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Quantitative
ergodic J
theory A a countable group (examples: Z, Z9, free group on k generators Fy),

R m (X, ) probability space (example: (S, )\) where ) is Lebesgue measure,
{0, 1}", equipped with the product measure),

m An pmp action A ~ (X, p): i.e. a free measure-preserving action.

Rotations: Z ~ (S, \) generated by an irrational rotation,
m Bernoulli shift: A ~ {0,1}\.

Context:
m Ergodic theory,
m Representation theory,
m Operator algebras,
m Percolation theory (probabilities),

Lattices in Lie groups...
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Definition (Isomorphism)

Two pmp actions A ~ (X, ) and T ~ (Y, v) are isomorphic, if there exist
isomorphisms W : (X, u) — (Y,v), and 6 : A — T such that for a.e. x € X, and
all A e A,

V(A x)=0(N)- V(x).

| A

Definition (Orbit equivalence)

Two (free) pmp actions A ~ (X, ) and T ~ (Y, v) are orbit equivalent (OE), if
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Definition (Orbit equivalence)

Two (free) pmp actions A ~ (X, ) and T ~ (Y, v) are orbit equivalent (OE), if
there exists an isomorphism (of measure spaces) V : (X, u) — (Y,v) such that
for a.e. x € X,

W(A-x)=T-W¥(x).

m Z~ (S, \) and Z ~ {0,1}% are not isomorphic (spectrum);
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Definition (Isomorphism)

Two pmp actions A ~ (X, ) and T ~ (Y, v) are isomorphic, if there exist
isomorphisms W : (X, u) — (Y,v), and 6 : A — T such that for a.e. x € X, and
all A e A,

V(A x)=0(N)- V(x).

<

Definition (Orbit equivalence)

Two (free) pmp actions A ~ (X, ) and T ~ (Y, v) are orbit equivalent (OE), if
there exists an isomorphism (of measure spaces) V : (X, u) — (Y,v) such that
for a.e. x € X,

W(A-x)=T-W¥(x).

m Z~ (S, \) and Z ~ {0,1}% are not isomorphic (spectrum);
m Z ~ {0,1}% and Z ~ {0,1,2}% are not isomorphic (Kolmogorov-Sinai).
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Orbit equivalence

Quantitative o onc .
aedlis Definition (Isomorphism)

h
fheeny Two pmp actions A ~ (X, ) and T ~ (Y, v) are isomorphic, if there exist
Romai isomorphisms W : (X, u) — (Y,v), and 6 : A — T such that for a.e. x € X, and
all X e A

V(A x) = 0\ - W(x).

| A

Definition (Orbit equivalence)

Two (free) pmp actions A ~ (X, ) and T ~ (Y, v) are orbit equivalent (OE), if
there exists an isomorphism (of measure spaces) V : (X, u) — (Y,v) such that
for a.e. x € X,

W(A-x)=T-W¥(x).

m Z~ (S, \) and Z ~ {0,1}% are not isomorphic (spectrum);
m Z ~ {0,1}% and Z ~ {0,1,2}% are not isomorphic (Kolmogorov-Sinai).
m Any two ergodic pmp actions of Z are OE (Dye 59).
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Amenable groups

Definition

A countable group A is amenable if it admits a sequence of “almost-invariant
finite subsets” A, C A, i.e. such that for all A € A,

|An A Ap|
| Anl

((An) is called a right Fglner sequence)

y

m Z9 with A, = [—n, n]9;

m stable under extension, subgroup, quotient...

m free groups Fy on k > 2 generators are not amenable.
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actions N ~ (X, p) and T ~ (Y, v) are OE.
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Theorem (Gaboriau 00)
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Problem

—

Is-this the end of the story for amenable groups?

