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Quantum Superchannels QSC Symmetries

Quantum Channels

Defining Channels: Quantum states are positive matrices with unit
trace (density matrices)

▶ Two simple requirements are that channels be linear maps
that take quantum states to quantum states. This gives the
trace-preserving (TP) condition:

Tr(ϕ(ρ)) = Tr(ρ)

for all matrices ρ

▶ The requirements that quantum systems combine using tensor
products, and that the identity map is a valid channel is what
implies the completely positive (CP) condition.

Definition 1.1

A quantum channel is a linear CPTP map ϕ :Md −→Mr.
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Choi matrix

▶ Let Ei,j , 1 ≤ i, j ≤ d denote the matrix units in Md. We have
an isomorphism between linear maps and block matrices via
ϕ 7→ (ϕ(Ei,j)) =

∑
i,j Ei,j ⊗ ϕ(Ei,j)..

▶ The matrix Cϕ := (ϕ(Ei,j)) is called the Choi matrix or
Choi-Jamio lkowski matrix of the map.

Cϕ =


ϕ(E11) ϕ(E12) · · · ϕ(E1d)

ϕ(E21) ϕ(E22) · · ·
...

...
. . .

...
ϕ(Ed1) · · · · · · ϕ(Edd)


▶ Choi’s theorem says that a linear map ϕ :Md −→Mr is

completely positive if and only if Cϕ ≥ 0 in Md(Mr).

3 / 21



Quantum Superchannels QSC Symmetries

Choi matrix

▶ Let Ei,j , 1 ≤ i, j ≤ d denote the matrix units in Md. We have
an isomorphism between linear maps and block matrices via
ϕ 7→ (ϕ(Ei,j)) =

∑
i,j Ei,j ⊗ ϕ(Ei,j)..

▶ The matrix Cϕ := (ϕ(Ei,j)) is called the Choi matrix or
Choi-Jamio lkowski matrix of the map.

Cϕ =


ϕ(E11) ϕ(E12) · · · ϕ(E1d)

ϕ(E21) ϕ(E22) · · ·
...

...
. . .

...
ϕ(Ed1) · · · · · · ϕ(Edd)



▶ Choi’s theorem says that a linear map ϕ :Md −→Mr is
completely positive if and only if Cϕ ≥ 0 in Md(Mr).

3 / 21



Quantum Superchannels QSC Symmetries

Choi matrix

▶ Let Ei,j , 1 ≤ i, j ≤ d denote the matrix units in Md. We have
an isomorphism between linear maps and block matrices via
ϕ 7→ (ϕ(Ei,j)) =

∑
i,j Ei,j ⊗ ϕ(Ei,j)..

▶ The matrix Cϕ := (ϕ(Ei,j)) is called the Choi matrix or
Choi-Jamio lkowski matrix of the map.

Cϕ =


ϕ(E11) ϕ(E12) · · · ϕ(E1d)

ϕ(E21) ϕ(E22) · · ·
...

...
. . .

...
ϕ(Ed1) · · · · · · ϕ(Edd)


▶ Choi’s theorem says that a linear map ϕ :Md −→Mr is

completely positive if and only if Cϕ ≥ 0 in Md(Mr).

3 / 21



Quantum Superchannels QSC Symmetries

Superchannel

Definition 1.2

A quantum superchannel is a linear map
S : L(Md1 ,Mr1) −→ L(Md2 ,Mr2) which satisfies

▶ CP preserving: S sends CP maps to CP maps

▶ Completely CP preserving: For any d, r if idd,r is the identity
map acting on L(Md,Mr) then S ⊗ idd,r is CP preserving

▶ TP preserving: S sends TP maps to TP maps

▶ Superchannels give an induced map on Choi matrices

S̃(Cϕ) = CS(ϕ)

.
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Characterisation theorem

Theorem 1.1 (Chiribella, D’Ariano, Perinotti; 2008)

If S : L(Md1 ,Mr1) −→ L(Md2 ,Mr2) is a quantum superchannel
then there exists two quantum channels ψpre, ψpost such that

S(ϕ) = ψpost ◦ (ide ⊗ ϕ) ◦ ψpre

where e is the dimension of an auxilliary space.

Md2

ψpre ψpost

ϕ Mr2
Md1

Mr1
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Minimal dilation dimension

▶ Partial Trace: Tr2 = id ⊗ Tr for example,

Tr2(A⊗B) = A · Tr(B)

▶ In the characterisation of superchannels

S(ϕ) = ψpost ◦ (ϕ⊗ ide) ◦ ψpre

The dimension e can be chosen to be the rank of Trr1 Trr2 CS̃
and the channel ψpre can be chosen to be isometric.

