\Gamma \curvearrowright(Y, \nu)$ are orbit equivalent (OE), if there exists an isomorphism (of measure spaces) $\Psi:(X, \mu) \rightarrow(Y, \nu)$ such that for a.e. $x \in X$,

$$
\Psi(\Lambda \cdot x)=\Gamma \cdot \Psi(x)
$$

- $\mathbb{Z} \curvearrowright\left(S^{1}, \lambda\right)$ and $\mathbb{Z} \curvearrowright\{0,1\}^{\mathbb{Z}}$ are not isomorphic (spectrum);
- $\mathbb{Z} \curvearrowright\{0,1\}^{\mathbb{Z}}$ and $\mathbb{Z} \curvearrowright\{0,1,2\}^{\mathbb{Z}}$ are not isomorphic (Kolmogorov-Sinai).
- Any two ergodic pmp actions of \mathbb{Z} are OE (Dye 59).

Amenable groups

Quantitative ergodic theory

Romain
Tessera

Definition

A countable group Λ is amenable if it admits a sequence of "almost-invariant finite subsets" $A_{n} \subset \Lambda$, i.e. such that for all $\lambda \in \Lambda$,

$$
\frac{\left|A_{n} \lambda \Delta A_{n}\right|}{\left|A_{n}\right|} \rightarrow 0 .
$$

($\left(A_{n}\right)$ is called a right FøIner sequence)

Amenable groups

Quantitative ergodic theory

Romain
Tessera

Definition

A countable group Λ is amenable if it admits a sequence of "almost-invariant finite subsets" $A_{n} \subset \Lambda$, i.e. such that for all $\lambda \in \Lambda$,

$$
\frac{\left|A_{n} \lambda \Delta A_{n}\right|}{\left|A_{n}\right|} \rightarrow 0 .
$$

($\left(A_{n}\right)$ is called a right Følner sequence)

Exemples

- \mathbb{Z}^{d}, with $A_{n}=[-n, n]^{d}$;

Amenable groups

Definition

A countable group Λ is amenable if it admits a sequence of "almost-invariant finite subsets" $A_{n} \subset \Lambda$, i.e. such that for all $\lambda \in \Lambda$,

$$
\frac{\left|A_{n} \lambda \Delta A_{n}\right|}{\left|A_{n}\right|} \rightarrow 0 .
$$

($\left(A_{n}\right)$ is called a right Følner sequence)

Exemples

- \mathbb{Z}^{d}, with $A_{n}=[-n, n]^{d}$;
- stable under extension, subgroup, quotient...

Amenable groups

Definition

A countable group Λ is amenable if it admits a sequence of "almost-invariant finite subsets" $A_{n} \subset \Lambda$, i.e. such that for all $\lambda \in \Lambda$,

$$
\frac{\left|A_{n} \lambda \Delta A_{n}\right|}{\left|A_{n}\right|} \rightarrow 0 .
$$

($\left(A_{n}\right)$ is called a right Følner sequence)

Exemples

- \mathbb{Z}^{d}, with $A_{n}=[-n, n]^{d}$;
- stable under extension, subgroup, quotient...
- free groups F_{k} on $k \geq 2$ generators are not amenable.

A famous theorem of Ornstein-Weiss

Quantitative ergodic theory

Romain Tessera

Theorem (Ornstein-Weiss 80)
 Let Λ and Γ be two (infinite) countable amenable groups. Then any pmp ergodic actions $\wedge \curvearrowright(X, \mu)$ and $\Gamma \curvearrowright(Y, \nu)$ are $O E$.

A famous theorem of Ornstein-Weiss

Quantitative ergodic theory

Romain
Tessera

Theorem (Ornstein-Weiss 80)
 Let Λ and Γ be two (infinite) countable amenable groups. Then any pmp ergodic actions $\wedge \curvearrowright(X, \mu)$ and $\Gamma \curvearrowright(Y, \nu)$ are $O E$.

Things are very different for non-amenable groups.

A famous theorem of Ornstein-Weiss

Quantitative ergodic theory

Romain
Tessera

Theorem (Ornstein-Weiss 80)
 Let Λ and Γ be two (infinite) countable amenable groups. Then any pmp ergodic actions $\wedge \curvearrowright(X, \mu)$ and $\Gamma \curvearrowright(Y, \nu)$ are $O E$.

Things are very different for non-amenable groups. For instance

```
Theorem (Gaboriau 00)
If F}\mp@subsup{F}{k}{}\mathrm{ and }\mp@subsup{F}{\mp@subsup{k}{}{\prime}}{}\mathrm{ have OE pmp actions, then }k=\mp@subsup{k}{}{\prime}\mathrm{ .
```


A famous theorem of Ornstein-Weiss

Quantitative ergodic theory

Romain
Tessera

Theorem (Ornstein-Weiss 80)

Let Λ and Γ be two (infinite) countable amenable groups. Then any pmp ergodic actions $\wedge \curvearrowright(X, \mu)$ and $\Gamma \curvearrowright(Y, \nu)$ are $O E$.

Things are very different for non-amenable groups. For instance

Theorem (Gaboriau 00)

If F_{k} and $F_{k^{\prime}}$ have $O E p m p$ actions, then $k=k^{\prime}$.

Problem

Is-this the end of the story for amenable groups?
To try to answer (negatively) this question, we address the following points:

- quantify orbit equivalence: add "constraints" on the orbit-equivalence relation.

A famous theorem of Ornstein-Weiss

Quantitative ergodic theory

Romain
Tessera

Theorem (Ornstein-Weiss 80)

Let Λ and Γ be two (infinite) countable amenable groups. Then any pmp ergodic actions $\wedge \curvearrowright(X, \mu)$ and $\Gamma \curvearrowright(Y, \nu)$ are $O E$.

Things are very different for non-amenable groups. For instance

Theorem (Gaboriau 00)

If F_{k} and $F_{k^{\prime}}$ have $O E p m p$ actions, then $k=k^{\prime}$.

Problem

Is-this the end of the story for amenable groups?
To try to answer (negatively) this question, we address the following points:

- quantify orbit equivalence: add "constraints" on the orbit-equivalence relation.
- quantify amenability: e.g.: find a ways to say that \mathbb{Z} is "more amenable" than \mathbb{Z}^{2};

A famous theorem of Ornstein-Weiss

Quantitative ergodic theory

Romain
Tessera

Theorem (Ornstein-Weiss 80)

Let Λ and Γ be two (infinite) countable amenable groups. Then any pmp ergodic actions $\wedge \curvearrowright(X, \mu)$ and $\Gamma \curvearrowright(Y, \nu)$ are $O E$.

