Higher order moments and free cumulants of complex Wigner matrices

Daniel Munoz

Canadian Operator Symposium 2023
Western University
Joint work with James A. Mingo. arXiv:2205.13081v

May 24th, 2023

Outline

(1) The Wigner ensemble
(2) The moments and free cumulants of the Wigner ensemble
(3) Partitioned permutations
(4) Second order free cumulants
(5) Third order free cumulants
(6) Higher order case

Wigner ensemble

Definition

By a complex Wigner matrix X_{N} we mean a $N \times N$ random matrix of the form $X_{N}=\frac{1}{\sqrt{N}}\left(x_{i, j}\right)$ such that,
\diamond the entries are complex random variables;
\diamond the matrix is self-adjoint: $x_{i, j}=\overline{x_{j, i}}$;
\diamond all entries on and above the diagonal are independent: $\left\{x_{i, j}\right\}_{i<j} \cup\left\{x_{i, i}\right\}_{i}$ are independent;
\diamond the entries above the diagonal, $\left\{x_{i, j}\right\}_{i<j}$, are identically distributed;
\diamond the diagonal entries, $\left\{x_{i, i}\right\}_{i}$, are identically distributed;
$\diamond \mathrm{E}\left(x_{i, j}\right)=0$ for all i, j,
$\diamond \mathrm{E}\left(x_{i, j}^{2}\right)=0$ for all $i \neq j$,
$\diamond \mathrm{E}\left(\left|x_{i, j}\right|^{2}\right)=1$ for all i, j,
$\diamond \mathrm{E}\left(\left|x_{i, j}\right|^{k}\right)<\infty$ for all i, j, k.
A collection $X=\left(X_{N}\right)_{N}$ of Wigner matrices satisfying these conditions will be called Wigner ensemble.

FIELDS

Wigner's semi-circle law

Theorem (Wigner 1955)

$$
\frac{1}{N} \lim _{N \rightarrow \infty} E\left(\operatorname{Tr}\left(X_{N}^{m}\right)\right)=\int_{\mathbb{R}} t^{m} d \mu(t)
$$

where μ is the semicircle distribution on $[-2,2]$.
Equivalently, if we let $\alpha_{m}:=\frac{1}{N} \lim _{N \rightarrow \infty} E\left(\operatorname{Tr}\left(X_{N}^{m}\right)\right)$. Then,

$$
\begin{gathered}
\alpha_{m}=\left\{\begin{array}{cc}
\frac{1}{m / 2+1}\binom{m}{m / 2} & \text { for } m \text { even } \\
0 & \text { otherwise }
\end{array}\right. \\
\sim \\
\alpha_{m}=\left|N C_{2}(m)\right|
\end{gathered}
$$

FIELDS

Moment-cumulant relation

$$
\alpha_{m}=\sum_{\pi \in N C(m)} \kappa_{\pi}
$$

where,

$$
\kappa_{\pi}=\prod_{B \subset \pi} \kappa_{|B|}
$$

Two different approaches

$$
\alpha_{m}=\left|N C_{2}(m)\right|
$$

$$
\kappa_{m}= \begin{cases}1 & \text { if } m=2 \\ 0 & \text { otherwise }\end{cases}
$$

FIELDS

Fluctuation moments

What about the fluctuation moments?

$$
\alpha_{m, n}:=\lim _{N \rightarrow \infty} K_{2}\left(\operatorname{Tr}\left(X_{N}^{m}\right), \operatorname{Tr}\left(X_{N}^{n}\right)\right)
$$

Fluctuation moments

What about the fluctuation moments?

$$
\alpha_{m, n}:=\lim _{N \rightarrow \infty} K_{2}\left(\operatorname{Tr}\left(X_{N}^{m}\right), \operatorname{Tr}\left(X_{N}^{n}\right)\right)
$$

Answered by A. Khorunzhy, B. Khoruzhenko, and L. Pastur.