▶ In a 2020 paper Gour and Scandolo show that this is unique in
the sense that any other characterisation with equal or smaller
dimension is equivalent up to action by a unitary channel.
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Space of Quantum Channels

Definition 2.1

SCPTP (d, r) := span{ϕ|ϕ :Md −→Mr is a CPTP map} ⊂
L(Md,Mr).

In terms of Choi matrices:

Definition 2.2

Let S(d, r) ⊂Md(Mr) be the set of block matrices (Pi,j) such that
for all 1 ≤ i, j ≤ d, Tr(Pi,i) = Tr(Pj,j) and for i ̸= j Tr(Pi,j) = 0.

Theorem 2.1

S(d, r) is an operator system and is completely order isomorphic to
SCPTP (d, r) via the Choi map ϕ 7→ Cϕ.
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QSC

Definition 2.3

Given two spaces of quantum channels SCPTP (di, ri), i = 1, 2, a
QSC is a linear map Γ : SCPTP (d1, r1) −→ SCPTP (d2, r2)
which satisfies

1 if ϕ is CPTP then Γ(ϕ) is CPTP

2 given any other d3, r3 ∈ N and the identity map
idd3,r3 : SCPTP (d3, r3) −→ SCPTP (d3, r3) then
Γ⊗ idd3,r3 : SCPTP (d1, r1)⊗ SCPTP (d3, r3) −→
SCPTP (d2, r2)⊗ SCPTP (d3, r3) sends CPTP maps to
CPTP maps.

A QSC induces a map Γ̃ : S(d1, r1) −→ S(d2, r2) via

Cϕ 7→ CΓ(ϕ)
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Problem with QSC’s

▶ We have an inclusion

SCPTP (d1, r1)⊗ SCPTP (d2, r2) ⊆ SCPTP (d1d2, r1r2)

Using the space of Choi matrices can do a dimension count
and show this is generally a strict inclusion
Tensor of two QSC’s is not a QSC

▶ Can we derive the characterisation theorem for QSC’s? Or a
different one?

The derivation for superchannels uses the uniqueness of
Stinespring representations for CP maps or the use of Choi
matrices for the induced map. Not defined for operator
systems.
Can still recover by extending
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Extending QSC’s

Theorem 2.2

If Γ : SCPTP (d1, r1) −→ SCPTP (d2, r2) preserves CPTP maps
then it is a QSC if and only if Γ̃ is completely positive.

Theorem 2.3

Every QSC extends to a quantum superchannel.

Use Arvesons extension theorem on the (completely positive)
induced map. Then Choi’s theorem will guarantee its associated
map is ”completely CP preserving”.

▶ Is the extension unique?
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QSC vs superchannel

▶ For some maps the extension from a QSC to a superchannel is
unique e.g. the Choi matrix of a Schur product superchannel
is fixed by its action on quantum channels.

▶ However in general the extension of a QSC is not unique

▶ Therefore many different quantum super channels can restrict
to the same QSC. Thus, if we are really only concerned with
the action of a superchannel on quantum channels, then we
are really only concerned with the corresponding QSC.

▶ This also has implications for the characterisation theorem
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Choi matrix of equivalent extensions

QSC’s aren’t defined on all the basis matrix elements, e.g.
diagonals Ei,i but they are defined on certain sums of them

Theorem 2.4

If S1 and S2 are superchannels extending the same QSC then

Trd1 CS̃1−S̃2
= 0

▶ Essentially, there isn’t enough quantum channels to determine
what the entries of C

S̃
should be, but there are enough to

determine how the blocks sum.
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Auxilliary dimension of different extensions

▶ If superchannels S1, S2 extend the same QSC, another
equivalent extension is given by any convex combination
S = p1S1 + p2S2 for p1, p2 > 0, p1 + p2 = 1.

▶ In many examples it seems that extreme points of the set of
extensions have characterisation with minimal auxilliary
dimension e.

▶ If U = U1 ⊗ U2 where U1 ∈ U(d) and U2 ∈ U(r) then

S̃(Cϕ) = UCϕU
∗ is a superchannel

In fact every superchannel given by unitary conjugation must
be of this form. and they are extreme points of the set of
extensions of their QSC and always have auxilliary dimension
e = 1.
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Extreme points of sets of CP maps

▶ Define CP [Mn,Mm;K] to be CP maps from Mn to Mm

which send the identity to a fixed K ≥ 0. This is a convex set.