To try to answer (negatively) this question, we address the following points:

m quantify orbit equivalence: add “constraints” on the orbit-equivalence
relation.
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Definition (Cocycle)

A, T ~ X with (a.e.) same orbits. Define a: A x X — T by:
a(A,x) - x=X-x,
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Problem: find a substitute for the lack of isomorphism between A and T.

Definition (Cocycle)

A, T ~ X with (a.e.) same orbits. Define a: A x X — T by:
a(A,x) - x=X-x,

for a.e. x € X, A € A. (Similarly: 8:T x X — A)

Hence for every x, a(-, x) is a bijection between A to I'.
Note that 8(a(x,-),x) = id.

Problem: Given generating sets Sy and Sr, quantify the “average distortion” of
the “random” map a(,x): A —T.
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Definition (¢ orbit equivalence)

Let o, : R — Ry be increasing functions tending to co. Assume A, T ~ (X, u)
Romain with same orbits. The actions are (p,)-OE if

Tessera
e m forall A €A,

x = o(Ja(x, N)|s;)
is integrable,

m forallyer,
x = (|B(x,7)sy)

is integrable.

m Note that for ¢(t) = ¢(t) = tP, this means in LP-OE.
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m Note that for ¢(t) = ¢(t) = tP, this means in LP-OE.
m L9-OE: no integrability condition.
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Let o, : R — Ry be increasing functions tending to co. Assume A, T ~ (X, u)
Romain with same orbits. The actions are (p,)-OE if
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e m forall A €A,

x = o(Ja(x, N)|s;)
is integrable,

m forallyer,
x = (|B(x,7)sy)

is integrable.

m Note that for ¢(t) = ¢(t) = tP, this means in LP-OE.
m L9-OE: no integrability condition.

m The faster ¢ tends to infinity, the stronger the condition is. For instance:
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Definition (¢ orbit equivalence)

Let o, : R — Ry be increasing functions tending to co. Assume A, T ~ (X, u)
Romain with same orbits. The actions are (p,)-OE if

Tessera
e m forall A €A,

x = o(Ja(x, N)|s;)
is integrable,

m forallyer,
x = (|B(x,7)sy)

is integrable.

m Note that for ¢(t) = ¢(t) = tP, this means in LP-OE.
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Definition (¢ orbit equivalence)

Let o, : R — Ry be increasing functions tending to co. Assume A, T ~ (X, u)
Romain with same orbits. The actions are (p,)-OE if

Tessera
e m forall A €A,

x = o(Ja(x, N)|s;)
is integrable,

m forallyer,
x = (|B(x,7)sy)

is integrable.

m Note that for ¢(t) = ¢(t) = tP, this means in LP-OE.
m L9-OE: no integrability condition.

m The faster ¢ tends to infinity, the stronger the condition is. For instance:

(L>® — OE) = (L? — OE) = (L' — OE) = (L'/?> — OE) = (log —OE).
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Quantifying orbit equivalence: other point of view

Qu:rrg;;aizwe Definition (Word distance on X)

theory Let A be a group generated by a finite subset S and let assume A acts freely on
(X, 1), then the word distance on X associated to S is

ds(x,x") =min{n e N| x' = slil LosElox)

where s; € S if x’ and x lie in a same orbit,
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Quantifying orbit equivalence: other point of view

Qu::;;:zwe Definition (Word distance on X)

theory

Let A be a group generated by a finite subset S and let assume A acts freely on

Romain (X, i), then the word distance on X associated to S is
Tessera

ds(x,x") =min{n e N| x' = slil LosElox)

where s; € S if x’ and x lie in a same orbit, and ds(x,x’) = co otherwise.

We use the measure 1 to compare the word distances associated to two distinct
pmp actions as follows:

Proposition (p-integrable orbit equivalence)

Assume N, ~ (X, ) with same orbits. The actions are (p,1))-OE iff for all
e 5/\,

. oldse (3 x))de) < oo,
X

and all v € Sr,

/ W(ds, (%, - X))dpx) < oo,
X
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Va(n) = 15" = {g e Al g =i si, s € S}
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Growth function

Quantitative
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theory Let A be a group generated by a finite subset S. Define the growth function of A

Va(n) = 15" = {g e Al g =i si, s € S}

The asymptotic behavior of V does not depend on S.
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V/\(n):|5"|:{ge/\|g:slil...s,§tl, s,-es}.

