Extended diffeomorphism groups for noncommutative manifolds ${ }^{1}$

T. Venkata Karthik

UNB Fredericton
Canadian Operator Symposium 2023, Western University,
London, Ontario.

24 May 2023
${ }^{1}$ This is a joint work with B. Ćaćić.

Outline

(1) Introduction
(2) Statement of the problem
(3) Some useful results
4. Algebraic standard Podleś sphere
(5) Irrational noncommutative 2-torus
(6) Conclusion

Introduction

Notations: Let B be a unital pre C^{*} algebra equipped with a *-exterior algebra (Ω_{B}, d_{B}) that is,

Definition

- A graded algebra $\Omega_{B}=\bigoplus_{n \geq 0} \Omega_{B}^{n}$, with $\Omega_{B}^{0}=B$
- $d_{B}: \Omega_{B}^{n} \rightarrow \Omega_{B}^{n+1}$ s.t. $d_{B}^{2}=0$ and

$$
d_{B}(\omega \wedge \rho)=\left(d_{B} \omega\right) \wedge \rho+(-1)^{n} \omega \wedge d_{B} \rho, \forall \omega, \rho \in \Omega_{B} \text { and } \forall \omega \in \Omega_{B}^{n}
$$

- $B, d_{B} B$ generate Ω_{B}
- There exists an antilinear involutive map $*: \Omega_{B}^{n} \rightarrow \Omega_{B}^{n}$ for all n such that

$$
\begin{aligned}
\left(d_{B} \xi\right)^{*} & =d_{B}\left(\xi^{*}\right) \forall \xi \in \Omega_{B} \\
(\xi \wedge \eta)^{*} & =(-1)^{n m} \eta^{*} \wedge \xi^{*} \forall \xi \in \Omega_{B}^{n}, \forall \eta \in \Omega_{B}^{m}
\end{aligned}
$$

Extended diffeomorphism group

Further, let's denote,

1. $\left(\Omega_{B}^{1}\right)_{s a}=\left\{\omega \in \Omega_{B} \mid \omega^{*}=\omega\right\}$
2. $[\cdot, \cdot]$ to be the supercommutator in Ω_{B} with respect to pairity of degree.
3. $\operatorname{Aut}\left(\Omega_{B}\right)$ denotes the automorphism group of the graded algebra Ω_{B}.
4. $\operatorname{Aut} t_{0}\left(\Omega_{B}\right):=\left\{\varphi \in \operatorname{Aut}\left(\Omega_{B}\right) \mid \varphi_{\Gamma_{B}}=i d_{B}\right\}$

Since, inner automorphisms of B aren't naive i.e. φ doesn't commute with d_{B} we seek the following generalization.

Definition

The extended diffeomorphism group of B with respect to $\left(\Omega_{B}, d_{B}\right)$, denoted by $\operatorname{Diff}(B)$, is defined to be the subgroup

$$
\left\{(\omega, \varphi) \in\left(\Omega_{B}^{1}\right)_{s a} \rtimes \operatorname{Aut}\left(\Omega_{B}\right) \mid \forall \beta \in \Omega_{B}, d(\beta)-\varphi \circ d \circ \varphi^{-1}(\beta)=\mathbf{i}[\omega, \beta]\right\}
$$

Furthermore, we define, $\widetilde{\operatorname{Diff}_{0}}(B):=\left\{(\omega, \varphi) \in \widetilde{\operatorname{Diff}}(B) \mid \varphi \in \operatorname{Aut}\left(\Omega_{B}\right)\right\}$ whose elements are said to be topologically trivial.

Why?

1. The most conservative notion of diffeomorphism of a noncommutative manifold that includes all inner automorphisms.
2. Computation of $\operatorname{DPic}(B)$.
3. Computation of moduli spaces of solutions to Euclidean Maxwell's equations.

Examples

1. Let X be a closed manifold. $B=C^{\infty}(X)$ with sup norm and $\left(\Omega_{B}, d_{B}\right)$ to be the de Rham calculus.
2. Irrational noncommutative 2-Torus, $\mathcal{A}_{\theta}^{\infty}$.
3. Algebraic standard Podleś sphere, $O_{q}\left(\mathbb{C} P^{1}\right)$.

Statement of the problem

Let $\pi: \widetilde{\operatorname{Diff}}(B) \rightarrow \operatorname{Aut}(B)$ denote the projection map,

$$
\pi(\omega, \varphi):=\varphi_{\Gamma_{B}}
$$

We have the short exact sequence,

$$
1 \longrightarrow \widetilde{\operatorname{Diff}}_{0}(B) \longrightarrow \widetilde{\operatorname{Diff}}(B) \xrightarrow{\pi} \operatorname{Aut}(B) \longrightarrow 1
$$

Q1. Does this short exact sequence split?
Q2. Can we explicitly compute the groups $\widetilde{\operatorname{Diff}} f_{0}(B)$ and $\widetilde{\operatorname{Diff}}(B)$?