Things are very different for non-amenable groups. For instance

Theorem (Gaboriau 00)

If F_{k} and $F_{k^{\prime}}$ have $O E p m p$ actions, then $k=k^{\prime}$.

Problem

Is-this the end of the story for amenable groups?
To try to answer (negatively) this question, we address the following points:

- quantify orbit equivalence: add "constraints" on the orbit-equivalence relation.
- quantify amenability: e.g.: find a ways to say that \mathbb{Z} is "more amenable" than \mathbb{Z}^{2};

Orbit equivalence cocycles

Quantitative ergodic theory

Romain
Tessera

Problem: find a substitute for the lack of isomorphism between Λ and Γ.

Orbit equivalence cocycles

Quantitative ergodic theory

Romain
Tessera

Problem: find a substitute for the lack of isomorphism between Λ and Γ.

Definition (Cocycle)

$\Lambda, \Gamma \curvearrowright X$ with (a.e.) same orbits. Define $\alpha: \Lambda \times X \rightarrow \Gamma$ by:

Orbit equivalence cocycles

Quantitative ergodic theory

Romain
Tessera

Problem: find a substitute for the lack of isomorphism between Λ and Γ.

Definition (Cocycle)

$\Lambda, \Gamma \curvearrowright X$ with (a.e.) same orbits. Define $\alpha: \Lambda \times X \rightarrow \Gamma$ by:

$$
\alpha(\lambda, x) \cdot x=\lambda \cdot x,
$$

for a.e. $x \in X, \lambda \in \Lambda$.

Orbit equivalence cocycles

Quantitative ergodic theory

Romain
Tessera

Problem: find a substitute for the lack of isomorphism between Λ and Γ.

Definition (Cocycle)

$\Lambda, \Gamma \curvearrowright X$ with (a.e.) same orbits. Define $\alpha: \Lambda \times X \rightarrow \Gamma$ by:

$$
\alpha(\lambda, x) \cdot x=\lambda \cdot x,
$$

for a.e. $x \in X, \lambda \in \Lambda$. (Similarly: $\beta: \Gamma \times X \rightarrow \Lambda$)

Orbit equivalence cocycles

Quantitative ergodic theory

Romain
Tessera

Problem: find a substitute for the lack of isomorphism between Λ and Γ.

Definition (Cocycle)

$\Lambda, \Gamma \curvearrowright X$ with (a.e.) same orbits. Define $\alpha: \Lambda \times X \rightarrow \Gamma$ by:

$$
\alpha(\lambda, x) \cdot x=\lambda \cdot x,
$$

for a.e. $x \in X, \lambda \in \Lambda$. (Similarly: $\beta: \Gamma \times X \rightarrow \Lambda$)
Hence for every $x, \alpha(\cdot, x)$ is a bijection between Λ to Γ.

Orbit equivalence cocycles

Quantitative ergodic theory

Romain
Tessera

Problem: find a substitute for the lack of isomorphism between Λ and Γ.

Definition (Cocycle)

$\Lambda, \Gamma \curvearrowright X$ with (a.e.) same orbits. Define $\alpha: \Lambda \times X \rightarrow \Gamma$ by:

$$
\alpha(\lambda, x) \cdot x=\lambda \cdot x
$$

for a.e. $x \in X, \lambda \in \Lambda$. (Similarly: $\beta: \Gamma \times X \rightarrow \Lambda$)
Hence for every $x, \alpha(\cdot, x)$ is a bijection between Λ to Γ.
Note that $\beta(\alpha(x, \cdot), x)=$ id.

Orbit equivalence cocycles

Quantitative ergodic theory

Romain
Tessera

Problem: find a substitute for the lack of isomorphism between Λ and Γ.

Definition (Cocycle)

$\Lambda, \Gamma \curvearrowright X$ with (a.e.) same orbits. Define $\alpha: \Lambda \times X \rightarrow \Gamma$ by:

$$
\alpha(\lambda, x) \cdot x=\lambda \cdot x,
$$

for a.e. $x \in X, \lambda \in \Lambda$. (Similarly: $\beta: \Gamma \times X \rightarrow \Lambda$)
Hence for every $x, \alpha(\cdot, x)$ is a bijection between Λ to Γ.
Note that $\beta(\alpha(x, \cdot), x)=$ id.
Problem: Given generating sets S_{Λ} and S_{Γ}, quantify the "average distortion" of the "random" map $\alpha(\cdot, x): \Lambda \rightarrow \Gamma$.

Quantifying orbit equivalence

Quantitative
ergodic
theory

Romain
Tessera

Definition (φ orbit equivalence)
Let $\varphi, \psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be increasing functions tending to ∞. Assume $\Lambda, \Gamma \curvearrowright(X, \mu)$ with same orbits.

Quantifying orbit equivalence

Quantitative ergodic theory

Romain
Tessera

Definition (φ orbit equivalence)
Let $\varphi, \psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be increasing functions tending to ∞. Assume $\Lambda, \Gamma \curvearrowright(X, \mu)$ with same orbits. The actions are (φ, ψ)-OE if

Quantifying orbit equivalence

Quantitative ergodic theory

Romain Tessera

Definition (φ orbit equivalence)

Let $\varphi, \psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be increasing functions tending to ∞. Assume $\Lambda, \Gamma \curvearrowright(X, \mu)$ with same orbits. The actions are (φ, ψ) - $\mathbf{O E}$ if

- for all $\lambda \in \Lambda$,

$$
x \mapsto \varphi\left(|\alpha(x, \lambda)|_{s_{\Gamma}}\right)
$$

is integrable,

Quantifying orbit equivalence

Quantitative ergodic theory

Romain
Tessera

Definition (φ orbit equivalence)

Let $\varphi, \psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be increasing functions tending to ∞. Assume $\Lambda, \Gamma \curvearrowright(X, \mu)$ with same orbits. The actions are (φ, ψ) - $\mathbf{O E}$ if

- for all $\lambda \in \Lambda$,

$$
x \mapsto \varphi\left(|\alpha(x, \lambda)|_{S_{\Gamma}}\right)
$$

is integrable,

- for all $\gamma \in \boldsymbol{\Gamma}$,

$$
x \mapsto \psi\left(|\beta(x, \gamma)| s_{\Lambda}\right)
$$

is integrable.