Fluctuation moments

What about the fluctuation moments?

$$
\alpha_{m, n}:=\lim _{N \rightarrow \infty} K_{2}\left(\operatorname{Tr}\left(X_{N}^{m}\right), \operatorname{Tr}\left(X_{N}^{n}\right)\right)
$$

Answered by A. Khorunzhy, B. Khoruzhenko, and L. Pastur.

Theorem (Male, Mingo, Péché, Speicher, '20)

For $m_{1}, m_{2} \in \mathbb{N}$

$$
\begin{equation*}
\alpha_{m_{1}, m_{2}}=\left|N C_{2}\left(m_{1}, m_{2}\right)\right|+K_{4}\left|N C_{2}^{(2)}\left(m_{1}, m_{2}\right)\right| \tag{1}
\end{equation*}
$$

where $K_{4}=K_{4}\left(x_{1,2}, x_{1,2}, x_{2,1}, x_{2,1}\right)$ is the fourth classical cumulant of an off-diagonal element.

Fluctuation moments

What about the fluctuation moments?

$$
\alpha_{m, n}:=\lim _{N \rightarrow \infty} K_{2}\left(\operatorname{Tr}\left(X_{N}^{m}\right), \operatorname{Tr}\left(X_{N}^{n}\right)\right)
$$

Answered by A. Khorunzhy, B. Khoruzhenko, and L. Pastur.
Theorem (Male, Mingo, Péché, Speicher, '20)
For $m_{1}, m_{2} \in \mathbb{N}$

$$
\begin{equation*}
\alpha_{m_{1}, m_{2}}=\left|N C_{2}\left(m_{1}, m_{2}\right)\right|+K_{4}\left|N C_{2}^{(2)}\left(m_{1}, m_{2}\right)\right| \tag{1}
\end{equation*}
$$

where $K_{4}=K_{4}\left(x_{1,2}, x_{1,2}, x_{2,1}, x_{2,1}\right)$ is the fourth classical cumulant of an off-diagonal element.

What is the analogous statement in terms of cumulants?

Fluctuation moments

What about the fluctuation moments?

$$
\alpha_{m, n}:=\lim _{N \rightarrow \infty} K_{2}\left(\operatorname{Tr}\left(X_{N}^{m}\right), \operatorname{Tr}\left(X_{N}^{n}\right)\right)
$$

Answered by A. Khorunzhy, B. Khoruzhenko, and L. Pastur.

Theorem (Male, Mingo, Péché, Speicher, '20)

For $m_{1}, m_{2} \in \mathbb{N}$

$$
\begin{equation*}
\alpha_{m_{1}, m_{2}}=\left|N C_{2}\left(m_{1}, m_{2}\right)\right|+K_{4}\left|N C_{2}^{(2)}\left(m_{1}, m_{2}\right)\right| \tag{1}
\end{equation*}
$$

where $K_{4}=K_{4}\left(x_{1,2}, x_{1,2}, x_{2,1}, x_{2,1}\right)$ is the fourth classical cumulant of an off-diagonal element.

What is the analogous statement in terms of cumulants? What are the cumulants of order two equal to?

Partitioned permutations

A partitioned permutation is a pair (\mathcal{V}, π) consisting of $\pi \in S_{n}$ and $\mathcal{V} \in \mathcal{P}(n)$ with $\pi \leq \mathcal{V}$. The set of partitioned permutations is denoted by $\mathcal{P S}$. We let,

$$
|(\mathcal{V}, \pi)|=2|\mathcal{V}|-|\pi|
$$

with $|\mathcal{V}|=n-\#(\mathcal{V})$ and $|\pi|=n-\#(\pi)$. It is satisfied,

$$
|(\mathcal{V} \vee \mathcal{U}, \pi \sigma)| \leq|(\mathcal{V}, \pi)|+|(\mathcal{U}, \sigma)|
$$