Some useful results

Theorem (Elliott)
$\operatorname{Aut}\left(\mathcal{A}_{\theta}^{\infty}\right) \cong\left(\mathcal{U}\left(A_{\theta}^{\infty}\right)^{0} / \mathcal{U}(1)\right) \rtimes\left(\mathbb{T}^{2} \rtimes S L(2, \mathbb{Z})\right)$

Theorem (Krähmer)
We have a group isomorphism, $\alpha: U(1) \rightarrow \operatorname{Aut}\left(O_{q}\left(\mathbb{C} P^{1}\right)\right)$ given by,

$$
\alpha(z):=\lambda_{z}
$$

where for each $z \in U(1)$,

$$
\lambda_{z}\left(x_{0}\right):=x_{0}, \text { and } \lambda_{z}\left(x_{ \pm}\right):=z^{ \pm} x_{ \pm}
$$

[^0]$O_{q}\left(\mathbb{C} P^{1}\right)$

Definition

Let $q \in(0,1)$. The algebraic standard Podleś sphere is the $*$-algebra generated by elements x_{0}, x_{+}and x_{-}subject to the relations,

$$
x_{0} x_{ \pm}=q^{ \pm 2} x_{ \pm} x_{0}, x_{\mp} x_{ \pm}=q^{ \pm 2} x_{0}^{2}+\left(1+q^{ \pm 2}\right) x_{0}, x_{ \pm}^{*}=-q^{ \pm 1} x_{\mp}
$$

Due to a theorem by Majid, we have that, $\left(\Omega_{q}\left(\mathbb{C} P^{1}, d_{q}\right)\right)$ is a *-FODC on $O_{q}\left(\mathbb{C} P^{1}\right)$ where,

$$
\Omega_{q}\left(\mathbb{C} P^{1}\right)=\mathcal{L}_{-2} e^{+} \oplus \mathcal{L}_{2} e^{-}
$$

and $d_{q}: O_{q}\left(\mathbb{C} P^{1}\right) \rightarrow \Omega_{q}\left(\mathbb{C} P^{1}\right)$ defined by, $d_{q}:=d_{q, \text { hor } \upharpoonright O_{q}\left(\mathbb{C} P^{1}\right)}$; arising from the *-FODC on $O_{q}(S U(2))$ with $U(1)$ action.

Computing $\widetilde{\operatorname{Diff}}{ }_{0}\left(O_{q}\left(\mathbb{C} P^{1}\right)\right)$ and $\widetilde{\operatorname{Diff}}\left(O_{q}\left(\mathbb{C} P^{1}\right)\right)$

To answer Q1, define, $\rho: U(1) \rightarrow \widetilde{\operatorname{Diff}}\left(O_{q}\left(\mathbb{C} P^{1}\right)\right)$ by,

$$
\rho(z):=\left(0, \lambda_{z}\right)
$$

This gives us a split extension

$$
\widetilde{\operatorname{Diff}}\left(O_{q}\left(\mathbb{C} P^{1}\right)\right) \cong \widetilde{\operatorname{Diff}}{ }_{0}\left(O_{q}\left(\mathbb{C} P^{1}\right)\right) \rtimes U(1)
$$

However, we have that $\widetilde{\operatorname{Diff}}_{0}\left(O_{q}\left(\mathbb{C} P^{1}\right)\right)$, given by

$$
\left\{(p, s) \in O_{q}(S U(2))_{ \pm 2} \rtimes \mathbb{C}^{x} \left\lvert\, \begin{array}{cc}
& (1-s) \partial_{+}(b)=i[p, b] \\
\text { and } \\
& (1-\bar{s}) \partial_{-}(b)=i\left[-q^{-1} p^{*}, b\right]
\end{array}\right.\right\}
$$

is trivial and hence $\widetilde{\operatorname{Diff}}\left(O_{q}\left(\mathbb{C} P^{1}\right)\right) \cong U(1)$

Definition

Let $\theta \in \mathbb{R} \backslash \mathbb{Q}$. The irrational NC 2-torus is the *-algebra of rapidly decaying Laurent series in the generators u and v satisfying

$$
v u=e^{2 \pi \mathrm{i} \theta} u v
$$

This comes equipped with the graded $*$-algebra $\Omega_{\theta}\left(\mathbb{T}^{2}\right)$ over $\mathcal{A}_{\theta}^{\infty}$, generated by central self adjoint elements $e_{1}, e_{2} \in \Omega_{\theta}^{1}\left(\mathbb{T}^{2}\right)$ satisfying,

$$
\left(e^{1}\right)^{2}=\left(e^{2}\right)^{2}=e^{1} e^{2}+e^{2} e^{1}=0
$$

and $d: \mathcal{A}_{\theta}^{\infty} \rightarrow \Omega_{\theta}\left(\mathbb{T}^{2}\right)$ defined by,

$$
d(a)=\delta_{1}(a) e^{1}+\delta_{2}(a) e^{2}
$$

where, for all $m, n \in \mathbb{Z}$,

$$
\delta_{1}\left(u^{m} v^{n}\right)=2 \pi i m u^{m} v^{n}, \delta_{2}\left(u^{m} v^{n}\right)=2 \pi i n u^{m} v^{n}, d e^{1}=d e^{2}=0
$$