Quantifying orbit equivalence

Quantitative ergodic theory

Romain
Tessera

Definition (φ orbit equivalence)

Let $\varphi, \psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be increasing functions tending to ∞. Assume $\Lambda, \Gamma \curvearrowright(X, \mu)$ with same orbits. The actions are (φ, ψ) - $\mathbf{O E}$ if

- for all $\lambda \in \Lambda$,

$$
x \mapsto \varphi\left(\left.|\alpha(x, \lambda)|\right|_{S_{\Gamma}}\right)
$$

is integrable,

- for all $\gamma \in \boldsymbol{\Gamma}$,

$$
x \mapsto \psi\left(|\beta(x, \gamma)| s_{\Lambda}\right)
$$

is integrable.

Remark

- Note that for $\varphi(t)=\psi(t)=t^{p}$, this means in $L^{p}-O E$.

Quantifying orbit equivalence

Quantitative ergodic theory

Romain
Tessera

Definition (φ orbit equivalence)

Let $\varphi, \psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be increasing functions tending to ∞. Assume $\Lambda, \Gamma \curvearrowright(X, \mu)$ with same orbits. The actions are (φ, ψ) - $\mathbf{O E}$ if

- for all $\lambda \in \Lambda$,

$$
x \mapsto \varphi\left(|\alpha(x, \lambda)|_{S_{\Gamma}}\right)
$$

is integrable,

- for all $\gamma \in \boldsymbol{\Gamma}$,

$$
x \mapsto \psi\left(|\beta(x, \gamma)| s_{\Lambda}\right)
$$

is integrable.

Remark

- Note that for $\varphi(t)=\psi(t)=t^{p}$, this means in $L^{p}-O E$.
- $L^{0}-O E:$ no integrability condition.

Quantifying orbit equivalence

Quantitative ergodic theory

Romain
Tessera

Definition (φ orbit equivalence)

Let $\varphi, \psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be increasing functions tending to ∞. Assume $\Lambda, \Gamma \curvearrowright(X, \mu)$ with same orbits. The actions are (φ, ψ) - $\mathbf{O E}$ if

- for all $\lambda \in \Lambda$,

$$
x \mapsto \varphi\left(|\alpha(x, \lambda)|_{S_{\Gamma}}\right)
$$

is integrable,

- for all $\gamma \in \boldsymbol{\Gamma}$,

$$
x \mapsto \psi\left(|\beta(x, \gamma)| s_{\Lambda}\right)
$$

is integrable.

Remark

- Note that for $\varphi(t)=\psi(t)=t^{p}$, this means in $L^{p}-O E$.
- $L^{0}-O E:$ no integrability condition.
- The faster φ tends to infinity, the stronger the condition is.

Quantifying orbit equivalence

Quantitative ergodic theory

Romain
Tessera

Definition (φ orbit equivalence)

Let $\varphi, \psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be increasing functions tending to ∞. Assume $\Lambda, \Gamma \curvearrowright(X, \mu)$ with same orbits. The actions are (φ, ψ)-OE if

- for all $\lambda \in \Lambda$,

$$
x \mapsto \varphi\left(\left.|\alpha(x, \lambda)|\right|_{S_{\Gamma}}\right)
$$

is integrable,

- for all $\gamma \in \Gamma$,

$$
x \mapsto \psi\left(|\beta(x, \gamma)|_{s_{\Lambda}}\right)
$$

is integrable.

Remark

- Note that for $\varphi(t)=\psi(t)=t^{p}$, this means in $L^{p}-O E$.
- $L^{0}-O E$: no integrability condition.
- The faster φ tends to infinity, the stronger the condition is. For instance:

$$
\left(L^{\infty}-O E\right) \Rightarrow\left(L^{2}-O E\right)
$$

Quantifying orbit equivalence

Quantitative ergodic theory

Romain
Tessera

Definition (φ orbit equivalence)

Let $\varphi, \psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be increasing functions tending to ∞. Assume $\Lambda, \Gamma \curvearrowright(X, \mu)$ with same orbits. The actions are (φ, ψ) - $\mathbf{O E}$ if

- for all $\lambda \in \Lambda$,

$$
x \mapsto \varphi\left(\left.|\alpha(x, \lambda)|\right|_{S_{\Gamma}}\right)
$$

is integrable,

- for all $\gamma \in \boldsymbol{\Gamma}$,

$$
x \mapsto \psi\left(|\beta(x, \gamma)| s_{\Lambda}\right)
$$

is integrable.

Remark

- Note that for $\varphi(t)=\psi(t)=t^{p}$, this means in $L^{p}-O E$.
- $L^{0}-O E:$ no integrability condition.
- The faster φ tends to infinity, the stronger the condition is. For instance:

$$
\left(L^{\infty}-O E\right) \Rightarrow\left(L^{2}-O E\right) \Rightarrow\left(L^{1}-O E\right)
$$

Quantifying orbit equivalence

Quantitative ergodic theory

Romain
Tessera

Definition (φ orbit equivalence)

Let $\varphi, \psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be increasing functions tending to ∞. Assume $\Lambda, \Gamma \curvearrowright(X, \mu)$ with same orbits. The actions are (φ, ψ) - $\mathbf{O E}$ if

- for all $\lambda \in \Lambda$,

$$
x \mapsto \varphi\left(\left.|\alpha(x, \lambda)|\right|_{S_{\Gamma}}\right)
$$

is integrable,

- for all $\gamma \in \boldsymbol{\Gamma}$,

$$
x \mapsto \psi\left(|\beta(x, \gamma)| s_{\Lambda}\right)
$$

is integrable.

Remark

- Note that for $\varphi(t)=\psi(t)=t^{p}$, this means in $L^{p}-O E$.
- $L^{0}-O E:$ no integrability condition.
- The faster φ tends to infinity, the stronger the condition is. For instance:

$$
\left(L^{\infty}-O E\right) \Rightarrow\left(L^{2}-O E\right) \Rightarrow\left(L^{1}-O E\right) \Rightarrow\left(L^{1 / 2}-O E\right)
$$

Quantifying orbit equivalence

Quantitative ergodic theory

Romain
Tessera

Definition (φ orbit equivalence)

Let $\varphi, \psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be increasing functions tending to ∞. Assume $\Lambda, \Gamma \curvearrowright(X, \mu)$ with same orbits. The actions are (φ, ψ) - $\mathbf{O E}$ if

- for all $\lambda \in \Lambda$,

$$
x \mapsto \varphi\left(\left.|\alpha(x, \lambda)|\right|_{S_{\Gamma}}\right)
$$

is integrable,

- for all $\gamma \in \boldsymbol{\Gamma}$,

$$
x \mapsto \psi\left(|\beta(x, \gamma)| s_{\Lambda}\right)
$$

is integrable.

