Simplicity of crossed products by FC-hypercentral groups

Dan Ursu
Joint work with Shirly Geffen

University of Münster
COSy 2023

Crossed products

Assume A is a unital C^{*}-algebra, and G is a countable discrete group acting on A by ${ }^{*}$-automorphisms.

Crossed products

Assume A is a unital C^{*}-algebra, and G is a countable discrete group acting on A by ${ }^{*}$-automorphisms.
Similar to semidirect products for groups, can form a crossed product $A \rtimes G$:

Crossed products

Assume A is a unital C^{*}-algebra, and G is a countable discrete group acting on A by ${ }^{*}$-automorphisms.
Similar to semidirect products for groups, can form a crossed product $A \rtimes G$:

- $A \subseteq A \rtimes G$

Crossed products

Assume A is a unital C^{*}-algebra, and G is a countable discrete group acting on A by ${ }^{*}$-automorphisms.
Similar to semidirect products for groups, can form a crossed product $A \rtimes G$:

- $A \subseteq A \rtimes G$
- $G \subseteq A \rtimes G$ as unitaries λ_{g}.

Crossed products

Assume A is a unital C^{*}-algebra, and G is a countable discrete group acting on A by ${ }^{*}$-automorphisms.
Similar to semidirect products for groups, can form a crossed product $A \rtimes G$:

- $A \subseteq A \rtimes G$
- $G \subseteq A \rtimes G$ as unitaries λ_{g}.
- The action $G \curvearrowright A$ is inner in $A \rtimes G$, i.e. $\lambda_{g} a \lambda_{g}^{*}=g \cdot a$.

Crossed products

Assume A is a unital C^{*}-algebra, and G is a countable discrete group acting on A by ${ }^{*}$-automorphisms.
Similar to semidirect products for groups, can form a crossed product $A \rtimes G$:

- $A \subseteq A \rtimes G$
- $G \subseteq A \rtimes G$ as unitaries λ_{g}.
- The action $G \curvearrowright A$ is inner in $A \rtimes G$, i.e. $\lambda_{g} a \lambda_{g}^{*}=g \cdot a$.

Intuition: contains $\left\{\sum_{\text {finite }} a_{t} \lambda_{t} \mid t \in G, a_{t} \in A\right\}$ as a dense subset, and

$$
a \lambda_{s} b \lambda_{t}=a \lambda_{s} b \lambda_{s}^{*} \lambda_{s} \lambda_{t}=(a(s \cdot b)) \lambda_{s t} .
$$

Crossed products

Assume A is a unital C^{*}-algebra, and G is a countable discrete group acting on A by ${ }^{*}$-automorphisms.
Similar to semidirect products for groups, can form a crossed product $A \rtimes G$:

- $A \subseteq A \rtimes G$
- $G \subseteq A \rtimes G$ as unitaries λ_{g}.
- The action $G \curvearrowright A$ is inner in $A \rtimes G$, i.e. $\lambda_{g} a \lambda_{g}^{*}=g \cdot a$.

Intuition: contains $\left\{\sum_{\text {finite }} a_{t} \lambda_{t} \mid t \in G, a_{t} \in A\right\}$ as a dense subset, and

$$
a \lambda_{s} b \lambda_{t}=a \lambda_{s} b \lambda_{s}^{*} \lambda_{s} \lambda_{t}=(a(s \cdot b)) \lambda_{s t} .
$$

The reduced crossed product $A \rtimes_{r} G$ is the unique norm completion such that $E\left(\sum a_{t} \lambda_{t}\right)=a_{e}$ is a faithful conditional expectation.

