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Introduction

Introduction

Notations: Let B be a unital pre C ∗ algebra equipped with a ∗-exterior algebra
(ΩB , dB ) that is,

Definition

A graded algebra ΩB =
⊕

n≥0 Ω
n
B , with Ω0

B = B

dB : Ωn
B → Ωn+1

B s.t. d2
B = 0 and

dB (𝜔 ∧ 𝜌) = (dB𝜔) ∧ 𝜌 + (−1)n𝜔 ∧ dB 𝜌, ∀𝜔, 𝜌 ∈ ΩB and ∀𝜔 ∈ Ωn
B

B , dBB generate ΩB

There exists an antilinear involutive map ∗ : Ωn
B → Ωn

B for all n such that

(dBb)∗ = dB (b∗) ∀b ∈ ΩB

(b ∧ [)∗ = (−1)nm[∗ ∧ b∗ ∀b ∈ Ωn
B ,∀[ ∈ Ωm

B
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Introduction

Extended diffeomorphism group

Further, let’s denote,

1. (Ω1
B )sa = {𝜔 ∈ ΩB | 𝜔∗ = 𝜔}

2. [·, ·] to be the supercommutator in ΩB with respect to pairity of degree.

3. Aut (ΩB ) denotes the automorphism group of the graded algebra ΩB .

4. Aut0 (ΩB ) :=
{
𝜑 ∈ Aut (ΩB ) | 𝜑↾B = idB

}
Since, inner automorphisms of B aren’t naive i.e. 𝜑 doesn’t commute with dB we
seek the following generalization.

Definition

The extended diffeomorphism group of B with respect to (ΩB , dB ), denoted by
D̃iff (B), is defined to be the subgroup{

(𝜔, 𝜑) ∈ (Ω1
B )sa ⋊ Aut (ΩB ) | ∀𝛽 ∈ ΩB , d (𝛽) − 𝜑 ◦ d ◦ 𝜑−1 (𝛽) = i[𝜔, 𝛽]

}
Furthermore, we define, D̃iff 0 (B) := {(𝜔, 𝜑) ∈ D̃iff (B) | 𝜑 ∈ Aut0 (ΩB )} whose
elements are said to be topologically trivial.
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Introduction

Why?

1. The most conservative notion of diffeomorphism of a noncommutative
manifold that includes all inner automorphisms.

2. Computation of DPic(B).
3. Computation of moduli spaces of solutions to Euclidean Maxwell’s equations.
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Introduction

Examples

1. Let X be a closed manifold. B = C∞ (X ) with sup norm and (ΩB , dB ) to be
the de Rham calculus.

2. Irrational noncommutative 2-Torus, A∞
\
.

3. Algebraic standard Podleś sphere, Oq (CP1).
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Statement of the problem

Statement of the problem

Let 𝜋 : D̃iff (B) → Aut (B) denote the projection map,

𝜋(𝜔, 𝜑) := 𝜑↾B

We have the short exact sequence,

1 D̃iff 0 (B) D̃iff (B) Aut (B) 1
𝜋

Q1. Does this short exact sequence split?

Q2. Can we explicitly compute the groups D̃iff 0 (B) and D̃iff (B)?
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Some useful results

Some useful results

Theorem (Elliott)

Aut (A∞
\
) �

(
U(A∞

\
)0/U(1)

)
⋊
(
T2 ⋊ SL(2,Z)

)
Theorem (Krähmer)

We have a group isomorphism, 𝛼 : U (1) → Aut (Oq (CP1)) given by,

𝛼(z) := _z

where for each z ∈ U (1),

_z (x0) := x0, and _z (x±) := z±x±

1. G.A. Elliott. “The diffeomorphism group of the irrational rotation C*-algebra”. In: C. R.
Math. Rep. Acad. Sci. Canada Vol. 8(5) (1986), pp. 329–334

2. Ulrich Krähmer. “On the Non-standard Podleś Spheres”. In: C*-algebras and Elliptic
Theory II. ed. by Dan Burghelea et al. Basel: Birkhäuser Basel, 2008, pp. 145–147
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Algebraic standard Podleś sphere

Oq (CP1)

Definition

Let q ∈ (0, 1). The algebraic standard Podleś sphere is the ∗-algebra generated by
elements x0, x+ and x− subject to the relations,

x0x± = q±2x±x0, x∓x± = q±2x20 + (1 + q±2)x0, x∗± = −q±1x∓

Due to a theorem by Majid, we have that, (Ωq (CP1, dq)) is a ∗-FODC on
Oq (CP1) where,