Remark

- Note that for $\varphi(t)=\psi(t)=t^{p}$, this means in $L^{p}-O E$.
- $L^{0}-O E:$ no integrability condition.
- The faster φ tends to infinity, the stronger the condition is. For instance:

$$
\left(L^{\infty}-O E\right) \Rightarrow\left(L^{2}-O E\right) \Rightarrow\left(L^{1}-O E\right) \Rightarrow\left(L^{1 / 2}-O E\right) \Rightarrow(\log -O E)
$$

Quantifying orbit equivalence: other point of view

Quantitative ergodic theory

Romain
Tessera

Definition (Word distance on X)

Let Λ be a group generated by a finite subset S and let assume Λ acts freely on (X, μ), then the word distance on X associated to S is

$$
d_{S}\left(x, x^{\prime}\right)=\min \left\{n \in \mathbb{N} \mid x^{\prime}=s_{1}^{ \pm 1} \ldots s_{n}^{ \pm 1} \cdot x\right\}
$$

where $s_{i} \in S$ if x^{\prime} and x lie in a same orbit,

Quantifying orbit equivalence: other point of view

Quantitative ergodic theory

Romain
Tessera

Definition (Word distance on X)

Let Λ be a group generated by a finite subset S and let assume Λ acts freely on (X, μ), then the word distance on X associated to S is

$$
d_{S}\left(x, x^{\prime}\right)=\min \left\{n \in \mathbb{N} \mid x^{\prime}=s_{1}^{ \pm 1} \ldots s_{n}^{ \pm 1} \cdot x\right\}
$$

where $s_{i} \in S$ if x^{\prime} and x lie in a same orbit, and $d_{S}\left(x, x^{\prime}\right)=\infty$ otherwise.

Quantifying orbit equivalence: other point of view

Quantitative ergodic theory

Romain
Tessera

Definition (Word distance on X)

Let Λ be a group generated by a finite subset S and let assume Λ acts freely on (X, μ), then the word distance on X associated to S is

$$
d_{S}\left(x, x^{\prime}\right)=\min \left\{n \in \mathbb{N} \mid x^{\prime}=s_{1}^{ \pm 1} \ldots s_{n}^{ \pm 1} \cdot x\right\}
$$

where $s_{i} \in S$ if x^{\prime} and x lie in a same orbit, and $d_{S}\left(x, x^{\prime}\right)=\infty$ otherwise.
We use the measure μ to compare the word distances associated to two distinct pmp actions as follows:

Proposition (φ-integrable orbit equivalence)

Assume $\Lambda, \Gamma \curvearrowright(X, \mu)$ with same orbits. The actions are (φ, ψ)-OE iff for all $\lambda \in S_{\Lambda}$,

$$
\int_{X} \varphi\left(d_{S_{\Gamma}}(x, \lambda \cdot x)\right) d \mu(x)<\infty
$$

and all $\gamma \in S_{\Gamma}$,

$$
\int_{X} \psi\left(d_{S_{\Lambda}}(x, \gamma \cdot x)\right) d \mu(x)<\infty
$$

Growth function

Quantitative ergodic theory

Romain
Tessera
Let Λ be a group generated by a finite subset S. Define the growth function of Λ

$$
V_{\wedge}(n)=\left|S^{n}\right|=\left\{g \in \Lambda \mid g=s_{1}^{ \pm 1} \ldots s_{n}^{ \pm 1}, s_{i} \in S\right\}
$$

Growth function

Quantitative ergodic theory

Romain Tessera

Let Λ be a group generated by a finite subset S. Define the growth function of Λ

$$
V_{\wedge}(n)=\left|S^{n}\right|=\left\{g \in \Lambda \mid g=s_{1}^{ \pm 1} \ldots s_{n}^{ \pm 1}, s_{i} \in S\right\}
$$

The asymptotic behavior of V_{G} does not depend on S.

Growth function

Quantitative ergodic theory

Romain
Tessera

Let Λ be a group generated by a finite subset S. Define the growth function of Λ

$$
V_{\wedge}(n)=\left|S^{n}\right|=\left\{g \in \Lambda \mid g=s_{1}^{ \pm 1} \ldots s_{n}^{ \pm 1}, s_{i} \in S\right\}
$$

The asymptotic behavior of V_{G} does not depend on S.

Exemples

- $V_{\mathbb{Z}^{d}}(n) \approx n^{d}$.

Growth function

Quantitative ergodic theory

Romain
Tessera

Let Λ be a group generated by a finite subset S. Define the growth function of Λ

$$
V_{\wedge}(n)=\left|S^{n}\right|=\left\{g \in \Lambda \mid g=s_{1}^{ \pm 1} \ldots s_{n}^{ \pm 1}, s_{i} \in S\right\}
$$

The asymptotic behavior of V_{G} does not depend on S.

Exemples

- $V_{\mathbb{Z}^{d}}(n) \approx n^{d}$.
- Recall that the Heisenberg group $\mathbb{H}(\mathbb{Z})$ is the 2 -step torsion-free nilpotent group that can be defined as the group of triples $(x, y, z) \in \mathbb{Z}^{3}$ equipped with the group operation

$$
(x, y, z) \cdot\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}+y x^{\prime}\right) .
$$

Romain Tessera

Growth function

Quantitative ergodic theory

Romain
Tessera

Let Λ be a group generated by a finite subset S. Define the growth function of Λ

$$
V_{\wedge}(n)=\left|S^{n}\right|=\left\{g \in \Lambda \mid g=s_{1}^{ \pm 1} \ldots s_{n}^{ \pm 1}, s_{i} \in S\right\}
$$

The asymptotic behavior of V_{G} does not depend on S.

Exemples

- $V_{\mathbb{Z}^{d}}(n) \approx n^{d}$.
- Recall that the Heisenberg group $\mathbb{H}(\mathbb{Z})$ is the 2-step torsion-free nilpotent group that can be defined as the group of triples $(x, y, z) \in \mathbb{Z}^{3}$ equipped with the group operation

$$
(x, y, z) \cdot\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}+y x^{\prime}\right)
$$

$V_{\mathbb{H}(\mathbb{Z})}(n) \approx n^{4}$.

Growth function

Quantitative ergodic theory

Romain
Tessera

Theorem (Bowen 16)
If \wedge and Γ are $L^{1}-O E$, then $V_{\wedge} \approx V_{\Gamma}$.

