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Group actions preserving a probability

Λ a countable group (examples: Z, Zd , free group on k generators Fk ),

(X , µ) probability space (example: (S1, λ) where λ is Lebesgue measure,
{0, 1}Λ, equipped with the product measure),

An pmp action Λ y (X , µ): i.e. a free measure-preserving action.

Exemples

Rotations: Z y (S1, λ) generated by an irrational rotation,

Bernoulli shift: Λ y {0, 1}Λ.

Context:

Ergodic theory,

Representation theory,

Operator algebras,

Percolation theory (probabilities),

Lattices in Lie groups...
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Orbit equivalence

Definition (Isomorphism)

Two pmp actions Λ y (X , µ) and Γ y (Y , ν) are isomorphic, if there exist
isomorphisms Ψ : (X , µ)→ (Y , ν), and θ : Λ→ Γ such that

for a.e. x ∈ X , and
all λ ∈ Λ,

Ψ (λ · x) = θ(λ) ·Ψ(x).

Definition (Orbit equivalence)

Two (free) pmp actions Λ y (X , µ) and Γ y (Y , ν) are orbit equivalent (OE), if
there exists an isomorphism (of measure spaces) Ψ : (X , µ)→ (Y , ν) such that
for a.e. x ∈ X ,

Ψ (Λ · x) = Γ ·Ψ(x).

Z y (S1, λ) and Z y {0, 1}Z are not isomorphic (spectrum);

Z y {0, 1}Z and Z y {0, 1, 2}Z are not isomorphic (Kolmogorov-Sinai).

Any two ergodic pmp actions of Z are OE (Dye 59).
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Amenable groups

Definition

A countable group Λ is amenable if it admits a sequence of “almost-invariant
finite subsets” An ⊂ Λ, i.e. such that for all λ ∈ Λ,

|Anλ M An|
|An|

→ 0.

((An) is called a right Følner sequence)

Exemples

Zd , with An = [−n, n]d ;

stable under extension, subgroup, quotient...

free groups Fk on k ≥ 2 generators are not amenable.
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A famous theorem of Ornstein-Weiss

Theorem (Ornstein-Weiss 80)

Let Λ and Γ be two (infinite) countable amenable groups. Then any pmp ergodic
actions Λ y (X , µ) and Γ y (Y , ν) are OE.

Things are very different for non-amenable groups. For instance

Theorem (Gaboriau 00)

If Fk and Fk′ have OE pmp actions, then k = k ′.

Problem

Is-this the end of the story for amenable groups?

To try to answer (negatively) this question, we address the following points:

quantify orbit equivalence: add “constraints” on the orbit-equivalence
relation.

quantify amenability: e.g.: find a ways to say that Z is “more amenable”
than Z2;
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Orbit equivalence cocycles

Problem: find a substitute for the lack of isomorphism between Λ and Γ.

Definition (Cocycle)

Λ, Γ y X with (a.e.) same orbits. Define α : Λ× X → Γ by:

α(λ, x) · x = λ · x ,

for a.e. x ∈ X , λ ∈ Λ. (Similarly: β : Γ× X → Λ)

Hence for every x , α(·, x) is a bijection between Λ to Γ.

Note that β(α(x , ·), x) = id.

Problem: Given generating sets SΛ and SΓ, quantify the “average distortion” of
the “random” map α(·, x) : Λ→ Γ.
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Quantifying orbit equivalence

Definition (ϕ orbit equivalence)

Let ϕ,ψ : R+ → R+ be increasing functions tending to ∞. Assume Λ, Γ y (X , µ)
with same orbits.

The actions are (ϕ,ψ)-OE if

for all λ ∈ Λ,
x 7→ ϕ(|α(x , λ)|SΓ

)

is integrable,

for all γ ∈ Γ,
x 7→ ψ(|β(x , γ)|SΛ

)

is integrable.

Remark

Note that for ϕ(t) = ψ(t) = tp , this means in Lp-OE.

L0-OE: no integrability condition.

The faster ϕ tends to infinity, the stronger the condition is. For instance:

(L∞ − OE)⇒ (L2 − OE)⇒ (L1 − OE)⇒ (L1/2 − OE)⇒ (log−OE).
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Quantifying orbit equivalence: other point of view

Definition (Word distance on X)

Let Λ be a group generated by a finite subset S and let assume Λ acts freely on
(X , µ), then the word distance on X associated to S is

dS (x , x ′) = min{n ∈ N | x ′ = s±1
1 . . . s±1

n · x},

where si ∈ S if x ′ and x lie in a same orbit,

and dS (x , x ′) =∞ otherwise.