Ωq (CP1) = L−2e
+ ⊕ L2e

−

and dq : Oq (CP1) → Ωq (CP1) defined by, dq := dq,hor↾Oq (CP1 ) ; arising from the

∗-FODC on Oq (SU (2)) with U (1) action.
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Algebraic standard Podleś sphere

Computing D̃iff 0(Oq (CP1)) and D̃iff (Oq (CP1))

To answer Q1, define, 𝜌 : U (1) → D̃iff (Oq (CP1)) by,

𝜌(z) := (0, _z )

This gives us a split extension

D̃iff (Oq (CP1)) � D̃iff 0 (Oq (CP1)) ⋊ U (1)

However, we have that D̃iff 0 (Oq (CP1)), given by
(1 − s)𝜕+ (b) = i [p, b]

(p, s) ∈ Oq (SU (2))±2 ⋊ Cx ∀b ∈ Oq (CP1), and
(1 − s̄)𝜕− (b) = i [−q−1p∗, b]


is trivial and hence D̃iff (Oq (CP1)) � U (1)
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Irrational noncommutative 2-torus

A∞
\

Definition

Let \ ∈ R \ Q. The irrational NC 2-torus is the ∗-algebra of rapidly decaying
Laurent series in the generators u and v satisfying

vu = e2𝜋i\uv

This comes equipped with the graded ∗-algebra Ω\ (T2) over A∞
\
, generated by

central self adjoint elements e1, e2 ∈ Ω1
\
(T2) satisfying,

(e1)2 = (e2)2 = e1e2 + e2e1 = 0

and d : A∞
\
→ Ω\ (T2) defined by,

d (a) = 𝛿1 (a)e1 + 𝛿2 (a)e2

where, for all m, n ∈ Z,

𝛿1 (umvn) = 2𝜋imumvn, 𝛿2 (umvn) = 2𝜋inumvn, de1 = de2 = 0
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Irrational noncommutative 2-torus

Computing D̃iff 0(A∞
\
) and D̃iff (A∞

\
)

To answer Q1, define, 𝜌 :
(
U(A∞

\
)0/U(1)

)
⋊
(
T2 ⋊ SL(2,Z)

)
→ D̃iff (A∞

\
) by,

𝜌( [w ], (z1, z2), g )) := 𝜌1 ( [w ]) · 𝜌2 ((z1, z2)) · 𝜌3 (g )

where,

[w ] ↦→
(
−id (w )w ∗,Ad[w ]

)
:
(
U(A∞

\ )0/U(1)
)

𝜌1−−→ D̃iff (A∞
\ )

(z1, z2) ↦→ (0, 𝛼(z1 ,z2 ) ) : T2
𝜌2−−→ D̃iff (A∞

\ )

g ↦→ (0, 𝜎g ) : SL(2,Z)
𝜌3−−→ D̃iff (A∞

\ )

then 𝜌 is a group homomorphism that splits the short exact sequence.

Theorem

D̃iff 0 (A∞
\ ) � R2

D̃iff (A∞
\ ) � R2 ⋊

[(
U(A∞

\ )0/U(1)
)
⋊
(
T2 ⋊ SL(2,Z)

)]
T. Venkata Karthik Extended diffeomorphism groups for NCM 24 May 2023 10 / 11



Conclusion

Computing D̃iff 0(A∞
\
)and D̃iff (A∞

\
)

Contd.

Proof.

We have that,

D̃iff (A∞
\ ) � D̃iff 0 (A∞

\ ) ⋊
[(
U(A∞

\ )0/U(1)
)
⋊
(
T2 ⋊ SL(2,Z)

)]
However, by a result of Bratelli-Elliott-Jorgenson3, we see that the topologically
trivial elements of D̃iff (A∞

\
) are of the form

{(𝜔, id) | 𝜔 ∈ Z (Ω1
\ (T2)sa)} = Z (Ω1

\ (T2)sa) × {id} � R2

and we have the theorem. □

3. P. E. T. Jorgensen, G. A. Elliott, and O. Bratteli. “Decomposition of unbounded
derivations into invariant and approximately inner parts.”. In: Journal für die reine und
angewandte Mathematik 346 (1984), pp. 166–193
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Thank you!
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