Growth function

Quantitative ergodic theory

Romain
Tessera

Theorem (Bowen 16)
If \wedge and Γ are $L^{1}-O E$, then $V_{\wedge} \approx V_{\Gamma}$.
Hence \mathbb{Z}^{d} is $L^{1}-0 E$ to $\mathbb{Z}^{d^{\prime}}$, then $d=d^{\prime}$.

Growth function

Quantitative ergodic theory

Romain Tessera

Theorem (Bowen 16)
If \wedge and Γ are $L^{1}-O E$, then $V_{\wedge} \approx V_{\Gamma}$.
Hence \mathbb{Z}^{d} is $L^{1}-0 E$ to $\mathbb{Z}^{d^{\prime}}$, then $d=d^{\prime}$. More specifically:
Theorem (Bowen/Delabie-Koivisto-Le Maître-T 20)
If there exists a $\left(\varphi, L^{0}\right)-O E$ from \wedge to Γ, then $V_{\wedge} \circ \varphi \preccurlyeq V_{\Gamma}$.

Growth function

Quantitative ergodic theory

Romain Tessera

Theorem (Bowen 16)
If \wedge and Γ are $L^{1}-O E$, then $V_{\wedge} \approx V_{\Gamma}$.
Hence \mathbb{Z}^{d} is $L^{1}-0 \mathrm{E}$ to $\mathbb{Z}^{d^{\prime}}$, then $d=d^{\prime}$. More specifically:

Theorem (Bowen/Delabie-Koivisto-Le Maître-T 20)

If there exists a $\left(\varphi, L^{0}\right)-O E$ from \wedge to Γ, then $V_{\Lambda} \circ \varphi \preccurlyeq V_{\Gamma}$.

- Let $d, k \in \mathbb{N}$. If there exists an $\left(L^{p}, L^{0}\right)$-OE from \mathbb{Z}^{d+k} to \mathbb{Z}^{d}, then $p \leq d /(d+k)$.

Growth function

Quantitative ergodic theory

Romain Tessera

Theorem (Bowen 16)

If \wedge and Γ are $L^{1}-O E$, then $V_{\wedge} \approx V_{\Gamma}$.
Hence \mathbb{Z}^{d} is $L^{1}-0 \mathrm{E}$ to $\mathbb{Z}^{d^{\prime}}$, then $d=d^{\prime}$. More specifically:

Theorem (Bowen/Delabie-Koivisto-Le Maître-T 20)

If there exists a $\left(\varphi, L^{0}\right)-O E$ from \wedge to Γ, then $V_{\wedge} \circ \varphi \preccurlyeq V_{\Gamma}$.

- Let $d, k \in \mathbb{N}$. If there exists an $\left(L^{p}, L^{0}\right)$-OE from \mathbb{Z}^{d+k} to \mathbb{Z}^{d}, then $p \leq d /(d+k)$.
- If Λ has exponential growth and if Λ and \mathbb{Z} are are φ-OE, then $\varphi(n) \lesssim \log n$.

Growth function

Quantitative ergodic theory

Romain
Tessera

Theorem (Bowen 16)

If \wedge and Γ are $L^{1}-O E$, then $V_{\wedge} \approx V_{\Gamma}$.
Hence \mathbb{Z}^{d} is $L^{1}-0 \mathrm{E}$ to $\mathbb{Z}^{d^{\prime}}$, then $d=d^{\prime}$. More specifically:

Theorem (Bowen/Delabie-Koivisto-Le Maître-T 20)

If there exists a $\left(\varphi, L^{0}\right)-O E$ from \wedge to Γ, then $V_{\wedge} \circ \varphi \preccurlyeq V_{\Gamma}$.

- Let $d, k \in \mathbb{N}$. If there exists an $\left(L^{p}, L^{0}\right)$-OE from \mathbb{Z}^{d+k} to \mathbb{Z}^{d}, then $p \leq d /(d+k)$.
- If Λ has exponential growth and if Λ and \mathbb{Z} are are φ-OE, then $\varphi(n) \lesssim \log n$.

Theorem (Austin 16)

If $\Lambda=\mathbb{Z}^{d}$, and if Γ is L^{1} - $O E$ to Λ, then Γ is virtually \mathbb{Z}^{d}.

Growth function

Quantitative ergodic theory

Romain
Tessera

Theorem (Bowen 16)

If \wedge and Γ are $L^{1}-O E$, then $V_{\wedge} \approx V_{\Gamma}$.
Hence \mathbb{Z}^{d} is $L^{1}-0 \mathrm{E}$ to $\mathbb{Z}^{d^{\prime}}$, then $d=d^{\prime}$. More specifically:

Theorem (Bowen/Delabie-Koivisto-Le Maître-T 20)

If there exists a $\left(\varphi, L^{0}\right)-O E$ from \wedge to Γ, then $V_{\wedge} \circ \varphi \preccurlyeq V_{\Gamma}$.

- Let $d, k \in \mathbb{N}$. If there exists an $\left(L^{p}, L^{0}\right)$-OE from \mathbb{Z}^{d+k} to \mathbb{Z}^{d}, then $p \leq d /(d+k)$.
- If Λ has exponential growth and if Λ and \mathbb{Z} are are φ-OE, then $\varphi(n) \lesssim \log n$.

Theorem (Austin 16)

If $\Lambda=\mathbb{Z}^{d}$, and if Γ is $L^{1}-O E$ to Λ, then Γ is virtually \mathbb{Z}^{d}.
For instance $\mathbb{H}(\mathbb{Z})$ and \mathbb{Z}^{4} are not $L^{1}-O E$, although they have same growth.

Quantify amenability: FøIner profile

Quantitative ergodic theory

Romain Tessera

Definition

Let Λ be a group generated by a finite subset S. Define its Følner function

$$
F \varnothing l(n)=\min \left\{|A| \left\lvert\, \frac{|A s \Delta A|}{|A|} \leq 1 / n\right., \forall s \in S\right\}
$$

Quantify amenability: FøIner profile

Quantitative ergodic theory

Romain
Tessera

Definition

Let Λ be a group generated by a finite subset S. Define its FøIner function

$$
F \varnothing l(n)=\min \left\{|A| \left\lvert\, \frac{|A s \Delta A|}{|A|} \leq 1 / n\right., \forall s \in S\right\}
$$

Remark

- Λ is amenable iff $F \varnothing I<\infty$. The general philosophy is: the faster $F \phi l_{\Lambda}$ the less amenable is Λ.

