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Wigner ensemble

Definition

By a complex Wigner matrix XN we mean a N × N random matrix of the form
XN = 1√

N
(xi,j) such that,

⋄ the entries are complex random variables;

⋄ the matrix is self-adjoint: xi,j = xj,i ;

⋄ all entries on and above the diagonal are independent: {xi,j}i<j ∪ {xi,i}i are
independent;

⋄ the entries above the diagonal, {xi,j}i<j , are identically distributed;

⋄ the diagonal entries, {xi,i}i , are identically distributed;

⋄ E(xi,j) = 0 for all i , j ,

⋄ E(x2
i,j) = 0 for all i ̸= j ,

⋄ E(|xi,j |2) = 1 for all i , j ,

⋄ E(|xi,j |k) < ∞ for all i , j , k.

A collection X = (XN)N of Wigner matrices satisfying these conditions will be called a
Wigner ensemble.
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Wigner’s semi-circle law

Theorem (Wigner 1955)

1

N
lim

N→∞
E(Tr(Xm

N )) =

∫
R
tmdµ(t),

where µ is the semicircle distribution on [−2, 2].

Equivalently, if we let αm := 1
N
limN→∞ E(Tr(Xm

N )). Then,

αm =

{ 1
m/2+1

(
m

m/2

)
for m even

0 otherwise

∼

αm = |NC 2(m)|.
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Moment-cumulant relation

αm =
∑

π∈NC(m)

κπ,

where,
κπ =

∏
B⊂π

κ|B|.

Two different approaches

αm = |NC 2(m)|. κm =

{
1 if m = 2
0 otherwise
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Fluctuation moments

What about the fluctuation moments?

αm,n := lim
N→∞

K2(Tr(X
m
N ),Tr(X n

N)).

Answered by A. Khorunzhy, B. Khoruzhenko, and L. Pastur.

Theorem (Male, Mingo, Péché, Speicher, ’20)

For m1,m2 ∈ N
αm1,m2 = |NC 2(m1,m2)|+ K4|NC (2)

2 (m1,m2)|, (1)

where K4 = K4(x1,2, x1,2, x2,1, x2,1) is the fourth classical cumulant of an off-diagonal
element.

What is the analogous statement in terms of cumulants?
What are the cumulants of order two equal to?
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Partitioned permutations

A partitioned permutation is a pair (V, π) consisting of π ∈ Sn and V ∈ P(n) with
π ≤ V. The set of partitioned permutations is denoted by PSn. We let,

|(V, π)| = 2|V| − |π|,

with |V| = n −#(V) and |π| = n −#(π). It is satisfied,

|(V ∨ U , πσ)| ≤ |(V, π)|+ |(U , σ)|.

For (V, π), (W, σ) ∈ PSn we define their product as,

(V, π) · (W, σ) =

{
(V ∨W, πσ) if |(V ∨W, πσ)| = |(V, π)|+ |(W, σ)|,
0 otherwise
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Partitioned permutations

Definition

For (U , γ) ∈ PSn fixed we say that (V, π) ∈ PSn is (U , γ)-non crossing if,

(V, π) · (0π−1γ , π
−1γ) = (U , γ).

The set of (U , γ)-non crossing partitioned permutations will be denote by PSNC (U , γ).

Let m1, . . . ,mr ∈ N and

γm1,...,mr := (1, . . . ,m1) · · · (m1 + · · ·+mr−1 + 1, . . . ,m),

with m =
∑r

i=1 mi . We use the notation,

PSNC (m1, . . . ,mr ) := PSNC (1m, γm1,...,mr ).
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PSNC (m) = {(0π, π) : π ∈ NC(m)} ∼= NC(m).