A brief history, part 1

Classical results on C^{*}-simplicity can be summarized as follows:

Simplicity of $C_{r}^{*}\left(\mathbb{F}_{2}\right)$	Powers, 1975
\ldots many like $C_{r}^{*}\left(\mathbb{F}_{2}\right) \ldots$	\ldots many..
$A \rtimes_{r} G$ is simple if $G \curvearrowright A$ properly	Elliott, Kishimoto, Olesen-
outer, but not if and only if	Pedersen (1978-1982)
Simplicity of $C(X) \rtimes_{r} G$, amenable G	Archbold-Spielberg, 1994

A brief history, part 1

Classical results on C^{*}-simplicity can be summarized as follows:

Simplicity of $C_{r}^{*}\left(\mathbb{F}_{2}\right)$	Powers, 1975
\ldots many like $C_{r}^{*}\left(\mathbb{F}_{2}\right) \ldots$	\ldots many \ldots
$A \rtimes_{r} G$ is simple if $G \curvearrowright A$ properly	Elliott, Kishimoto, Olesen-
outer, but not if and only if	Pedersen (1978-1982)
Simplicity of $C(X) \rtimes_{r} G$, amenable G	Archbold-Spielberg, 1994

Modern results begin as follows:

A brief history, part 1

Classical results on C^{*}-simplicity can be summarized as follows:

Simplicity of $C_{r}^{*}\left(\mathbb{F}_{2}\right)$	Powers, 1975
\ldots many like $C_{r}^{*}\left(\mathbb{F}_{2}\right) \ldots$	\ldots many \ldots
$A \rtimes_{r} G$ is simple if $G \curvearrowright A$ properly	Elliott, Kishimoto, Olesen-
outer, but not if and only if	Pedersen (1978-1982)
Simplicity of $C(X) \rtimes_{r} G$, amenable G	Archbold-Spielberg, 1994

Modern results begin as follows:

Simplicity of $C_{r}^{*}(G)$, arbitrary G	Breuillard, Kalantar, Kennedy, Ozawa (2017, 2017, 2020)
Simplicity of $C(X) \rtimes_{r} G$, arbitrary G	Kawabe, 2020
Simplicity of $A \rtimes_{r} G(A$ noncommu- tative), partial results	Kennedy-Schafhauser, 2020

Machina unus

What goes into the modern results?

Machina unus

What goes into the modern results?
[easier in practice] $A \subseteq I(A) \subseteq I_{G}(A)$ [easier in theory]

Machina unus

What goes into the modern results?
[easier in practice] $A \subseteq I(A) \subseteq I_{G}(A)$ [easier in theory]
Consider the category of C^{*}-algebras, with unital and completely positive maps as morphisms.

Machina unus

What goes into the modern results?

[easier in practice] $A \subseteq I(A) \subseteq I_{G}(A)$ [easier in theory]

Consider the category of C^{*}-algebras, with unital and completely positive maps as morphisms.

- A C*-algebra C is injective if, whenever $A \subseteq B$ and $\phi: A \rightarrow C$ is a UCP map, it extends to some $\psi: B \rightarrow C$.

Machina unus

What goes into the modern results?

[easier in practice] $A \subseteq I(A) \subseteq I_{G}(A)$ [easier in theory]

Consider the category of C^{*}-algebras, with unital and completely positive maps as morphisms.

- A C^{*}-algebra C is injective if, whenever $A \subseteq B$ and $\phi: A \rightarrow C$ is a UCP map, it extends to some $\psi: B \rightarrow C$.
- A C^{*}-algebra C is the injective envelope of A if C is injective, $A \subseteq C$, and there is no smaller injective B with $A \subseteq B \varsubsetneqq C$. [slight lie]

Machina unus

What goes into the modern results?

[easier in practice] $A \subseteq I(A) \subseteq I_{G}(A)$ [easier in theory]

Consider the category of C^{*}-algebras, with unital and completely positive maps as morphisms.

- A C^{*}-algebra C is injective if, whenever $A \subseteq B$ and $\phi: A \rightarrow C$ is a UCP map, it extends to some $\psi: B \rightarrow C$.
- A C^{*}-algebra C is the injective envelope of A if C is injective, $A \subseteq C$, and there is no smaller injective B with $A \subseteq B \varsubsetneqq C$. [slight lie]
You've seen this before. \mathbb{C} is injective in the category of Banach spaces.