Quantify amenability: FøIner profile

Quantitative ergodic theory

Romain
Tessera

Definition

Let Λ be a group generated by a finite subset S. Define its FøIner function

$$
F \varnothing l(n)=\min \left\{|A| \left\lvert\, \frac{|A s \Delta A|}{|A|} \leq 1 / n\right., \forall s \in S\right\}
$$

Remark

- Λ is amenable iff $F \varnothing I<\infty$. The general philosophy is: the faster $F \phi l_{\Lambda}$ the less amenable is Λ.
- Coulhon and Saloff-Coste inequality: $V \lesssim F \varnothing I$, and in general, $F \varnothing I$ is much faster than V.

Quantify amenability: FøIner profile

Quantitative ergodic theory

Romain
Tessera

Definition

Let Λ be a group generated by a finite subset S. Define its Følner function

$$
F \varnothing l(n)=\min \left\{|A| \left\lvert\, \frac{|A s \Delta A|}{|A|} \leq 1 / n\right., \forall s \in S\right\}
$$

Remark

- Λ is amenable iff $F \varnothing I<\infty$. The general philosophy is: the faster $F \phi l_{\Lambda}$ the less amenable is Λ.
- Coulhon and Saloff-Coste inequality: $V \lesssim F \varnothing I$, and in general, $F \varnothing I$ is much faster than V.

Exemples

- For $\mathbb{Z}^{d}, F \phi I(n) \approx V(n) \approx n^{d}$.

Quantify amenability: FøIner profile

Quantitative ergodic theory

Romain
Tessera

Definition

Let Λ be a group generated by a finite subset S. Define its Følner function

$$
F \varnothing l(n)=\min \left\{|A| \left\lvert\, \frac{|A s \Delta A|}{|A|} \leq 1 / n\right., \forall s \in S\right\}
$$

Remark

- Λ is amenable iff $F \varnothing I<\infty$. The general philosophy is: the faster $F \phi l_{\Lambda}$ the less amenable is Λ.
- Coulhon and Saloff-Coste inequality: $V \lesssim F \varnothing I$, and in general, $F \varnothing I$ is much faster than V.

Exemples

- For $\mathbb{Z}^{d}, F \varnothing I(n) \approx V(n) \approx n^{d}$.
- For $\mathbb{H}(\mathbb{Z}), F \varnothing I(n) \approx V(n) \approx n^{4}$.

Quantify amenability: FøIner profile

Quantitative ergodic theory

Romain
Tessera

Definition

Let Λ be a group generated by a finite subset S. Define its FøIner function

$$
F \varnothing l(n)=\min \left\{|A| \left\lvert\, \frac{|A s \Delta A|}{|A|} \leq 1 / n\right., \forall s \in S\right\}
$$

Remark

- Λ is amenable iff $F \varnothing I<\infty$. The general philosophy is: the faster $F \phi l_{\Lambda}$ the less amenable is Λ.
- Coulhon and Saloff-Coste inequality: $V \lesssim F \varnothing I$, and in general, $F \varnothing I$ is much faster than V.

Exemples

- For $\mathbb{Z}^{d}, F \varnothing I(n) \approx V(n) \approx n^{d}$.
- For $\mathbb{H}(\mathbb{Z}), F \phi I(n) \approx V(n) \approx n^{4}$.
- For lamplighter groups (Erschler 06): $F \imath \mathbb{Z}^{d}=\bigoplus_{\mathbb{Z}^{d}} F \rtimes \mathbb{Z}^{d}, F \varnothing I(n) \approx e^{n^{d}}$.

Invariance of the Følner function

Quantitative ergodic theory

Romain
Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

- If Λ and Γ are $L^{1}-O E$, then $F \phi I_{\Lambda} \approx F \phi l_{\Gamma}$.

Invariance of the Følner function

Quantitative ergodic theory

Romain
Tessera
Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

- If Λ and Γ are $L^{1}-O E$, then $F \phi I_{\Lambda} \approx F \phi I_{\Gamma}$.
- More generally, if Λ and Γ are $\left(\varphi, L^{0}\right)$-OE for some concave increasing function φ, then

Invariance of the Følner function

Quantitative ergodic theory

Romain
Tessera
Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

- If Λ and Γ are $L^{1}-O E$, then $F \phi I_{\Lambda} \approx F \phi I_{\Gamma}$.
- More generally, if Λ and Γ are $\left(\varphi, L^{0}\right)$-OE for some concave increasing function φ, then

$$
F \phi I_{\Lambda} \circ \varphi \lesssim F \varnothing I_{\Gamma} .
$$

Invariance of the FøIner function

Quantitative ergodic theory

Romain
Tessera

Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

- If Λ and Γ are $L^{1}-O E$, then $F \phi I_{\Lambda} \approx F \phi I_{\Gamma}$.
- More generally, if Λ and Γ are $\left(\varphi, L^{0}\right)$-OE for some concave increasing function φ, then

$$
F \phi I_{\Lambda} \circ \varphi \lesssim F \phi I_{\Gamma} .
$$

Corollary

Let $d, k \in \mathbb{N}$. If there exists an $\left(L^{p}, L^{0}\right)-O E$ from $F \imath \mathbb{Z}^{d+k}$ to $F \imath \mathbb{Z}^{d}$, then $p \leq d /(d+k)$.

Invariance of the FøIner function

Quantitative ergodic theory

Romain
Tessera

Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

- If Λ and Γ are $L^{1}-O E$, then $F \phi I_{\Lambda} \approx F \phi I_{\Gamma}$.
- More generally, if \wedge and Γ are $\left(\varphi, L^{0}\right)-O E$ for some concave increasing function φ, then

$$
F \phi I_{\Lambda} \circ \varphi \lesssim F \phi I_{\Gamma} .
$$

Corollary

Let $d, k \in \mathbb{N}$. If there exists an $\left(L^{p}, L^{0}\right)-O E$ from $F \imath \mathbb{Z}^{d+k}$ to $F \imath \mathbb{Z}^{d}$, then $p \leq d /(d+k)$.

Corollary (No quantitative version of OW's theorem)

For all \wedge amenable, and all increasing unbounded φ, there exists another amenable group Γ that is not $\varphi-O E$ to Λ.

Based on constructions of Brieussel-Zheng (2021).

What about a converse?

Quantitative ergodic theory

Romain
Tessera
The previous result are nearly optimal in a number of situation. For instance
Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

- Let $d, k^{\prime} \in \mathbb{N}$. Then \mathbb{Z}^{d} and \mathbb{Z}^{d+k} are $L^{p}-O E$ for all $p<d /(d+k)$.