PSNC (1m1+m2 , γm1,m2) = {(0π, π) | π ∈ SNC (m1,m2)}
∪ {(V, π) | π ∈ NC(m1)× NC(m2),V ∨ γ = 1n and |V| = |π|+ 1}

In the first part we have SNC (m1,m2) and in the second part PSNC (m1,m2)
′. We shall

write
PSNC (m1,m2) = SNC (m1,m2) ∪ PSNC (m1,m2)

′.
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Partitioned permutations on two circles

SNC (6, 4) PSNC (4, 6)
′
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Second order cumulants

Definition

Given
{αm}∞m=1, and {αm1,m2}

∞
m1,m2=1

a sequence of first and second order moments, we define the first {κm}m, and second
{κm1,m2}m1,m2 order cumulants as the sequences given by the recursive formulas,

αm =
∑

π∈NC(m)

κπ (2)

αm1,m2 =
∑

(U,π)∈PSNC (m1,m2)

κ(U,π) (3)

with κ(U,π) defined as follows,

κ(U,π) =
∏

D blocks of U
B1,...,Bl cycles of π

Bi⊂D

κ|B1|,...,|Bl |
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Second order case

Two different approaches

αm1,m2 = |NC 2(m1,m2)|

+ K4|NC (2)
2 (m1,m2)|.

κp,q =

{
2K4 if p = q = 2
0 otherwise
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Definition

For each r ∈ N let (αm1,...,mr )
∞
m1,...,mr=1 be a sequence indexed by r subscripts. We call

this a moment sequence of order r . Given the moment sequences of orders at most r :

(αm)
∞
m=1, (αm1,m2)

∞
m1,m2=1, . . . , (αm1,...,mr )

∞
m1,...,mr=1

we define the free cumulants sequences

(κm)
∞
m=1, (κm1,m2)

∞
m1,m2=1, . . . , (κm1,...,mr )

∞
m1,...,mr=1

associated to these moment sequences with the recursive equations:

αm1,...,mt =
∑

(U,π)∈PSNC (m1,...,mt )

κ(U,π) (4)

for t = 1, . . . , r . With κ(U,π) is defined as follows:

κ(U,π) =
∏

B block of U
V1,...,Vi cycles of π with Vi⊂B

κ|V1|,...,|Vi |

The numbers κm1,...,mr are called the free cumulants of order r and the sequence
(κm1,...,mr )

∞
m1,...,mr=1 is called the free cumulant sequence of order r .
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Third order case

Let XN be a N × N Wigner matrix which satisfies the extra condition:

K3(x1,1, x1,1, x1,1) = 0.

Let,
αm1,m2,m3 := NK3(Tr(X

m1
N ),Tr(Xm2

N ),Tr(Xm3
N )).

Theorem (M, Mingo, ’22)

For m1,m2,m3 ∈ N

αm1,m2,m3 = |NC2(m1,m2,m3)|+ 4K6|PS(1,1,1)
NC2

(m1,m2,m3)|

+ 4K 2
4 |PS(2,1,1)

NC2
(m1,m2,m3)|+ 2K4|PS(1,1)

NC2
(m1,m2,m3)|

+ (K̊4 − 2K4)|PS(1,1,1)
NC2,1,1

(m1,m2,m3)|

equivalently,

κm,n,p =


4K6 if m = n = p = 2
K 0

4 − 2K4 if {m, n, p} = {2, 1, 1}
0 otherwise

whit K6 = K6(x1,2, x1,2, x2,1, x2,1), K
0
4 = K 0

4 (x1,1, x1,1, x1,1, x1,1) and
K4 = K4(x1,2, x1,2, x2,1, x2,1).
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For r > 3 we will ask the following conditions:

xi,i ∼ N(0, 1) for all i , this is; xi,i has standard normal distribution.

For every n ∈ N, ϵ1, . . . , ϵn ∈ {−1, 1} and i ̸= j we have that,

Kn(x
(ϵ1)
i,j , . . . , x

(ϵ2n+1)
i,j ) = 0

whenever either n is odd, or n is even but the number of ϵi which are 1 is different
to the number of ϵi which are −1. With x

(1)
i,j = xi,j and x

(−1)
i,j = xj,i .
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Let,
α(N)
m1,...,mr

:= N r−2Kr (Tr(X
m1
N ), . . . ,Tr(Xmr

N )),

and
αm1,...,mr := lim

N→∞
α(N)
m1,...,mr

.

Lemma

The limit;
lim

N→∞
α(N)
m1,...,mr

exist for any r ∈ N and m1, . . . ,mr ∈ N. Moreover,

αm1,...,mr =
∑

π∈P(m)
#(π)−m/2+r−2=0

∑
τ∈P(m)
τ∨γ=1m
τ∈Pbal (π)

Kτ (π). (5)
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THANK YOU
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