For $(\mathcal{V}, \pi),(\mathcal{W}, \sigma) \in \mathcal{P} S_{n}$ we define their product as,

$$
(\mathcal{V}, \pi) \cdot(\mathcal{W}, \sigma)=\left\{\begin{array}{lc}
(\mathcal{V} \vee \mathcal{W}, \pi \sigma) & \text { if }|(\mathcal{V} \vee \mathcal{W}, \pi \sigma)|=|(\mathcal{V}, \pi)|+|(\mathcal{W}, \sigma)| \\
0 & \text { otherwise }
\end{array}\right.
$$

Partitioned permutations

Definition

For $(\mathcal{U}, \gamma) \in \mathcal{P S} S_{n}$ fixed we say that $(\mathcal{V}, \pi) \in \mathcal{P} \mathcal{S}_{n}$ is (\mathcal{U}, γ)-non crossing if,

$$
(\mathcal{V}, \pi) \cdot\left(0_{\pi^{-1} \gamma}, \pi^{-1} \gamma\right)=(\mathcal{U}, \gamma)
$$

The set of (\mathcal{U}, γ)-non crossing partitioned permutations will be denote by $\mathcal{P S}_{N C}(\mathcal{U}, \gamma)$.
Let $m_{1}, \ldots, m_{r} \in \mathbb{N}$ and

$$
\gamma_{m_{1}, \ldots, m_{r}}:=\left(1, \ldots, m_{1}\right) \cdots\left(m_{1}+\cdots+m_{r-1}+1, \ldots, m\right)
$$

with $m=\sum_{i=1}^{r} m_{i}$. We use the notation,

$$
\mathcal{P S} \mathcal{S}_{N C}\left(m_{1}, \ldots, m_{r}\right):=\mathcal{P} S_{N C}\left(1_{m}, \gamma_{m_{1}, \ldots, m_{r}}\right)
$$

$$
\mathcal{P S} \mathcal{S}_{N C}(m)=\left\{\left(0_{\pi}, \pi\right): \pi \in N C(m)\right\} \cong N C(m)
$$

$$
\mathcal{P S} \mathcal{S C}_{N C}\left(1_{m_{1}+m_{2}}, \gamma_{m_{1}, m_{2}}\right)=\left\{\left(0_{\pi}, \pi\right) \mid \pi \in S_{N C}\left(m_{1}, m_{2}\right)\right\}
$$

$$
\cup\left\{(\mathcal{V}, \pi) \mid \pi \in N C\left(m_{1}\right) \times N C\left(m_{2}\right), \mathcal{V} \vee \gamma=1_{n} \text { and }|\mathcal{V}|=|\pi|+1\right\}
$$

In the first part we have $S_{N C}\left(m_{1}, m_{2}\right)$ and in the second part $\mathcal{P S} S_{N C}\left(m_{1}, m_{2}\right)^{\prime}$. We shall write

$$
\mathcal{P S}_{N C}\left(m_{1}, m_{2}\right)=S_{N C}\left(m_{1}, m_{2}\right) \cup \mathcal{P S} S_{N C}\left(m_{1}, m_{2}\right)^{\prime}
$$

Partitioned permutations on two circles

$S_{N C}(6,4)$

Second order cumulants

Definition

Given

$$
\left\{\alpha_{m}\right\}_{m=1}^{\infty}, \text { and }\left\{\alpha_{m_{1}, m_{2}}\right\}_{m_{1}, m_{2}=1}^{\infty}
$$

a sequence of first and second order moments, we define the first $\left\{\kappa_{m}\right\}_{m}$, and second $\left\{\kappa_{m_{1}, m_{2}}\right\}_{m_{1}, m_{2}}$ order cumulants as the sequences given by the recursive formulas,

$$
\begin{gather*}
\alpha_{m}=\sum_{\pi \in N C(m)} \kappa_{\pi} \tag{2}\\
\alpha_{m_{1}, m_{2}}=\sum_{(\mathcal{U}, \pi) \in \mathcal{P} S_{N C}\left(m_{1}, m_{2}\right)} \kappa_{(\mathcal{U}, \pi)} \tag{3}
\end{gather*}
$$

with $\kappa_{(\mathcal{U}, \pi)}$ defined as follows,

$$
\kappa_{(\mathcal{U}, \pi)}=\prod_{\substack{D \text { blocks of } \mathcal{U} \\ B_{1}, \ldots, B_{1} \text { cycles of } \pi \\ B_{i} \subset D}} \kappa_{\left|B_{1}\right|, \ldots,\left|B_{l}\right|}
$$