The asymptotic behavior of V does not depend on S.

m Vyq(n) = nd.

Romain Tessera Quantitative ergodic theory



Growth function

Quantitative
ergodic . .
theory Let A be a group generated by a finite subset S. Define the growth function of A

V/\(n):|5"|:{ge/\|g:slil...s,§tl, s,-es}.

The asymptotic behavior of V does not depend on S.

m Vyq(n) = nd.

m Recall that the Heisenberg group H(Z) is the 2-step torsion-free nilpotent
group that can be defined as the group of triples (x, y, z) € Z3 equipped
with the group operation

(X7y7z) : (X,7.yl7zl) = (X+X/7y+y,7z+zl +_yX/)~
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theory Let A be a group generated by a finite subset S. Define the growth function of A

V/\(n):|5"|:{ge/\|g:slil...s,§tl, s,-es}.

The asymptotic behavior of V does not depend on S.

m Vyq(n) = nd.

m Recall that the Heisenberg group H(Z) is the 2-step torsion-free nilpotent
group that can be defined as the group of triples (x, y, z) € Z3 equipped
with the group operation

(X7y7z) : (X,7.yl7zl) = (X+X/7y+y,7z+zl +_yX/)~

Vi(zy(n) = n*.
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Growth function

Quantitative
ergodic
theory Theorem (Bowen 16)

If N\ and T are L1-OE, then V) ~ V.
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If N\ and T are L1-OE, then V) ~ V.

Hence Z9 is L1-0E to Z%', then d = d"’.
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If N\ and T are L1-OE, then V) ~ V.

Hence Z9 is L1-0E to Zdl, then d = d’. More specifically:

Theorem (Bowen/Delabie-Koivisto-Le Maitre-T 20)
If there exists a (i, L°)-OE from A to T, then Vj oo < V.
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If N\ and T are L1-OE, then V) ~ V.

Hence Z9 is L1-0E to Zdl, then d = d’. More specifically:

Theorem (Bowen/Delabie-Koivisto-Le Maitre-T 20)

If there exists a (i, L°)-OE from A to T, then Vj oo < V.

m Let d, k € N. If there exists an (LP, L%)-OE from Ztk to Z9, then
p<d/(d+ k).
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theory Theorem (Bowen 16)

If N\ and T are L1-OE, then V) ~ V.

Hence Z9 is L1-0E to Zdl, then d = d’. More specifically:

Theorem (Bowen/Delabie-Koivisto-Le Maitre-T 20)

If there exists a (i, L°)-OE from A to T, then Vj oo < V.

m Let d, k € N. If there exists an (LP, L%)-OE from Ztk to Z9, then
p<d/(d+ k).

m If A has exponential growth and if A and Z are are ¢-OE, then ¢(n) < log n.
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If N\ and T are L1-OE, then V) ~ V.

Hence Z9 is L1-0E to Zdl, then d = d’. More specifically:

Theorem (Bowen/Delabie-Koivisto-Le Maitre-T 20)

If there exists a (i, L°)-OE from A to T, then Vj oo < V.

m Let d, k € N. If there exists an (LP, L°)-OE from Z9** to Z9, then
p<d/(d+ k).

m If A has exponential growth and if A and Z are are ¢-OE, then ¢(n) < log n.

Theorem (Austin 16)
IfA =79, and if T is L1-OFE to A, then T is virtually 74,
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theory Theorem (Bowen 16)

If N\ and T are L1-OE, then V) ~ V.