Machina unus

What goes into the modern results?

[easier in practice] $A \subseteq I(A) \subseteq I_{G}(A)$ [easier in theory]

Consider the category of C^{*}-algebras, with unital and completely positive maps as morphisms.

- A C^{*}-algebra C is injective if, whenever $A \subseteq B$ and $\phi: A \rightarrow C$ is a UCP map, it extends to some $\psi: B \rightarrow C$.
- A C^{*}-algebra C is the injective envelope of A if C is injective, $A \subseteq C$, and there is no smaller injective B with $A \subseteq B \varsubsetneqq C$. [slight lie]
You've seen this before. \mathbb{C} is injective in the category of Banach spaces. G-injective envelopes are the same. Fix a group G, use the category of G-C*-algebras and G-equivariant morphisms.

Machina unus

What goes into the modern results?

[easier in practice] $A \subseteq I(A) \subseteq I_{G}(A)$ [easier in theory]

Consider the category of C^{*}-algebras, with unital and completely positive maps as morphisms.

- A C^{*}-algebra C is injective if, whenever $A \subseteq B$ and $\phi: A \rightarrow C$ is a UCP map, it extends to some $\psi: B \rightarrow C$.
- A C*-algebra C is the injective envelope of A if C is injective, $A \subseteq C$, and there is no smaller injective B with $A \subseteq B \varsubsetneqq C$. [slight lie]
You've seen this before. \mathbb{C} is injective in the category of Banach spaces. G-injective envelopes are the same. Fix a group G, use the category of G-C*-algebras and G-equivariant morphisms.

Theorem (Hamana)

Injective and G-injective envelopes always exist. Denoted $I(A)$ and $I_{G}(A)$.

The main idea in the modern proofs

In the commutative setting, the first main result is the following:

```
Theorem (Breuillard, Kalantar, Kawabe, Kennedy, Ozawa)
Assume G\curvearrowright X is minimal. Let IG}(C(X))=C(Z). Then C(X)\mp@subsup{\rtimes}{r}{}G\mathrm{ is simple if and only if the action of \(G\) on \(Z\) is free.
```


The main idea in the modern proofs

In the commutative setting, the first main result is the following:

```
Theorem (Breuillard, Kalantar, Kawabe, Kennedy, Ozawa) Assume \(G \curvearrowright X\) is minimal. Let \(I_{G}(C(X))=C(Z)\). Then \(C(X) \rtimes_{r} G\) is simple if and only if the action of \(G\) on \(Z\) is free.
```

Is there a noncommutative analogue of freeness?

Machina duo

Assume A is monotone complete. Basically \approx von Neumann algebra. Examples: $I(A)$ and $I_{G}(A)$.

Machina duo

Assume A is monotone complete. Basically \approx von Neumann algebra. Examples: $I(A)$ and $I_{G}(A)$.
We know what $\alpha \in \operatorname{Aut}(A)$ is inner and outer means.

Machina duo

Assume A is monotone complete. Basically \approx von Neumann algebra. Examples: $I(A)$ and $I_{G}(A)$.
We know what $\alpha \in \operatorname{Aut}(A)$ is inner and outer means. We say that $\alpha \in \operatorname{Aut}(A)$ is properly outer if there is no corner $p A p$ on which the action is inner.

Machina duo

Assume A is monotone complete. Basically \approx von Neumann algebra. Examples: $I(A)$ and $I_{G}(A)$.
We know what $\alpha \in \operatorname{Aut}(A)$ is inner and outer means. We say that $\alpha \in \operatorname{Aut}(A)$ is properly outer if there is no corner $p A p$ on which the action is inner.
$G \curvearrowright A$ is properly outer if every α_{t} is properly outer for $t \neq e$.

Machina duo

Assume A is monotone complete. Basically \approx von Neumann algebra. Examples: $I(A)$ and $I_{G}(A)$.
We know what $\alpha \in \operatorname{Aut}(A)$ is inner and outer means. We say that $\alpha \in \operatorname{Aut}(A)$ is properly outer if there is no corner $p A p$ on which the action is inner.
$G \curvearrowright A$ is properly outer if every α_{t} is properly outer for $t \neq e$. Well-known that this plays a role in simplicity of $A \rtimes_{r} G$.

