イロト 不得 トイヨト イヨト

э

1/21

Quantum superchannels on the space of quantum channels

Pádraig Daly

University of Waterloo Canadian Operator Symposium

25th May 2023

Quantum Channels

Defining Channels: Quantum states are positive matrices with unit trace (density matrices)

Quantum Channels

Defining Channels: Quantum states are positive matrices with unit trace (density matrices)

Two simple requirements are that channels be linear maps that take quantum states to quantum states. This gives the trace-preserving (TP) condition:

$$\mathrm{Tr}(\phi(\rho))=\mathrm{Tr}(\rho)$$

for all matrices ρ

Quantum Channels

Defining Channels: Quantum states are positive matrices with unit trace (density matrices)

Two simple requirements are that channels be linear maps that take quantum states to quantum states. This gives the trace-preserving (TP) condition:

$$\mathrm{Tr}(\phi(\rho))=\mathrm{Tr}(\rho)$$

for all matrices ρ

► The requirements that quantum systems combine using tensor products, and that the identity map is a valid channel is what implies the *completely positive* (CP) condition.

Definition 1.1

A quantum channel is a linear CPTP map $\phi: M_d \to M_r$.

Quantum Superchannels	QSC	Symmetries
o●ooo	000000000	0000
Choi matrix		

► Let $E_{i,j}$, $1 \le i, j \le d$ denote the matrix units in M_d . We have an isomorphism between linear maps and block matrices via $\phi \mapsto (\phi(E_{i,j})) = \sum_{i,j} E_{i,j} \otimes \phi(E_{i,j})$..

Choi matrix

- ► Let $E_{i,j}$, $1 \le i, j \le d$ denote the matrix units in M_d . We have an isomorphism between linear maps and block matrices via $\phi \mapsto (\phi(E_{i,j})) = \sum_{i,j} E_{i,j} \otimes \phi(E_{i,j})$..
- ► The matrix $C_{\phi} := (\phi(E_{i,j}))$ is called the *Choi matrix* or Choi-Jamiołkowski matrix of the map.

$$C_{\phi} = \begin{pmatrix} \phi(E_{11}) & \phi(E_{12}) & \cdots & \phi(E_{1d}) \\ \phi(E_{21}) & \phi(E_{22}) & \cdots & \vdots \\ \vdots & & \ddots & \vdots \\ \phi(E_{d1}) & \cdots & \cdots & \phi(E_{dd}) \end{pmatrix}$$

Choi matrix

- ▶ Let $E_{i,j}$, $1 \le i, j \le d$ denote the matrix units in M_d . We have an isomorphism between linear maps and block matrices via $\phi \mapsto (\phi(E_{i,j})) = \sum_{i,j} E_{i,j} \otimes \phi(E_{i,j})$..
- ► The matrix $C_{\phi} := (\phi(E_{i,j}))$ is called the *Choi matrix* or Choi-Jamiołkowski matrix of the map.

$$C_{\phi} = \begin{pmatrix} \phi(E_{11}) & \phi(E_{12}) & \cdots & \phi(E_{1d}) \\ \phi(E_{21}) & \phi(E_{22}) & \cdots & \vdots \\ \vdots & & \ddots & \vdots \\ \phi(E_{d1}) & \cdots & \cdots & \phi(E_{dd}) \end{pmatrix}$$

► Choi's theorem says that a linear map $\phi : M_d \to M_r$ is completely positive if and only if $C_{\phi} \ge 0$ in $M_d(M_r)$.

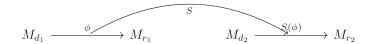
Superchannel

Definition 1.2

A quantum superchannel is a linear map

 $S: \mathcal{L}(M_{d_1}, M_{r_1}) \rightarrow \mathcal{L}(M_{d_2}, M_{r_2})$ which satisfies

- ▶ CP preserving: S sends CP maps to CP maps
- ► Completely CP preserving: For any d, r if $id_{d,r}$ is the identity map acting on $\mathcal{L}(M_d, M_r)$ then $S \otimes id_{d,r}$ is CP preserving
- ▶ TP preserving: S sends TP maps to TP maps