Hence Z9 is L1-0E to Zdl, then d = d’. More specifically:

Theorem (Bowen/Delabie-Koivisto-Le Maitre-T 20)

If there exists a (i, L°)-OE from A to T, then Vj oo < V.

m Let d, k € N. If there exists an (LP, L°)-OE from Z9** to Z9, then
p<d/(d+ k).

m If A has exponential growth and if A and Z are are ¢-OE, then ¢(n) < log n.

Theorem (Austin 16)

IfA =79, and if T is L1-OFE to A, then T is virtually 74,

For instance H(Z) and Z* are not L'-OE, although they have same growth.
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Quantify amenability: Fglner profile

Quantitative
ergodic
theory

Definition
Let A be a group generated by a finite subset S. Define its Fglner function

|As & A
|A]

Fgl(n) = min {|A| \

<1/n, Vs € S}

Romain Tessera Quantitative ergodic theory



Quantify amenability: Fglner profile

CreEniffieie Definition
ergodic

Lhecty Let A be a group generated by a finite subset S. Define its Fglner function

|As & A

Fgl(n) = min {|A| \ A

<1/n, Vs € S}

v
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the faster Fgly the less amenable is A.
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Lhecty Let A be a group generated by a finite subset S. Define its Fglner function
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|As & A
|A]

F¢I(n):min{\A| | <1/n, VSGS}

Remark

m A is amenable iff Fgl < co. The general philosophy is:
the faster Fgly the less amenable is A.

m Coulhon and Saloff-Coste inequality: V< Fgl, and in general, Fgl is much
faster than V.

Exemples

m For Z9, Fgl(n) ~ V(n) ~ nf.
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Quantify amenability: Fglner profile

Let A be a group generated by a finite subset S. Define its Fglner function

|As & A
|A]

F¢I(n):min{\A| | <1/n, VSGS}

Remark

m A is amenable iff Fgl < co. The general philosophy is:
the faster Fgly the less amenable is A.

m Coulhon and Saloff-Coste inequality: V< Fgl, and in general, Fgl is much
faster than V.

Exemples
m For Z9, Fgl(n) ~ V(n) ~ nf.
m For H(Z), Fgl(n) ~ V(n) =~ n*.
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Quantify amenability: Fglner profile

Let A be a group generated by a finite subset S. Define its Fglner function

|As & A
|A]

F¢I(n):min{\A| | <1/n, VSGS}

Remark

m A is amenable iff Fgl < co. The general philosophy is:
the faster Fgly the less amenable is A.

m Coulhon and Saloff-Coste inequality: V< Fgl, and in general, Fgl is much
faster than V.

Exemples

m For Z9, Fgl(n) ~ V(n) ~ nf.
m For H(Z), Fgl(n) ~ V(n) =~ n*.

m For lamplighter groups (Erschler 06): F1Z9 = @ 4 F x 29, Fgl(n) ~ e
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Invariance of the Fglner function

Quantitative
ergodic

Theorem (Delabie-Koivisto-Le Maitre-Tessera 20)
theory

m IfA and T are L1-OE, then Fgly ~ Fglr.
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Invariance of the Fglner function

Quantitative

ergodic Theorem (Delabie-Koivisto-Le Maftre-Tessera 20)
theory

m IfA and T are L1-OE, then Fgly ~ Fglr.

m More generally, if A and T are (¢, L°)-OE for some concave increasing
function ¢, then
Fgly oo < Folr.

o
Corollary

Let d, k € N. If there exists an (LP, L°)-OE from F 79tk to F179, then
p < d/(d+k).
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Invariance of the Fglner function

Quantitative

ergodic Theorem (Delabie-Koivisto-Le Maftre-Tessera 20)
theory

Romain m IfA and T are L'-OE, then Fgly ~ Fglr.

Tessera m More generally, if A and T are (¢, L°)-OE for some concave increasing

function ¢, then
Fgly oo < Folr.

v

Corollary

Let d, k € N. If there exists an (LP, L°)-OE from F 79tk to F179, then
p < d/(d+k).