▶ Choi proved that ϕ ∈ CP [Mn,Mm;K] is extreme iff has an
expression ϕ(A) =

∑
i V

∗
i AVi such that {V ∗

i Vj}ij is a linearly
independent set.

▶ Let S ⊂Mn and let T ⊂Mm. For a CP ϕ :Mn →Mm

define the convex set CP [Mn,Mm;S, T , ϕ] to be CP maps
from Mn to Mm equal ϕ on S and duals equal ϕ∗ on T

Theorem 2.5

ϕ ∈ CP [Mn,Mm;S, T ,Φ] is extreme iff it has an expression
ϕ(A) =

∑
i V

∗
i AVi such that for any self-adjoint spanning sets

{Ak}k for S and {Bl}l for T the following set is linearly
independent:

{
⊕
k

V ∗
i AkVj

⊕
l

VjBlV
∗
i }ij

.
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UCP maps

▶ Let r1 = r2 = 1. Since S(d, 1) = span{Id}, any unital
completely-positive (UCP) map S̃ :Md1 −→Md2 is a
superchannel and all these maps define the same QSC.

▶ Fix d1 = d2 = 3. The anti-symmetric Werner-Holevo channel
is given by the map ϕ :M3 −→M3

ϕ(ρ) =
Tr[ρ]I3 − ρT

2
.

▶ Can show it is an extreme point of the set of extensions
despite having a Choi-Kraus rank of 3.
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TP extension not always possible

▶ A QSC preserves the ”trace scaling factor” of its input map.
On Choi matrices it sends block matrices of trace λd1 to
block matrices of trace λd2. Thus the map

d1
d2

Γ̃

is a CPTP map.

▶ If we extend Γ̃ to a superchannel S̃ :Md1(Mr1) −→Md2(Mr2)
can we do so in a way such that S̃ is also TP?

▶ No, found an example of a QSC which cannot be extended to
give a TP map.
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Tensor of QSCs depends on extension

▶ Take QSC’s Γ1 : SCPTP (d1, r1) −→ SCPTP (d2, r2) and
Γ2 : SCPTP (d3, r3) −→ SCPTP (d4, r4). Extend each to a
superchannel S1, S2 respectively. Then S1 ⊗ S2 is a
superchannel on the combined spaces and it restricts to give a
QSC on SCPTP (d1d2, r1r2). This is not necessarily unique.

▶ For example, if Sa

([
a 0
0 b

])
= a and Sb

([
a 0
0 b

])
= b then

Sa and Sb extend the same QSC. Take input Choi matrix to be
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⊗
[
a 0
0 b

]
∈ S(4, 2)

Then for any other superchannel S, S ⊗ Sa and S ⊗ Sb give
different QSC’s.
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Wigner’s theorem

▶ Wigner’s theorem says that any bijective map, H −→ H, on a
Hilbert space that preserves the transition probability |⟨ϕ|ψ⟩|
between any two vectors is given by a unitary or anti-unitary
map.

▶ An equivalent version of Wigner’s theorem can be given in
terms of density matrices. Let D(H) be the set of density
matrices acting on H. A state space symmetry is a bijective
map S : D(H) −→ D(H) which satisfies

S(pρ+(1−p)σ) = pS(ρ)+(1−p)S(σ), ∀ρ, σ ∈ D(H), p ∈ [0, 1]

▶ Wigner’s theorem then says that every state space symmetry
is given by either a unitary map ρ 7→ UρU∗ or anti-unitary
map ρ 7→ UρTU∗, where U ∈ B(H) is a unitary.
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Quantum operation symmetries

Define a quantum operation symmetry to be an invertible linear
map S : L(Md,Mr) −→ L(Md,Mr) which preserves the set of
completely-positive trace non-increasing maps.

Theorem 3.1 (G Chiribella, E Aurell, K Życzkowski, 2021)

If S is an operation symmetry then

S(ϕ) = Spost ◦ ϕ ◦ Spre.

where Spost and Spre are state space symmetries (both either
unitary or anti-unitary).
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Quantum channel symmetries

▶ Similarly we can define a quantum channel symmetry to be a
bijective linear map

S : SCPTP (d1, r1) −→ SCPTP (d2, r2)

which preserves the set of quantum channels.

▶ However, even if S is an invertible QSC it’s extension might
not be an operation symmetry.

▶ Positive extensions of channel symmetries will preserve CP
trace non-increasing maps.

▶ Not all positive maps on operator systems have positive
extensions
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Thanks!

Thanks for listening!
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