Machina duo

Assume A is monotone complete. Basically \approx von Neumann algebra. Examples: $I(A)$ and $I_{G}(A)$.
We know what $\alpha \in \operatorname{Aut}(A)$ is inner and outer means. We say that $\alpha \in \operatorname{Aut}(A)$ is properly outer if there is no corner $p A p$ on which the action is inner.
$G \curvearrowright A$ is properly outer if every α_{t} is properly outer for $t \neq e$. Well-known that this plays a role in simplicity of $A \rtimes_{r} G$.

Proposition (Kallman, Hamana)

Every $\alpha \in \operatorname{Aut}(A)$ decomposes as $\alpha=\alpha_{1} \oplus \alpha_{2}$ on $\operatorname{Ap} \oplus A(1-p)$, where p is an α-invariant central projection, and α_{1} is inner and α_{2} is properly outer.

Machina duo

Assume A is monotone complete. Basically \approx von Neumann algebra. Examples: $I(A)$ and $I_{G}(A)$.
We know what $\alpha \in \operatorname{Aut}(A)$ is inner and outer means. We say that $\alpha \in \operatorname{Aut}(A)$ is properly outer if there is no corner $p A p$ on which the action is inner.
$G \curvearrowright A$ is properly outer if every α_{t} is properly outer for $t \neq e$. Well-known that this plays a role in simplicity of $A \rtimes_{r} G$.

Proposition (Kallman, Hamana)

Every $\alpha \in \operatorname{Aut}(A)$ decomposes as $\alpha=\alpha_{1} \oplus \alpha_{2}$ on $\operatorname{Ap} \oplus A(1-p)$, where p is an α-invariant central projection, and α_{1} is inner and α_{2} is properly outer.

Example: if $C(Z)$ is monotone complete, then $\operatorname{Fix}(\alpha)$ is clopen. So

$$
C(Z) \cong C(Z) p_{\mathrm{Fix}(\alpha)} \oplus C(Z) p_{\mathrm{Fix}(\alpha)^{\mathrm{C}}} \quad \text { (inner and free parts) }
$$

Noncommutative characterization of simplicity?

Theorem (Kennedy-Schafhauser)

(Always $G \curvearrowright A$ minimal).

- Assume that $G \curvearrowright I_{G}(A)$ properly outer. Then $A \rtimes_{r} G$ is simple.

Noncommutative characterization of simplicity?

Theorem (Kennedy-Schafhauser)

(Always $G \curvearrowright A$ minimal).

- Assume that $G \curvearrowright I_{G}(A)$ properly outer. Then $A \rtimes_{r} G$ is simple.
- If $G \curvearrowright A$ has an "untwisting" assumption known as vanishing obstruction, then the converse is true.

Noncommutative characterization of simplicity?

Theorem (Kennedy-Schafhauser)

(Always $G \curvearrowright A$ minimal).

- Assume that $G \curvearrowright I_{G}(A)$ properly outer. Then $A \rtimes_{r} G$ is simple.
- If $G \curvearrowright A$ has an "untwisting" assumption known as vanishing obstruction, then the converse is true.

Example (Finite-dimensional counterexample to converse)

Consider $G=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}=\langle u\rangle \times\langle v\rangle$ and $A=M_{2}$, with G acting by

$$
u=\operatorname{Ad}\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \quad v=\operatorname{Ad}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Noncommutative characterization of simplicity?

Theorem (Kennedy-Schafhauser)

(Always $G \curvearrowright A$ minimal).

- Assume that $G \curvearrowright I_{G}(A)$ properly outer. Then $A \rtimes_{r} G$ is simple.
- If $G \curvearrowright A$ has an "untwisting" assumption known as vanishing obstruction, then the converse is true.