Computing $\widetilde{\operatorname{Diff}} f_{0}\left(\mathcal{A}_{\theta}^{\infty}\right)$ and $\widetilde{\operatorname{Diff}}\left(\mathcal{A}_{\theta}^{\infty}\right)$

To answer Q1, define, $\rho:\left(\mathcal{U}\left(A_{\theta}^{\infty}\right)^{0} / \mathcal{U}(1)\right) \rtimes\left(\mathbb{T}^{2} \rtimes \operatorname{SL}(2, \mathbb{Z})\right) \rightarrow \widetilde{\operatorname{Diff}}\left(A_{\theta}^{\infty}\right)$ by,

$$
\left.\rho\left([w],\left(z_{1}, z_{2}\right), g\right)\right):=\rho_{1}([w]) \cdot \rho_{2}\left(\left(z_{1}, z_{2}\right)\right) \cdot \rho_{3}(g)
$$

where,

$$
\begin{gathered}
{[w] \mapsto\left(-i d(w) w^{*}, A d_{[w]}\right):\left(\mathcal{U}\left(A_{\theta}^{\infty}\right)^{0} / \mathcal{U}(1)\right) \xrightarrow{\rho_{1}} \widetilde{\operatorname{Diff}}\left(A_{\theta}^{\infty}\right)} \\
\left(z_{1}, z_{2}\right) \mapsto\left(0, \alpha_{\left(z_{1}, z_{2}\right)}\right): \mathbb{T}^{2} \xrightarrow{\rho_{2}} \widetilde{\operatorname{Diff}}\left(A_{\theta}^{\infty}\right) \\
g \mapsto\left(0, \sigma_{g}\right): S L(2, \mathbb{Z}) \xrightarrow{\rho_{3}} \widetilde{\operatorname{Diff}}\left(A_{\theta}^{\infty}\right)
\end{gathered}
$$

then ρ is a group homomorphism that splits the short exact sequence.
Theorem

$$
\begin{aligned}
\widetilde{\operatorname{Diff}}_{0}\left(A_{\theta}^{\infty}\right) & \cong \mathbb{R}^{2} \\
\widetilde{\operatorname{Diff}}\left(A_{\theta}^{\infty}\right) & \cong \mathbb{R}^{2} \rtimes\left[\left(\mathcal{U}\left(A_{\theta}^{\infty}\right)^{0} / \mathcal{U}(1)\right) \rtimes\left(\mathbb{T}^{2} \rtimes S L(2, \mathbb{Z})\right)\right]
\end{aligned}
$$

Computing $\widetilde{\operatorname{Diff}}\left(\mathcal{A}_{\theta}^{\infty}\right)$ and $\widetilde{\operatorname{Diff}}\left(\mathcal{A}_{\theta}^{\infty}\right)$

Contd.

Proof.
We have that,

$$
\widetilde{\operatorname{Diff}}\left(A_{\theta}^{\infty}\right) \cong \widetilde{\operatorname{Diff}}_{0}\left(A_{\theta}^{\infty}\right) \rtimes\left[\left(\mathcal{U}\left(A_{\theta}^{\infty}\right)^{0} / \mathcal{U}(1)\right) \rtimes\left(\mathbb{T}^{2} \rtimes S L(2, \mathbb{Z})\right)\right]
$$

However, by a result of Bratelli-Elliott-Jorgenson ${ }^{3}$, we see that the topologically trivial elements of $\widetilde{\operatorname{Diff}}\left(A_{\theta}^{\infty}\right)$ are of the form

$$
\left\{(\omega, i d) \mid \omega \in Z\left(\Omega_{\theta}^{1}\left(\mathbb{T}^{2}\right)_{s a}\right)\right\}=Z\left(\Omega_{\theta}^{1}\left(\mathbb{T}^{2}\right)_{s a}\right) \times\{i d\} \cong \mathbb{R}^{2}
$$

and we have the theorem.
3. P. E. T. Jorgensen, G. A. Elliott, and O. Bratteli. "Decomposition of unbounded derivations into invariant and approximately inner parts.". In: Journal für die reine und angewandte Mathematik 346 (1984), pp. 166-193

Thank you!

[^0]: 1. G.A. Elliott. "The diffeomorphism group of the irrational rotation C^{*}-algebra". In: C. R. Math. Rep. Acad. Sci. Canada Vol. 8(5) (1986), pp. 329-334
 2. Ulrich Krähmer. "On the Non-standard Podleś Spheres". In: C*-algebras and Elliptic Theory II. ed. by Dan Burghelea et al. Basel: Birkhäuser Basel, 2008, pp. 145-147