Corollary (No quantitative version of OW'’s theorem)

| A\

For all N amenable, and all increasing unbounded o, there exists another
amenable group I' that is not p-OE to A.

Based on constructions of Brieussel-Zheng (2021).

Romain Tessera Quantitative ergodic theory



What about a converse?

Quantitative
ergodic
theory
Ro . . . . . .

The previous result are nearly optimal in a number of situation. For instance

Theorem (Delabie-Koivisto-Le Maitre-Tessera 20)

m Let d, k' € N. Then Z9 and Z9%* are LP-OE for all p < d/(d + k).

Romain Tessera Quantitative ergodic theory



What about a converse?

Quantitative
ergodic
theory

The previous result are nearly optimal in a number of situation. For instance

Theorem (Delabie-Koivisto-Le Maitre-Tessera 20)

m Let d, k' € N. Then Z9 and Z9%* are LP-OE for all p < d/(d + k).
m Z* and H(Z) are LP-OE for all p < 1.

Romain Tessera Quantitative ergodic theory



What about a converse?

Quantitative
ergodic
theory

The previous result are nearly optimal in a number of situation. For instance

Theorem (Delabie-Koivisto-Le Maitre-Tessera 20)

m Let d, k' € N. Then Z9 and Z9%* are LP-OE for all p < d/(d + k).
m Z* and H(Z) are LP-OE for all p < 1.
m The lamplighter group and 7 are log n*=¢-OE for all € > 0.

New method of Explicit construction of OE-couplings for a given pair of
amenable groups.
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Constructing an OE between Z and Z?

Quantitative
ergodic

ey Preliminaries:

m The 2-odometer: consider the action of Z on the {0, 1}, defined as
follows.
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Constructing an OE between Z and Z?

Quantitative
ergodic

ey Preliminaries:

m The 2-odometer: consider the action of Z on the {0, 1}, defined as
follows. The generator a of Z acts as:
a-(0,0,0,1,...)=(1,0,0,1...)
a-(1,0,0,...)=(0,1,0,...

a.(17171707"'):(07070717"')
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ey Preliminaries:

m The 2-odometer: consider the action of Z on the {0, 1}, defined as
follows. The generator a of Z acts as:
a-(0,0,0,1,...)=(1,0,0,1...)
a-(1,0,0,...) = (0,1,0,...)
a-(1,1,1,0,...) = (0,0,0,1,...)
m The 4-odometer: : consider the action of Z on the {0,1,2,3}", defined as
follows. a-(1,2,0,3,...) =(2,2,0,3,...)
a-(3,1,2,0,...) = (0,2,2,0,...)
a-(3,3,3,3,1,0,...) = (0,0,0,0,2,0,...)

These actions preserve the product measure on {0, 1} and {0, 1,2, 3}

Two sequences belong to the same orbit if and only if they differ by at most
finitely many coordinates.

The d-odometer is the action of Z by translation on Zg4 (the ring of d-adic
numbers).
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The actions of Z and Z2:

m We let Z acts on the 4-odometer: {0,1,2,3}"
m We let Z? acts on a product of 2-odometers: {0, 1} x {0, 1}.

The orbit equivalence: F : {0,1}N x {0,1} — {0,1,2,3}" is defined

F(x,y) = x+ 2y.
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Constructing an OE between Z and Z?

Quantitative
ergodic
theory

The actions of Z and Z2:

m We let Z acts on the 4-odometer: {0,1,2,3}"
m We let Z? acts on a product of 2-odometers: {0, 1} x {0, 1}.

The orbit equivalence: F : {0,1}N x {0,1} — {0,1,2,3}" is defined

F(x,y) = x+ 2y.

Example: if x =(0,1,1,...), y = (1,0,1,...), then

Fx,y)=(0+2,140,1+2,...)=(2,1,3,...).
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