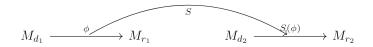
Superchannel

Definition 1.2

A quantum superchannel is a linear map

 $S: \mathcal{L}(M_{d_1}, M_{r_1}) \rightarrow \mathcal{L}(M_{d_2}, M_{r_2})$ which satisfies

- ▶ CP preserving: S sends CP maps to CP maps
- ► Completely CP preserving: For any d, r if $id_{d,r}$ is the identity map acting on $\mathcal{L}(M_d, M_r)$ then $S \otimes id_{d,r}$ is CP preserving
- ▶ TP preserving: S sends TP maps to TP maps



Superchannels give an induced map on Choi matrices

$$\widetilde{S}(C_{\phi}) = C_{S(\phi)}$$

イロト 不得 トイヨト イヨト 二日

Characterisation theorem

Theorem 1.1 (Chiribella, D'Ariano, Perinotti; 2008)

If $S : \mathcal{L}(M_{d_1}, M_{r_1}) \to \mathcal{L}(M_{d_2}, M_{r_2})$ is a quantum superchannel then there exists two quantum channels $\psi_{\text{pre}}, \psi_{\text{post}}$ such that

 $S(\phi) = \psi_{\textit{post}} \circ (\textit{id}_e \otimes \phi) \circ \psi_{\textit{pre}}$

where e is the dimension of an auxilliary space.

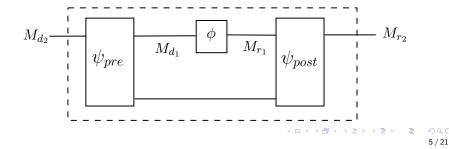
Characterisation theorem

Theorem 1.1 (Chiribella, D'Ariano, Perinotti; 2008)

If $S : \mathcal{L}(M_{d_1}, M_{r_1}) \to \mathcal{L}(M_{d_2}, M_{r_2})$ is a quantum superchannel then there exists two quantum channels $\psi_{\text{pre}}, \psi_{\text{post}}$ such that

 $S(\phi) = \psi_{\textit{post}} \circ (\textit{id}_e \otimes \phi) \circ \psi_{\textit{pre}}$

where e is the dimension of an auxilliary space.



Minimal dilation dimension

▶ Partial Trace: $Tr_2 = id \otimes Tr$ for example,

$$\operatorname{Tr}_2(A \otimes B) = A \cdot \operatorname{Tr}(B)$$

▶ In the characterisation of superchannels

$$S(\phi) = \psi_{\mathsf{post}} \circ (\phi \otimes \mathsf{id}_e) \circ \psi_{\mathsf{pre}}$$

The dimension e can be chosen to be the rank of $\operatorname{Tr}_{r_1} \operatorname{Tr}_{r_2} C_{\widetilde{S}}$ and the channel ψ_{pre} can be chosen to be isometric.

Minimal dilation dimension

 \blacktriangleright Partial Trace: $\mathrm{Tr}_2 = \mathsf{id} \otimes \mathrm{Tr}$ for example,

$$\operatorname{Tr}_2(A \otimes B) = A \cdot \operatorname{Tr}(B)$$

▶ In the characterisation of superchannels

$$S(\phi) = \psi_{\mathsf{post}} \circ (\phi \otimes \mathsf{id}_e) \circ \psi_{\mathsf{pre}}$$

The dimension e can be chosen to be the rank of $\operatorname{Tr}_{r_1} \operatorname{Tr}_{r_2} C_{\widetilde{S}}$ and the channel ψ_{pre} can be chosen to be isometric.

► In a 2020 paper Gour and Scandolo show that this is unique in the sense that any other characterisation with equal or smaller dimension is equivalent up to action by a unitary channel.