Second order case

Two different approaches

$$
\begin{aligned}
\alpha_{m_{1}, m_{2}}=\left|N C_{2}\left(m_{1}, m_{2}\right)\right| & \kappa_{p, q}=\left\{\begin{array}{lll}
2 K_{4} & \text { if } & p=q=2 \\
0 & \text { otherwise }
\end{array}\right. \\
& +K_{4}\left|N C_{2}^{(2)}\left(m_{1}, m_{2}\right)\right| .
\end{aligned}
$$

FIELDS

Definition

For each $r \in \mathbb{N}$ let $\left(\alpha_{m_{1}, \ldots, m_{r}}\right)_{m_{1}, \ldots, m_{r}=1}^{\infty}$ be a sequence indexed by r subscripts. We call this a moment sequence of order r. Given the moment sequences of orders at most r :

$$
\left(\alpha_{m}\right)_{m=1}^{\infty},\left(\alpha_{m_{1}, m_{2}}\right)_{m_{1}, m_{2}=1}^{\infty}, \ldots,\left(\alpha_{m_{1}, \ldots, m_{r}}\right)_{m_{1}, \ldots, m_{r}=1}^{\infty}
$$

we define the free cumulants sequences

$$
\left(\kappa_{m}\right)_{m=1}^{\infty},\left(\kappa_{m_{1}, m_{2}}\right)_{m_{1}, m_{2}=1}^{\infty}, \ldots,\left(\kappa_{m_{1}, \ldots, m_{r}}\right)_{m_{1}, \ldots, m_{r}=1}^{\infty}
$$

associated to these moment sequences with the recursive equations:

$$
\begin{equation*}
\alpha_{m_{1}, \ldots, m_{t}}=\sum_{(\mathcal{U}, \pi) \in \mathcal{P S}_{N C}\left(m_{1}, \ldots, m_{t}\right)} \kappa_{(\mathcal{U}, \pi)} \tag{4}
\end{equation*}
$$

for $t=1, \ldots, r$. With $\kappa_{(\mathcal{U}, \pi)}$ is defined as follows:

$$
\kappa_{(\mathcal{U}, \pi)}=\prod_{\substack{B \text { block of } \mathcal{U} \\ v_{1}, \ldots, v_{i} \text { cycles of } \pi \text { with } v_{i} \subset B}} \kappa_{\left|V_{1}\right|, \ldots,\left|V_{i}\right|}
$$

The numbers $\kappa_{m_{1}, \ldots, m_{r}}$ are called the free cumulants of order r and the sequence $\left(\kappa_{m_{1}, \ldots, m_{r}}\right)_{m_{1}, \ldots, m_{r}=1}^{\infty}$ is called the free cumulant sequence of order r.

Third order case

Let X_{N} be a $N \times N$ Wigner matrix which satisfies the extra condition:

$$
K_{3}\left(x_{1,1}, x_{1,1}, x_{1,1}\right)=0 .
$$

Let,

$$
\alpha_{m_{1}, m_{2}, m_{3}}:=N K_{3}\left(\operatorname{Tr}\left(X_{N}^{m_{1}}\right), \operatorname{Tr}\left(X_{N}^{m_{2}}\right), \operatorname{Tr}\left(X_{N}^{m_{3}}\right)\right)
$$

Theorem (M, Mingo, '22)