What about a converse?

The previous result are nearly optimal in a number of situation. For instance
Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

- Let $d, k^{\prime} \in \mathbb{N}$. Then \mathbb{Z}^{d} and \mathbb{Z}^{d+k} are $L^{p}-O E$ for all $p<d /(d+k)$.
- \mathbb{Z}^{4} and $\mathbb{H}(\mathbb{Z})$ are $L^{p}-O E$ for all $p<1$.

What about a converse?

Quantitative ergodic theory

Romain
Tessera

The previous result are nearly optimal in a number of situation. For instance
Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

- Let $d, k^{\prime} \in \mathbb{N}$. Then \mathbb{Z}^{d} and \mathbb{Z}^{d+k} are $L^{p}-O E$ for all $p<d /(d+k)$.
- \mathbb{Z}^{4} and $\mathbb{H}(\mathbb{Z})$ are L^{p}-OE for all $p<1$.
- The lamplighter group and \mathbb{Z} are $\log n^{1-\varepsilon}-O E$ for all $\varepsilon>0$.

New method of Explicit construction of OE-couplings for a given pair of amenable groups.

What about a converse?

Quantitative ergodic theory

Romain
Tessera

The previous result are nearly optimal in a number of situation. For instance
Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

- Let $d, k^{\prime} \in \mathbb{N}$. Then \mathbb{Z}^{d} and \mathbb{Z}^{d+k} are $L^{p}-O E$ for all $p<d /(d+k)$.
- \mathbb{Z}^{4} and $\mathbb{H}(\mathbb{Z})$ are L^{p}-OE for all $p<1$.
- The lamplighter group and \mathbb{Z} are $\log n^{1-\varepsilon}-O E$ for all $\varepsilon>0$.

New method of Explicit construction of OE-couplings for a given pair of amenable groups.

Let us explain it for \mathbb{Z} and \mathbb{Z}^{2}.

What about a converse?

Quantitative ergodic theory

Romain
Tessera

The previous result are nearly optimal in a number of situation. For instance
Theorem (Delabie-Koivisto-Le Maître-Tessera 20)

- Let $d, k^{\prime} \in \mathbb{N}$. Then \mathbb{Z}^{d} and \mathbb{Z}^{d+k} are $L^{p}-O E$ for all $p<d /(d+k)$.
- \mathbb{Z}^{4} and $\mathbb{H}(\mathbb{Z})$ are L^{p}-OE for all $p<1$.
- The lamplighter group and \mathbb{Z} are $\log n^{1-\varepsilon}-O E$ for all $\varepsilon>0$.

New method of Explicit construction of OE-couplings for a given pair of amenable groups.

Let us explain it for \mathbb{Z} and \mathbb{Z}^{2}.

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain Tessera

Preliminaries:

- The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows.

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain
Tessera

Preliminaries:

- The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:
$a \cdot(0,0,0,1, \ldots)=(1,0,0,1 \ldots)$

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain
Tessera

Preliminaries:

- The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:
$a \cdot(0,0,0,1, \ldots)=(1,0,0,1 \ldots)$
$a \cdot(1,0,0, \ldots)=(0,1,0, \ldots)$

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain
Tessera

Preliminaries:

- The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:
$a \cdot(0,0,0,1, \ldots)=(1,0,0,1 \ldots)$
$a \cdot(1,0,0, \ldots)=(0,1,0, \ldots)$
$a \cdot(1,1,1,0, \ldots)=$

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain
Tessera

Preliminaries:

- The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:
$a \cdot(0,0,0,1, \ldots)=(1,0,0,1 \ldots)$
$a \cdot(1,0,0, \ldots)=(0,1,0, \ldots)$
$a \cdot(1,1,1,0, \ldots)=(0,0,0,1, \ldots)$

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain Tessera

Preliminaries:

- The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:
$a \cdot(0,0,0,1, \ldots)=(1,0,0,1 \ldots)$
$a \cdot(1,0,0, \ldots)=(0,1,0, \ldots)$
$a \cdot(1,1,1,0, \ldots)=(0,0,0,1, \ldots)$
- The 4-odometer: : consider the action of \mathbb{Z} on the $\{0,1,2,3\}^{\mathbb{N}}$, defined as follows. $a \cdot(1,2,0,3, \ldots)=$

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain
Tessera

Preliminaries:

- The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:
$a \cdot(0,0,0,1, \ldots)=(1,0,0,1 \ldots)$
$a \cdot(1,0,0, \ldots)=(0,1,0, \ldots)$
$a \cdot(1,1,1,0, \ldots)=(0,0,0,1, \ldots)$
- The 4-odometer: : consider the action of \mathbb{Z} on the $\{0,1,2,3\}^{\mathbb{N}}$, defined as follows. $a \cdot(1,2,0,3, \ldots)=(2,2,0,3, \ldots)$

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain
Tessera

Preliminaries:

- The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:
$a \cdot(0,0,0,1, \ldots)=(1,0,0,1 \ldots)$
$a \cdot(1,0,0, \ldots)=(0,1,0, \ldots)$
$a \cdot(1,1,1,0, \ldots)=(0,0,0,1, \ldots)$
- The 4-odometer: : consider the action of \mathbb{Z} on the $\{0,1,2,3\}^{\mathbb{N}}$, defined as follows. $a \cdot(1,2,0,3, \ldots)=(2,2,0,3, \ldots)$ $a \cdot(3,1,2,0, \ldots)=$

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain
Tessera

Preliminaries:

- The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:
$a \cdot(0,0,0,1, \ldots)=(1,0,0,1 \ldots)$
$a \cdot(1,0,0, \ldots)=(0,1,0, \ldots)$
$a \cdot(1,1,1,0, \ldots)=(0,0,0,1, \ldots)$
- The 4-odometer: : consider the action of \mathbb{Z} on the $\{0,1,2,3\}^{\mathbb{N}}$, defined as follows. $a \cdot(1,2,0,3, \ldots)=(2,2,0,3, \ldots)$ $a \cdot(3,1,2,0, \ldots)=(0,2,2,0, \ldots)$

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain
Tessera

Preliminaries:

- The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:
$a \cdot(0,0,0,1, \ldots)=(1,0,0,1 \ldots)$
$a \cdot(1,0,0, \ldots)=(0,1,0, \ldots)$
$a \cdot(1,1,1,0, \ldots)=(0,0,0,1, \ldots)$
- The 4-odometer: : consider the action of \mathbb{Z} on the $\{0,1,2,3\}^{\mathbb{N}}$, defined as follows. $a \cdot(1,2,0,3, \ldots)=(2,2,0,3, \ldots)$
$a \cdot(3,1,2,0, \ldots)=(0,2,2,0, \ldots)$
$a \cdot(3,3,3,3,1,0, \ldots)=$