Space of Quantum Channels

Definition 2.1

$SCPTP(d,r) := \operatorname{span}\{\phi | \phi : M_d \to M_r \text{ is a CPTP map}\} \subset \mathcal{L}(M_d, M_r).$

Space of Quantum Channels

Definition 2.1

 $SCPTP(d,r) := \operatorname{span}\{\phi | \phi : M_d \to M_r \text{ is a CPTP map}\} \subset \mathcal{L}(M_d, M_r).$

In terms of Choi matrices:

Definition 2.2

Let $S(d,r) \subset M_d(M_r)$ be the set of block matrices $(P_{i,j})$ such that for all $1 \leq i, j \leq d$, $\operatorname{Tr}(P_{i,i}) = \operatorname{Tr}(P_{j,j})$ and for $i \neq j$ $\operatorname{Tr}(P_{i,j}) = 0$.

Space of Quantum Channels

Definition 2.1

 $SCPTP(d,r) := \operatorname{span}\{\phi | \phi : M_d \to M_r \text{ is a CPTP map}\} \subset \mathcal{L}(M_d, M_r).$

In terms of Choi matrices:

Definition 2.2

Let $S(d,r) \subset M_d(M_r)$ be the set of block matrices $(P_{i,j})$ such that for all $1 \leq i, j \leq d$, $\operatorname{Tr}(P_{i,i}) = \operatorname{Tr}(P_{j,j})$ and for $i \neq j$ $\operatorname{Tr}(P_{i,j}) = 0$.

Theorem 2.1

S(d,r) is an operator system and is completely order isomorphic to SCPTP(d,r) via the Choi map $\phi \mapsto C_{\phi}$.

QSC

Definition 2.3

Given two spaces of quantum channels $SCPTP(d_i, r_i)$, i = 1, 2, a QSC is a linear map $\Gamma : SCPTP(d_1, r_1) \rightarrow SCPTP(d_2, r_2)$ which satisfies

- **1** if ϕ is CPTP then $\Gamma(\phi)$ is CPTP
- 2 given any other $d_3, r_3 \in \mathbb{N}$ and the identity map $\operatorname{id}_{d_3,r_3} : SCPTP(d_3,r_3) \to SCPTP(d_3,r_3)$ then $\Gamma \otimes \operatorname{id}_{d_3,r_3} : SCPTP(d_1,r_1) \otimes SCPTP(d_3,r_3) \to$ $SCPTP(d_2,r_2) \otimes SCPTP(d_3,r_3)$ sends CPTP maps to CPTP maps.

QSC

Definition 2.3

Given two spaces of quantum channels $SCPTP(d_i, r_i)$, i = 1, 2, a QSC is a linear map $\Gamma : SCPTP(d_1, r_1) \rightarrow SCPTP(d_2, r_2)$ which satisfies

- **1** if ϕ is CPTP then $\Gamma(\phi)$ is CPTP
- 2 given any other $d_3, r_3 \in \mathbb{N}$ and the identity map $\operatorname{id}_{d_3,r_3} : SCPTP(d_3,r_3) \to SCPTP(d_3,r_3)$ then $\Gamma \otimes \operatorname{id}_{d_3,r_3} : SCPTP(d_1,r_1) \otimes SCPTP(d_3,r_3) \to$ $SCPTP(d_2,r_2) \otimes SCPTP(d_3,r_3)$ sends CPTP maps to CPTP maps.
- A QSC induces a map $\widetilde{\Gamma}: S(d_1, r_1) \rightarrow S(d_2, r_2)$ via

$$C_{\phi} \mapsto C_{\Gamma(\phi)}$$

イロト 不得 トイヨト イヨト 二日

▶ We have an inclusion

▶ We have an inclusion

 $SCPTP(d_1, r_1) \otimes SCPTP(d_2, r_2) \subseteq SCPTP(d_1d_2, r_1r_2)$

 Using the space of Choi matrices can do a dimension count and show this is generally a strict inclusion

▶ We have an inclusion

- Using the space of Choi matrices can do a dimension count and show this is generally a strict inclusion
- Tensor of two QSC's is not a QSC

▶ We have an inclusion

- Using the space of Choi matrices can do a dimension count and show this is generally a strict inclusion
- Tensor of two QSC's is not a QSC
- Can we derive the characterisation theorem for QSC's? Or a different one?

▶ We have an inclusion

- Using the space of Choi matrices can do a dimension count and show this is generally a strict inclusion
- Tensor of two QSC's is not a QSC
- Can we derive the characterisation theorem for QSC's? Or a different one?
 - The derivation for superchannels uses the uniqueness of Stinespring representations for CP maps or the use of Choi matrices for the induced map. Not defined for operator systems.