For $m_{1}, m_{2}, m_{3} \in \mathbb{N}$

$$
\begin{aligned}
& \alpha_{m_{1}, m_{2}, m_{3}}=\left|N C_{2}\left(m_{1}, m_{2}, m_{3}\right)\right|+4 K_{6}\left|\mathcal{P} \mathcal{S}_{N C_{2}}^{(1,1,1)}\left(m_{1}, m_{2}, m_{3}\right)\right| \\
& +4 K_{4}^{2}\left|\mathcal{P} \mathcal{S}_{N C_{2}}^{(2,1,1)}\left(m_{1}, m_{2}, m_{3}\right)\right|+2 K_{4}\left|\mathcal{P} \mathcal{S}_{N C_{2}}^{(1,1)}\left(m_{1}, m_{2}, m_{3}\right)\right| \\
& \\
& +\left(\dot{K}_{4}-2 K_{4}\right)\left|\mathcal{P} \mathcal{S}_{N C_{2,1,1}}^{(1,1,1)}\left(m_{1}, m_{2}, m_{3}\right)\right|
\end{aligned}
$$

equivalently,

$$
\kappa_{m, n, p}=\left\{\right.
$$

whit $K_{6}=K_{6}\left(x_{1,2}, x_{1,2}, x_{2,1}, x_{2,1}\right), K_{4}^{0}=K_{4}^{0}\left(x_{1,1}, x_{1,1}, x_{1,1}, x_{1,1}\right)$ and $K_{4}=K_{4}\left(x_{1,2}, x_{1,2}, x_{2,1}, x_{2,1}\right)$.

For $r>3$ we will ask the following conditions:

FIELDS

For $r>3$ we will ask the following conditions:

- $x_{i, i} \sim N(0,1)$ for all i, this is; $x_{i, i}$ has standard normal distribution.

For $r>3$ we will ask the following conditions:

- $x_{i, i} \sim N(0,1)$ for all i, this is; $x_{i, i}$ has standard normal distribution.
- For every $n \in \mathbb{N}, \epsilon_{1}, \ldots, \epsilon_{n} \in\{-1,1\}$ and $i \neq j$ we have that,

$$
K_{n}\left(x_{i, j}^{\left(\epsilon_{1}\right)}, \ldots, x_{i, j}^{\left(\epsilon_{2 n+1}\right)}\right)=0
$$

whenever either n is odd, or n is even but the number of ϵ_{i} which are 1 is different to the number of ϵ_{i} which are -1 . With $x_{i, j}^{(1)}=x_{i, j}$ and $x_{i, j}^{(-1)}=x_{j, i}$.

Let,

$$
\alpha_{m_{1}, \ldots, m_{r}}^{(N)}:=N^{r-2} K_{r}\left(\operatorname{Tr}\left(X_{N}^{m_{1}}\right), \ldots, \operatorname{Tr}\left(X_{N}^{m_{r}}\right)\right)
$$

and

$$
\alpha_{m_{1}, \ldots, m_{r}}:=\lim _{N \rightarrow \infty} \alpha_{m_{1}, \ldots, m_{r}}^{(N)}
$$

Lemma

The limit;

$$
\lim _{N \rightarrow \infty} \alpha_{m_{1}, \ldots, m_{r}}^{(N)}
$$

exist for any $r \in \mathbb{N}$ and $m_{1}, \ldots, m_{r} \in \mathbb{N}$. Moreover,

$$
\begin{equation*}
\alpha_{m_{1}, \ldots, m_{r}}=\sum_{\substack{\pi \in \mathcal{P}(m) \\ \#(\pi)-m / 2+r-2=0}} \sum_{\substack{\tau \in \mathcal{P}(m) \\ \tau \vee \gamma=1_{m} \\ \tau \in \mathcal{P}_{b a l}(\pi)}} K_{\tau}(\pi) \tag{5}
\end{equation*}
$$

THANK YOU

B. Collins, J. A. Mingo, P. Śniady, R. Speicher, Second order freeness and fluctuations of Random Matrices: III. Higher Order Freeness and Free Cumulants, Doc. Math., 12 (2007), 1-70.
C. Male, J. A. Mingo, S. Péché, R. Speicher, Joint Global fluctuations of complex Wigner and Deterministic Matrices, Random Matrices Theory Appl. 11 (2022), paper 2250015, 46 pages.
J. A. Mingo and D. Munoz, Third order free cumulants of the Wigner Ensemble, submitted arxiv.2205.13081