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain
Tessera

Preliminaries:

- The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:
a $\cdot(0,0,0,1, \ldots)=(1,0,0,1 \ldots)$
$a \cdot(1,0,0, \ldots)=(0,1,0, \ldots)$
$a \cdot(1,1,1,0, \ldots)=(0,0,0,1, \ldots)$
- The 4-odometer: : consider the action of \mathbb{Z} on the $\{0,1,2,3\}^{\mathbb{N}}$, defined as follows. $a \cdot(1,2,0,3, \ldots)=(2,2,0,3, \ldots)$ $a \cdot(3,1,2,0, \ldots)=(0,2,2,0, \ldots)$
$a \cdot(3,3,3,3,1,0, \ldots)=(0,0,0,0,2,0, \ldots)$

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain
Tessera

Preliminaries:

- The 2-odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:
$a \cdot(0,0,0,1, \ldots)=(1,0,0,1 \ldots)$
$a \cdot(1,0,0, \ldots)=(0,1,0, \ldots)$
$a \cdot(1,1,1,0, \ldots)=(0,0,0,1, \ldots)$
- The 4-odometer: : consider the action of \mathbb{Z} on the $\{0,1,2,3\}^{\mathbb{N}}$, defined as follows. $a \cdot(1,2,0,3, \ldots)=(2,2,0,3, \ldots)$
$a \cdot(3,1,2,0, \ldots)=(0,2,2,0, \ldots)$
$a \cdot(3,3,3,3,1,0, \ldots)=(0,0,0,0,2,0, \ldots)$
These actions preserve the product measure on $\{0,1\}^{\mathbb{N}}$ and $\{0,1,2,3\}^{\mathbb{N}}$.

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain
Tessera

Preliminaries:

- The 2 -odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:
$a \cdot(0,0,0,1, \ldots)=(1,0,0,1 \ldots)$
$a \cdot(1,0,0, \ldots)=(0,1,0, \ldots)$
$a \cdot(1,1,1,0, \ldots)=(0,0,0,1, \ldots)$
- The 4-odometer: : consider the action of \mathbb{Z} on the $\{0,1,2,3\}^{\mathbb{N}}$, defined as follows. a $\cdot(1,2,0,3, \ldots)=(2,2,0,3, \ldots)$
$a \cdot(3,1,2,0, \ldots)=(0,2,2,0, \ldots)$
$a \cdot(3,3,3,3,1,0, \ldots)=(0,0,0,0,2,0, \ldots)$
These actions preserve the product measure on $\{0,1\}^{\mathbb{N}}$ and $\{0,1,2,3\}^{\mathbb{N}}$.
Two sequences belong to the same orbit if and only if they differ by at most finitely many coordinates.

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain
Tessera

Preliminaries:

- The 2 -odometer: consider the action of \mathbb{Z} on the $\{0,1\}^{\mathbb{N}}$, defined as follows. The generator a of \mathbb{Z} acts as:
$a \cdot(0,0,0,1, \ldots)=(1,0,0,1 \ldots)$
$a \cdot(1,0,0, \ldots)=(0,1,0, \ldots)$
$a \cdot(1,1,1,0, \ldots)=(0,0,0,1, \ldots)$
- The 4-odometer: : consider the action of \mathbb{Z} on the $\{0,1,2,3\}^{\mathbb{N}}$, defined as follows. a $\cdot(1,2,0,3, \ldots)=(2,2,0,3, \ldots)$
a. $(3,1,2,0, \ldots)=(0,2,2,0, \ldots)$
$a \cdot(3,3,3,3,1,0, \ldots)=(0,0,0,0,2,0, \ldots)$
These actions preserve the product measure on $\{0,1\}^{\mathbb{N}}$ and $\{0,1,2,3\}^{\mathbb{N}}$.
Two sequences belong to the same orbit if and only if they differ by at most finitely many coordinates.

The d-odometer is the action of \mathbb{Z} by translation on \mathbb{Z}_{d} (the ring of d-adic numbers).

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain Tessera

The actions of \mathbb{Z} and \mathbb{Z}^{2} :

- We let \mathbb{Z} acts on the 4-odometer: $\{0,1,2,3\}^{\mathbb{N}}$

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain
Tessera

The actions of \mathbb{Z} and \mathbb{Z}^{2} :

- We let \mathbb{Z} acts on the 4-odometer: $\{0,1,2,3\}^{\mathbb{N}}$
- We let \mathbb{Z}^{2} acts on a product of 2-odometers: $\{0,1\}^{\mathbb{N}} \times\{0,1\}^{\mathbb{N}}$.

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain
Tessera

The actions of \mathbb{Z} and \mathbb{Z}^{2} :

- We let \mathbb{Z} acts on the 4-odometer: $\{0,1,2,3\}^{\mathbb{N}}$
- We let \mathbb{Z}^{2} acts on a product of 2-odometers: $\{0,1\}^{\mathbb{N}} \times\{0,1\}^{\mathbb{N}}$.

The orbit equivalence: $F:\{0,1\}^{\mathbb{N}} \times\{0,1\}^{\mathbb{N}} \rightarrow\{0,1,2,3\}^{\mathbb{N}}$ is defined

$$
F(x, y)=x+2 y
$$

Constructing an OE between \mathbb{Z} and \mathbb{Z}^{2}

Quantitative ergodic theory

Romain
Tessera

The actions of \mathbb{Z} and \mathbb{Z}^{2} :

- We let \mathbb{Z} acts on the 4-odometer: $\{0,1,2,3\}^{\mathbb{N}}$
- We let \mathbb{Z}^{2} acts on a product of 2-odometers: $\{0,1\}^{\mathbb{N}} \times\{0,1\}^{\mathbb{N}}$.

The orbit equivalence: $F:\{0,1\}^{\mathbb{N}} \times\{0,1\}^{\mathbb{N}} \rightarrow\{0,1,2,3\}^{\mathbb{N}}$ is defined

$$
F(x, y)=x+2 y
$$

Example: if $x=(0,1,1, \ldots), y=(1,0,1, \ldots)$, then

$$
F(x, y)=(0+2,1+0,1+2, \ldots)=(2,1,3, \ldots)
$$