Example (Finite-dimensional counterexample to converse)

Consider $G=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}=\langle u\rangle \times\langle v\rangle$ and $A=M_{2}$, with G acting by

$$
u=\operatorname{Ad}\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \quad v=\operatorname{Ad}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

In fact, $A=I(A)=I_{G}(A)$.

Noncommutative characterization of simplicity?

Theorem (Kennedy-Schafhauser)

(Always $G \curvearrowright A$ minimal).

- Assume that $G \curvearrowright I_{G}(A)$ properly outer. Then $A \rtimes_{r} G$ is simple.
- If $G \curvearrowright A$ has an "untwisting" assumption known as vanishing obstruction, then the converse is true.

Example (Finite-dimensional counterexample to converse)

Consider $G=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}=\langle u\rangle \times\langle v\rangle$ and $A=M_{2}$, with G acting by

$$
u=\operatorname{Ad}\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \quad v=\operatorname{Ad}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

In fact, $A=I(A)=I_{G}(A)$.
The action of G on $I_{G}(A)$ is not properly outer, but $A \rtimes_{r} G \cong M_{4}$ is simple. Vanishing obstruction also cannot hold (easy to check manually).

Our results

Everything here shares the same characterizations, but different obstructions in each proof.

Our results

Everything here shares the same characterizations, but different obstructions in each proof.
The easier case:

- Simplicity of $A \rtimes_{r} G$ for FC groups G, in terms of $I(A)$. [FC = every conjugacy class is finite]

Our results

Everything here shares the same characterizations, but different obstructions in each proof.
The easier case:

- Simplicity of $A \rtimes_{r} G$ for FC groups G, in terms of $I(A)$. [FC = every conjugacy class is finite]

The harder cases:

- The intersection property, FC groups G, in terms of $I(A)$.

Our results

Everything here shares the same characterizations, but different obstructions in each proof.
The easier case:

- Simplicity of $A \rtimes_{r} G$ for FC groups G, in terms of $I(A)$. [FC = every conjugacy class is finite]

The harder cases:

- The intersection property, FC groups G, in terms of $I(A)$.
- Simplicity, FC-hypercentral groups G, in terms of $I(A)$. [virtually nilpotent \subseteq FCH if finitely generated, virtually nilpotent $=\mathrm{FCH}=$ polynomial growth]

Our results

Everything here shares the same characterizations, but different obstructions in each proof.
The easier case:

- Simplicity of $A \rtimes_{r} G$ for FC groups G, in terms of $I(A)$. [FC = every conjugacy class is finite]
The harder cases:
- The intersection property, FC groups G, in terms of $I(A)$.
- Simplicity, FC-hypercentral groups G, in terms of $I(A)$. [virtually nilpotent \subseteq FCH if finitely generated, virtually nilpotent $=\mathrm{FCH}=$ polynomial growth]
- Primality, minimal $G \curvearrowright A$ and arbitrary groups G, in terms of $I(A)$.

Our results

Everything here shares the same characterizations, but different obstructions in each proof.
The easier case:

- Simplicity of $A \rtimes_{r} G$ for FC groups G, in terms of $I(A)$. [FC = every conjugacy class is finite]
The harder cases:
- The intersection property, FC groups G, in terms of $I(A)$.
- Simplicity, FC-hypercentral groups G, in terms of $I(A)$. [virtually nilpotent \subseteq FCH
if finitely generated, virtually nilpotent $=\mathrm{FCH}=$ polynomial growth]
- Primality, minimal $G \curvearrowright A$ and arbitrary groups G, in terms of $I(A)$. The mental health hazard:
- Characterizing everything in terms of A instead of $I(A)$.

The main characterization in terms of $I(A)$

All of the previous problems basically have the same characterization.

The main characterization in terms of $I(A)$

All of the previous problems basically have the same characterization.

```
Theorem (Geffen-U.)
Assume we are in situation \(\langle X\rangle\) (ex: \(G\) is \(F C\)-hypercentral).
```


The main characterization in terms of $I(A)$

All of the previous problems basically have the same characterization.