▶ We have an inclusion

- Using the space of Choi matrices can do a dimension count and show this is generally a strict inclusion
- Tensor of two QSC's is not a QSC
- Can we derive the characterisation theorem for QSC's? Or a different one?
 - The derivation for superchannels uses the uniqueness of Stinespring representations for CP maps or the use of Choi matrices for the induced map. Not defined for operator systems.
 - Can still recover by extending

Extending QSC's

Theorem 2.2

If $\Gamma : SCPTP(d_1, r_1) \rightarrow SCPTP(d_2, r_2)$ preserves CPTP maps then it is a QSC if and only if $\widetilde{\Gamma}$ is completely positive.

Extending QSC's

Theorem 2.2

If $\Gamma : SCPTP(d_1, r_1) \rightarrow SCPTP(d_2, r_2)$ preserves CPTP maps then it is a QSC if and only if $\widetilde{\Gamma}$ is completely positive.

Theorem 2.3

Every QSC extends to a quantum superchannel.

Extending QSC's

Theorem 2.2

If $\Gamma : SCPTP(d_1, r_1) \rightarrow SCPTP(d_2, r_2)$ preserves CPTP maps then it is a QSC if and only if $\widetilde{\Gamma}$ is completely positive.

Theorem 2.3

Every QSC extends to a quantum superchannel.

Use Arvesons extension theorem on the (completely positive) induced map. Then Choi's theorem will guarantee its associated map is "completely CP preserving".

▶ Is the extension unique?

QSC vs superchannel

- For some maps the extension from a QSC to a superchannel is unique e.g. the Choi matrix of a Schur product superchannel is fixed by its action on quantum channels.
- ▶ However in general the extension of a QSC is not unique

QSC vs superchannel

- For some maps the extension from a QSC to a superchannel is unique e.g. the Choi matrix of a Schur product superchannel is fixed by its action on quantum channels.
- ▶ However in general the extension of a QSC is not unique
- ► Therefore many different quantum super channels can restrict to the same QSC. Thus, if we are really only concerned with the action of a superchannel on quantum channels, then we are really only concerned with the corresponding QSC.
- ▶ This also has implications for the characterisation theorem

Choi matrix of equivalent extensions

QSC's aren't defined on all the basis matrix elements, e.g. diagonals $E_{i,i}$ but they are defined on certain sums of them

Choi matrix of equivalent extensions

QSC's aren't defined on all the basis matrix elements, e.g. diagonals $E_{i,i}$ but they are defined on certain sums of them

Theorem 2.4

If S_1 and S_2 are superchannels extending the same QSC then

$$\operatorname{Tr}_{d_1} C_{\widetilde{S}_1 - \widetilde{S}_2} = 0$$

► Essentially, there isn't enough quantum channels to determine what the entries of C_S should be, but there are enough to determine how the blocks sum.

Auxilliary dimension of different extensions

► If superchannels S₁, S₂ extend the same QSC, another equivalent extension is given by any convex combination S = p₁S₁ + p₂S₂ for p₁, p₂ > 0, p₁ + p₂ = 1.

Auxilliary dimension of different extensions

- ► If superchannels S₁, S₂ extend the same QSC, another equivalent extension is given by any convex combination S = p₁S₁ + p₂S₂ for p₁, p₂ > 0, p₁ + p₂ = 1.
- ► In many examples it seems that extreme points of the set of extensions have characterisation with minimal auxilliary dimension *e*.
- ▶ If $U = U_1 \otimes U_2$ where $U_1 \in \mathcal{U}(d)$ and $U_2 \in \mathcal{U}(r)$ then $\widetilde{S}(C_{\phi}) = UC_{\phi}U^*$ is a superchannel

Auxilliary dimension of different extensions

- ► If superchannels S₁, S₂ extend the same QSC, another equivalent extension is given by any convex combination S = p₁S₁ + p₂S₂ for p₁, p₂ > 0, p₁ + p₂ = 1.
- ► In many examples it seems that extreme points of the set of extensions have characterisation with minimal auxilliary dimension *e*.
- ▶ If $U = U_1 \otimes U_2$ where $U_1 \in \mathcal{U}(d)$ and $U_2 \in \mathcal{U}(r)$ then $\widetilde{S}(C_{\phi}) = UC_{\phi}U^*$ is a superchannel
 - In fact every superchannel given by unitary conjugation must be of this form. and they are extreme points of the set of extensions of their QSC and always have auxilliary dimension e = 1.