We use the measure µ to compare the word distances associated to two distinct
pmp actions as follows:

Proposition (ϕ-integrable orbit equivalence)

Assume Λ, Γ y (X , µ) with same orbits. The actions are (ϕ,ψ)-OE iff for all
λ ∈ SΛ, ∫

X
ϕ(dSΓ

(x , λ · x))dµ(x) <∞,

and all γ ∈ SΓ, ∫
X
ψ(dSΛ

(x , γ · x))dµ(x) <∞,
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Growth function

Let Λ be a group generated by a finite subset S . Define the growth function of Λ

VΛ(n) = |Sn| =
{
g ∈ Λ | g = s±1

1 . . . s±1
n , si ∈ S

}
.

The asymptotic behavior of VG does not depend on S.

Exemples

VZd (n) ≈ nd .

Recall that the Heisenberg group H(Z) is the 2-step torsion-free nilpotent
group that can be defined as the group of triples (x , y , z) ∈ Z3 equipped
with the group operation

(x , y , z) · (x ′, y ′, z ′) = (x + x ′, y + y ′, z + z ′ + yx ′).

VH(Z)(n) ≈ n4.

Romain Tessera Quantitative ergodic theory



Quantitative
ergodic
theory

Romain
Tessera

Growth function

Let Λ be a group generated by a finite subset S . Define the growth function of Λ

VΛ(n) = |Sn| =
{
g ∈ Λ | g = s±1

1 . . . s±1
n , si ∈ S

}
.

The asymptotic behavior of VG does not depend on S.

Exemples

VZd (n) ≈ nd .

Recall that the Heisenberg group H(Z) is the 2-step torsion-free nilpotent
group that can be defined as the group of triples (x , y , z) ∈ Z3 equipped
with the group operation

(x , y , z) · (x ′, y ′, z ′) = (x + x ′, y + y ′, z + z ′ + yx ′).

VH(Z)(n) ≈ n4.

Romain Tessera Quantitative ergodic theory



Quantitative
ergodic
theory

Romain
Tessera

Growth function

Let Λ be a group generated by a finite subset S . Define the growth function of Λ

VΛ(n) = |Sn| =
{
g ∈ Λ | g = s±1

1 . . . s±1
n , si ∈ S

}
.

The asymptotic behavior of VG does not depend on S.

Exemples

VZd (n) ≈ nd .

Recall that the Heisenberg group H(Z) is the 2-step torsion-free nilpotent
group that can be defined as the group of triples (x , y , z) ∈ Z3 equipped
with the group operation

(x , y , z) · (x ′, y ′, z ′) = (x + x ′, y + y ′, z + z ′ + yx ′).

VH(Z)(n) ≈ n4.

Romain Tessera Quantitative ergodic theory



Quantitative
ergodic
theory

Romain
Tessera

Growth function

Let Λ be a group generated by a finite subset S . Define the growth function of Λ

VΛ(n) = |Sn| =
{
g ∈ Λ | g = s±1

1 . . . s±1
n , si ∈ S

}
.

The asymptotic behavior of VG does not depend on S.

Exemples

VZd (n) ≈ nd .

Recall that the Heisenberg group H(Z) is the 2-step torsion-free nilpotent
group that can be defined as the group of triples (x , y , z) ∈ Z3 equipped
with the group operation

(x , y , z) · (x ′, y ′, z ′) = (x + x ′, y + y ′, z + z ′ + yx ′).

VH(Z)(n) ≈ n4.

Romain Tessera Quantitative ergodic theory



Quantitative
ergodic
theory

Romain
Tessera

Growth function

Let Λ be a group generated by a finite subset S . Define the growth function of Λ

VΛ(n) = |Sn| =
{
g ∈ Λ | g = s±1

1 . . . s±1
n , si ∈ S

}
.

The asymptotic behavior of VG does not depend on S.

Exemples

VZd (n) ≈ nd .

Recall that the Heisenberg group H(Z) is the 2-step torsion-free nilpotent
group that can be defined as the group of triples (x , y , z) ∈ Z3 equipped
with the group operation

(x , y , z) · (x ′, y ′, z ′) = (x + x ′, y + y ′, z + z ′ + yx ′).

VH(Z)(n) ≈ n4.

Romain Tessera Quantitative ergodic theory



Quantitative
ergodic
theory

Romain
Tessera

Growth function

Theorem (Bowen 16)

If Λ and Γ are L1-OE, then VΛ ≈ VΓ.

Hence Zd is L1-0E to Zd′ , then d = d ′. More specifically:

Theorem (Bowen/Delabie-Koivisto-Le Mâıtre-T 20)

If there exists a (ϕ, L0)-OE from Λ to Γ, then VΛ ◦ ϕ 4 VΓ.

Let d , k ∈ N. If there exists an (Lp , L0)-OE from Zd+k to Zd , then
p ≤ d/(d + k).

If Λ has exponential growth and if Λ and Z are are ϕ-OE, then ϕ(n) . log n.

Theorem (Austin 16)

If Λ = Zd , and if Γ is L1-OE to Λ, then Γ is virtually Zd .