Theorem (Geffen-U.)

Assume we are in situation $\langle X\rangle$ (ex: G is $F C$-hypercentral). Then $A \rtimes_{r} G$ lacks property $\langle Y\rangle$ (ex: $A \rtimes_{r} G$ is not simple) if and only if:

The main characterization in terms of $I(A)$

All of the previous problems basically have the same characterization.

Theorem (Geffen-U.)

Assume we are in situation $\langle X\rangle$ (ex: G is $F C$-hypercentral).
Then $A \rtimes_{r} G$ lacks property $\langle Y\rangle$ (ex: $A \rtimes_{r} G$ is not simple) if and only if: There exist:

- $t \in F C(G) \backslash\{e\}$

The main characterization in terms of $I(A)$

All of the previous problems basically have the same characterization.

Theorem (Geffen-U.)

Assume we are in situation $\langle X\rangle$ (ex: G is $F C$-hypercentral).
Then $A \rtimes_{r} G$ lacks property $\langle Y\rangle$ (ex: $A \rtimes_{r} G$ is not simple) if and only if:
There exist:

- $t \in F C(G) \backslash\{e\}$
- $p \in Z(I(A))$ nonzero t-invariant central projection

The main characterization in terms of $I(A)$

All of the previous problems basically have the same characterization.

Theorem (Geffen-U.)

Assume we are in situation $\langle X\rangle$ (ex: G is $F C$-hypercentral).
Then $A \rtimes_{r} G$ lacks property $\langle Y\rangle$ (ex: $A \rtimes_{r} G$ is not simple) if and only if:
There exist:

- $t \in F C(G) \backslash\{e\}$
- $p \in Z(I(A))$ nonzero t-invariant central projection
- $u \in U(I(A) p)$ unitary

The main characterization in terms of $I(A)$

All of the previous problems basically have the same characterization.

Theorem (Geffen-U.)

Assume we are in situation $\langle X\rangle$ (ex: G is $F C$-hypercentral).
Then $A \rtimes_{r} G$ lacks property $\langle Y\rangle$ (ex: $A \rtimes_{r} G$ is not simple) if and only if: There exist:

- $t \in F C(G) \backslash\{e\}$
- $p \in Z(I(A))$ nonzero t-invariant central projection
- $u \in U(I(A) p)$ unitary
such that:
- t acts by $\operatorname{Ad} u$ on $I(A) p$

The main characterization in terms of $I(A)$

All of the previous problems basically have the same characterization.

Theorem (Geffen-U.)

Assume we are in situation $\langle X\rangle$ (ex: G is $F C$-hypercentral).
Then $A \rtimes_{r} G$ lacks property $\langle Y\rangle$ (ex: $A \rtimes_{r} G$ is not simple) if and only if: There exist:

- $t \in F C(G) \backslash\{e\}$
- $p \in Z(I(A))$ nonzero t-invariant central projection
- $u \in U(I(A) p)$ unitary
such that:
- t acts by $\mathrm{Ad} u$ on $I(A) p$
- $s \cdot u=u$ whenever $s t=t s$

The main characterization in terms of $I(A)$

All of the previous problems basically have the same characterization.

Theorem (Geffen-U.)

Assume we are in situation $\langle X\rangle$ (ex: G is $F C$-hypercentral).
Then $A \rtimes_{r} G$ lacks property $\langle Y\rangle$ (ex: $A \rtimes_{r} G$ is not simple) if and only if: There exist:

- $t \in F C(G) \backslash\{e\}$
- $p \in Z(I(A))$ nonzero t-invariant central projection
- $u \in U(I(A) p)$ unitary such that:
- t acts by $\mathrm{Ad} u$ on $I(A) p$
- $s \cdot u=u$ whenever $s t=t s$

Without the last part, this would say "not simple/etc..." if and only if "not properly outer". But some invariance is necessary.