Extreme points of sets of CP maps

▶ Define $CP[M_n, M_m; K]$ to be CP maps from M_n to M_m which send the identity to a fixed $K \ge 0$. This is a convex set.

Extreme points of sets of CP maps

- ▶ Define $CP[M_n, M_m; K]$ to be CP maps from M_n to M_m which send the identity to a fixed $K \ge 0$. This is a convex set.
- ▶ Choi proved that $\phi \in CP[M_n, M_m; K]$ is extreme iff has an expression $\phi(A) = \sum_i V_i^* A V_i$ such that $\{V_i^* V_j\}_{ij}$ is a linearly independent set.

Extreme points of sets of CP maps

- ▶ Define $CP[M_n, M_m; K]$ to be CP maps from M_n to M_m which send the identity to a fixed $K \ge 0$. This is a convex set.
- ▶ Choi proved that $\phi \in CP[M_n, M_m; K]$ is extreme iff has an expression $\phi(A) = \sum_i V_i^* A V_i$ such that $\{V_i^* V_j\}_{ij}$ is a linearly independent set.
- ▶ Let $S \subset M_n$ and let $T \subset M_m$. For a CP $\phi : M_n \to M_m$ define the convex set $CP[M_n, M_m; S, T, \phi]$ to be CP maps from M_n to M_m equal ϕ on S and duals equal ϕ^* on T

Extreme points of sets of CP maps

- ▶ Define $CP[M_n, M_m; K]$ to be CP maps from M_n to M_m which send the identity to a fixed $K \ge 0$. This is a convex set.
- ▶ Choi proved that $\phi \in CP[M_n, M_m; K]$ is extreme iff has an expression $\phi(A) = \sum_i V_i^* A V_i$ such that $\{V_i^* V_j\}_{ij}$ is a linearly independent set.
- ▶ Let $S \subset M_n$ and let $T \subset M_m$. For a CP $\phi : M_n \to M_m$ define the convex set $CP[M_n, M_m; S, T, \phi]$ to be CP maps from M_n to M_m equal ϕ on S and duals equal ϕ^* on T

Theorem 2.5

 $\phi \in CP[M_n, M_m; S, T, \Phi]$ is extreme iff it has an expression $\phi(A) = \sum_i V_i^* AV_i$ such that for any self-adjoint spanning sets $\{A_k\}_k$ for S and $\{B_l\}_l$ for T the following set is linearly independent:

$$\{\bigoplus_k V_i^* A_k V_j \bigoplus_l V_j B_l V_i^*\}_{ij}$$

UCP maps

▶ Let $r_1 = r_2 = 1$. Since $S(d, 1) = \text{span}\{I_d\}$, any unital completely-positive (UCP) map $\widetilde{S} : M_{d_1} \to M_{d_2}$ is a superchannel and all these maps define the same QSC.

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー つくで

15/21

UCP maps

- ▶ Let $r_1 = r_2 = 1$. Since $S(d, 1) = \text{span}\{I_d\}$, any unital completely-positive (UCP) map $\widetilde{S} : M_{d_1} \to M_{d_2}$ is a superchannel and all these maps define the same QSC.
- ▶ Fix $d_1 = d_2 = 3$. The anti-symmetric *Werner-Holevo* channel is given by the map $\phi : M_3 \to M_3$

$$\phi(\rho) = \frac{\mathrm{Tr}[\rho]I_3 - \rho^T}{2}$$

UCP maps

- ▶ Let $r_1 = r_2 = 1$. Since $S(d, 1) = \text{span}\{I_d\}$, any unital completely-positive (UCP) map $\widetilde{S} : M_{d_1} \to M_{d_2}$ is a superchannel and all these maps define the same QSC.
- ▶ Fix $d_1 = d_2 = 3$. The anti-symmetric *Werner-Holevo* channel is given by the map $\phi : M_3 \to M_3$

$$\phi(\rho) = \frac{\mathrm{Tr}[\rho]I_3 - \rho^T}{2}$$

 Can show it is an extreme point of the set of extensions despite having a Choi-Kraus rank of 3.