For instance H(Z) and Z4 are not L1-OE, although they have same growth.
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Quantify amenability: Følner profile

Definition

Let Λ be a group generated by a finite subset S . Define its Følner function

Føl(n) = min

{
|A| |

|As M A|
|A|

≤ 1/n, ∀s ∈ S

}

Remark

Λ is amenable iff Føl <∞. The general philosophy is:
the faster FølΛ the less amenable is Λ.

Coulhon and Saloff-Coste inequality: V . Føl , and in general, Føl is much
faster than V .

Exemples

For Zd , Føl(n) ≈ V (n) ≈ nd .

For H(Z), Føl(n) ≈ V (n) ≈ n4.

For lamplighter groups (Erschler 06): F o Zd =
⊕

Zd F o Zd , Føl(n) ≈ en
d

.
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For Zd , Føl(n) ≈ V (n) ≈ nd .

For H(Z), Føl(n) ≈ V (n) ≈ n4.

For lamplighter groups (Erschler 06): F o Zd =
⊕

Zd F o Zd , Føl(n) ≈ en
d

.
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Invariance of the Følner function

Theorem (Delabie-Koivisto-Le Mâıtre-Tessera 20)

If Λ and Γ are L1-OE, then FølΛ ≈ FølΓ.

More generally, if Λ and Γ are (ϕ, L0)-OE for some concave increasing
function ϕ, then

FølΛ ◦ ϕ . FølΓ.

Corollary

Let d , k ∈ N. If there exists an (Lp , L0)-OE from F o Zd+k to F o Zd , then
p ≤ d/(d + k).

Corollary (No quantitative version of OW’s theorem)

For all Λ amenable, and all increasing unbounded ϕ, there exists another
amenable group Γ that is not ϕ-OE to Λ.

Based on constructions of Brieussel-Zheng (2021).
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If Λ and Γ are L1-OE, then FølΛ ≈ FølΓ.

More generally, if Λ and Γ are (ϕ, L0)-OE for some concave increasing
function ϕ, then

FølΛ ◦ ϕ . FølΓ.

Corollary

Let d , k ∈ N. If there exists an (Lp , L0)-OE from F o Zd+k to F o Zd , then
p ≤ d/(d + k).

Corollary (No quantitative version of OW’s theorem)

For all Λ amenable, and all increasing unbounded ϕ, there exists another
amenable group Γ that is not ϕ-OE to Λ.

Based on constructions of Brieussel-Zheng (2021).

Romain Tessera Quantitative ergodic theory



Quantitative
ergodic
theory

Romain
Tessera

Invariance of the Følner function

Theorem (Delabie-Koivisto-Le Mâıtre-Tessera 20)
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What about a converse?

The previous result are nearly optimal in a number of situation. For instance

Theorem (Delabie-Koivisto-Le Mâıtre-Tessera 20)

Let d , k ′ ∈ N. Then Zd and Zd+k are Lp-OE for all p < d/(d + k).

Z4 and H(Z) are Lp-OE for all p < 1.

The lamplighter group and Z are log n1−ε-OE for all ε > 0.

New method of Explicit construction of OE-couplings for a given pair of
amenable groups.

Let us explain it for Z and Z2.
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Constructing an OE between Z and Z2

Preliminaries:

The 2-odometer: consider the action of Z on the {0, 1}N, defined as
follows.

The generator a of Z acts as:
a · (0, 0, 0, 1, . . .) = (1, 0, 0, 1 . . .)
a · (1, 0, 0, . . .) = (0, 1, 0, . . .)
a · (1, 1, 1, 0, . . .) = (0, 0, 0, 1, . . .)

The 4-odometer: : consider the action of Z on the {0, 1, 2, 3}N, defined as
follows. a · (1, 2, 0, 3, . . .) = (2, 2, 0, 3, . . .)
a · (3, 1, 2, 0, . . .) = (0, 2, 2, 0, . . .)
a · (3, 3, 3, 3, 1, 0, . . .) = (0, 0, 0, 0, 2, 0, . . .)

These actions preserve the product measure on {0, 1}N and {0, 1, 2, 3}N.

Two sequences belong to the same orbit if and only if they differ by at most
finitely many coordinates.

The d-odometer is the action of Z by translation on Zd (the ring of d-adic
numbers).
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Constructing an OE between Z and Z2

The actions of Z and Z2:

We let Z acts on the 4-odometer: {0, 1, 2, 3}N

We let Z2 acts on a product of 2-odometers: {0, 1}N × {0, 1}N.

The orbit equivalence: F : {0, 1}N × {0, 1}N → {0, 1, 2, 3}N is defined

F (x , y) = x + 2y .

Example: if x = (0, 1, 1, . . .), y = (1, 0, 1, . . .), then

F (x , y) = (0 + 2, 1 + 0, 1 + 2, . . .) = (2, 1, 3, . . .).
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