An intrinsic characterization, non-equivariant version

We saw simplicity of $A \rtimes_{r} G$ is equivalent to some weaker equivariant version of proper outerness on $I(A)$.

An intrinsic characterization, non-equivariant version

We saw simplicity of $A \rtimes_{r} G$ is equivalent to some weaker equivariant version of proper outerness on $I(A)$. Is there a version on A ?

An intrinsic characterization, non-equivariant version

We saw simplicity of $A \rtimes_{r} G$ is equivalent to some weaker equivariant version of proper outerness on $I(A)$. Is there a version on A ?

Elliott's definition, non-equivariant intrinsic version

Assume $\alpha \in \operatorname{Aut}(A)$, where A is separable. The following are equivalent:

An intrinsic characterization, non-equivariant version

We saw simplicity of $A \rtimes_{r} G$ is equivalent to some weaker equivariant version of proper outerness on $I(A)$. Is there a version on A ?

Elliott's definition, non-equivariant intrinsic version

Assume $\alpha \in \operatorname{Aut}(A)$, where A is separable. The following are equivalent:
There exist

- α-invariant nonzero central projection $p \in I(A)$
- Unitary $u \in U(I(A) p)$
such that $\alpha=\operatorname{Ad} u$ on $I(A) p$

An intrinsic characterization, non-equivariant version

We saw simplicity of $A \rtimes_{r} G$ is equivalent to some weaker equivariant version of proper outerness on $I(A)$. Is there a version on A ?

Elliott's definition, non-equivariant intrinsic version

Assume $\alpha \in \operatorname{Aut}(A)$, where A is separable. The following are equivalent:
There exist

- α-invariant nonzero central projection $p \in I(A)$
- Unitary $u \in U(I(A) p)$
such that $\alpha=\operatorname{Ad} u$ on $I(A) p$
There exist
- α-invariant nonzero ideal $J \triangleleft A$.
- Unitary $u \in U(M(J))$, where $M(J)$ is the multiplier algebra.

With $\|\alpha \mid J-\operatorname{Ad} u\|<2$.

An intrinsic characterization, equivariant version

Theorem (Geffen-U.)

Assume A is separable, and we are in a situation from before. The following are equivalent:

There exist

- $t \in F C(G) \backslash\{e\}$
- t-invariant nonzero central projection $p \in I(A)$
- Unitary $u \in U(I(A) p)$
such that
- $\alpha_{t}=\operatorname{Ad} u$ on $I(A) p$
- $s \cdot p=p$ for all $s \in C_{G}(t)$
- $s \cdot u=u$ for all $s \in C_{G}(t)$

An intrinsic characterization, equivariant version

Theorem (Geffen-U.)

Assume A is separable, and we are in a situation from before. The following are equivalent:

There exist

- $t \in F C(G) \backslash\{e\}$
- t-invariant nonzero central projection $p \in I(A)$
- Unitary $u \in U(I(A) p)$
such that
- $\alpha_{t}=\operatorname{Ad} u$ on $I(A) p$
- $s \cdot p=p$ for all $s \in C_{G}(t)$
- $s \cdot u=u$ for all $s \in C_{G}(t)$ continued on next slide...

An intrinsic characterization, still going...

There exist

- $t \in F C(G) \backslash\{e\}$

An intrinsic characterization, still going...

There exist

- $t \in F C(G) \backslash\{e\}$
- t-invariant nonzero ideal $J \triangleleft A$

An intrinsic characterization, still going...

There exist

- $t \in F C(G) \backslash\{e\}$
- t-invariant nonzero ideal $J \triangleleft A$
- Unitary $u \in U(M(J))$ (multiplier algebra)

An intrinsic characterization, still going...

There exist

- $t \in F C(G) \backslash\{e\}$
- t-invariant nonzero ideal $J \triangleleft A$
- Unitary $u \in U(M(J))$ (multiplier algebra)
such that

An intrinsic characterization, still going...