TP extension not always possible

► A QSC preserves the "trace scaling factor" of its input map. On Choi matrices it sends block matrices of trace λd₁ to block matrices of trace λd₂. Thus the map

$$\frac{d_1}{d_2}\widetilde{\Gamma}$$

is a CPTP map.

- ▶ If we extend $\widetilde{\Gamma}$ to a superchannel $\widetilde{S}: M_{d_1}(M_{r_1}) \to M_{d_2}(M_{r_2})$ can we do so in a way such that \widetilde{S} is also TP?
- No, found an example of a QSC which cannot be extended to give a TP map.

QSC 00000000000

Symmetries

Tensor of QSCs depends on extension

- ► Take QSC's $\Gamma_1 : SCPTP(d_1, r_1) \rightarrow SCPTP(d_2, r_2)$ and $\Gamma_2 : SCPTP(d_3, r_3) \rightarrow SCPTP(d_4, r_4)$. Extend each to a superchannel S_1, S_2 respectively. Then $S_1 \otimes S_2$ is a superchannel on the combined spaces and it restricts to give a QSC on $SCPTP(d_1d_2, r_1r_2)$. This is not necessarily unique.
- ► For example, if $S_a \left(\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \right) = a$ and $S_b \left(\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \right) = b$ then S_a and S_b extend the same QSC. Take input Choi matrix to be

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \in S(4, 2)$$

Then for any other superchannel S, $S \otimes S_a$ and $S \otimes S_b$ give different QSC's.

Symmetries

Wigner's theorem

- ▶ Wigner's theorem says that any bijective map, H → H, on a Hilbert space that preserves the *transition probability* |⟨φ|ψ⟩| between any two vectors is given by a unitary or anti-unitary map.
- ► An equivalent version of Wigner's theorem can be given in terms of density matrices. Let D(H) be the set of density matrices acting on H. A state space symmetry is a bijective map S : D(H) → D(H) which satisfies

 $S(p\rho + (1-p)\sigma) = pS(\rho) + (1-p)S(\sigma), \quad \forall \rho, \sigma \in \mathcal{D}(\mathcal{H}), p \in [0,1]$

▶ Wigner's theorem then says that every state space symmetry is given by either a unitary map $\rho \mapsto U\rho U^*$ or anti-unitary map $\rho \mapsto U\rho^T U^*$, where $U \in \mathcal{B}(\mathcal{H})$ is a unitary.

Quantum operation symmetries

Define a quantum operation symmetry to be an invertible linear map $S: \mathcal{L}(M_d, M_r) \to \mathcal{L}(M_d, M_r)$ which preserves the set of completely-positive trace non-increasing maps.

Theorem 3.1 (G Chiribella, E Aurell, K Życzkowski, 2021)

If S is an operation symmetry then

$$S(\phi) = S_{post} \circ \phi \circ S_{pre}.$$

where S_{post} and S_{pre} are state space symmetries (both either unitary or anti-unitary).

Quantum channel symmetries

 Similarly we can define a quantum *channel symmetry* to be a bijective linear map

$$S: SCPTP(d_1, r_1) \rightarrow SCPTP(d_2, r_2)$$

which preserves the set of quantum channels.

Quantum channel symmetries

 Similarly we can define a quantum *channel symmetry* to be a bijective linear map

$$S: SCPTP(d_1, r_1) \rightarrow SCPTP(d_2, r_2)$$

which preserves the set of quantum channels.

- ► However, even if S is an invertible QSC it's extension might not be an operation symmetry.
- Positive extensions of channel symmetries will preserve CP trace non-increasing maps.
- Not all positive maps on operator systems have positive extensions

Thanks!

Thanks for listening!