There exist

- $t \in F C(G) \backslash\{e\}$
- t-invariant nonzero ideal $J \triangleleft A$
- Unitary $u \in U(M(J))$ (multiplier algebra)
such that
- $\left\|\left.\alpha_{t}\right|_{\jmath}-\operatorname{Ad} u\right\|=\varepsilon_{1}$

An intrinsic characterization, still going...

There exist

- $t \in F C(G) \backslash\{e\}$
- t-invariant nonzero ideal $J \triangleleft A$
- Unitary $u \in U(M(J))$ (multiplier algebra)
such that
- $\left\|\left.\alpha_{t}\right|_{\jmath}-\operatorname{Ad} u\right\|=\varepsilon_{1}$
- $s \cdot J \cap J$ is essential in $s \cdot J$ and J for $s \in C_{G}(t)$.

An intrinsic characterization, still going...

There exist

- $t \in F C(G) \backslash\{e\}$
- t-invariant nonzero ideal $J \triangleleft A$
- Unitary $u \in U(M(J))$ (multiplier algebra)
such that
- $\left\|\left.\alpha_{t}\right|_{\jmath}-\operatorname{Ad} u\right\|=\varepsilon_{1}$
- $s \cdot J \cap J$ is essential in $s \cdot J$ and J for $s \in C_{G}(t)$.
- $\sup _{s \in C_{G}(t)}\|s u-u\|=\varepsilon_{2}$
[I promise this makes sense even if $s u$ and u lie in different algebras]

An intrinsic characterization, still going...

There exist

- $t \in F C(G) \backslash\{e\}$
- t-invariant nonzero ideal $J \triangleleft A$
- Unitary $u \in U(M(J))$ (multiplier algebra)
such that
- $\left\|\left.\alpha_{t}\right|_{\jmath}-\operatorname{Ad} u\right\|=\varepsilon_{1}$
- $s \cdot J \cap J$ is essential in $s \cdot J$ and J for $s \in C_{G}(t)$.
- $\sup _{s \in C_{G}(t)}\|s u-u\|=\varepsilon_{2}$
[I promise this makes sense even if $s u$ and u lie in different algebras]
such that moreover

$$
\operatorname{awful}\left(\varepsilon_{1}\right)+\varepsilon_{2}<\sqrt{2}
$$

An intrinsic characterization, still going...

There exist

- $t \in F C(G) \backslash\{e\}$
- t-invariant nonzero ideal $J \triangleleft A$
- Unitary $u \in U(M(J))$ (multiplier algebra)
such that
- $\left\|\left.\alpha_{t}\right|_{J}-\operatorname{Ad} u\right\|=\varepsilon_{1}$
- $s \cdot J \cap J$ is essential in $s \cdot J$ and J for $s \in C_{G}(t)$.
- $\sup _{s \in C_{G}(t)}\|s u-u\|=\varepsilon_{2}$
[I promise this makes sense even if $s u$ and u lie in different algebras]
such that moreover

$$
\operatorname{awful}\left(\varepsilon_{1}\right)+\varepsilon_{2}<\sqrt{2}
$$

The t, p, and u in one half do not need to coincide, at all, with the t, J, and u in the other half.

An intrinsic characterization, still going...

There exist

- $t \in F C(G) \backslash\{e\}$
- t-invariant nonzero ideal $J \triangleleft A$
- Unitary $u \in U(M(J))$ (multiplier algebra)
such that
- $\left\|\left.\alpha_{t}\right|_{J}-\operatorname{Ad} u\right\|=\varepsilon_{1}$
- $s \cdot J \cap J$ is essential in $s \cdot J$ and J for $s \in C_{G}(t)$.
- $\sup _{s \in C_{G}(t)}\|s u-u\|=\varepsilon_{2}$
[I promise this makes sense even if $s u$ and u lie in different algebras]
such that moreover

$$
\operatorname{awful}\left(\varepsilon_{1}\right)+\varepsilon_{2}<\sqrt{2}
$$

The t, p, and u in one half do not need to coincide, at all, with the t, J, and u in the other half. Going between them is axiom of choice for all of these variables, even the t.

- FIN -

