Simplicity of crossed products by FC-hypercentral groups

Dan Ursu Joint work with Shirly Geffen

University of Münster

COSy 2023

Simplicity of $A \rtimes_r G$ for FCH G

Assume A is a unital C*-algebra, and G is a countable discrete group acting on A by *-automorphisms.

< 1 k

Assume A is a unital C*-algebra, and G is a countable discrete group acting on A by *-automorphisms.

Similar to semidirect products for groups, can form a crossed product $A \rtimes G$:

Assume A is a unital C*-algebra, and G is a countable discrete group acting on A by *-automorphisms.

Similar to semidirect products for groups, can form a crossed product $A \rtimes G$:

• $A \subseteq A \rtimes G$

Assume A is a unital C*-algebra, and G is a countable discrete group acting on A by *-automorphisms.

Similar to semidirect products for groups, can form a crossed product $A \rtimes G$:

- $A \subseteq A \rtimes G$
- $G \subseteq A \rtimes G$ as unitaries λ_g .

Assume A is a unital C*-algebra, and G is a countable discrete group acting on A by *-automorphisms.

Similar to semidirect products for groups, can form a crossed product $A \rtimes G$:

- $A \subseteq A \rtimes G$
- $G \subseteq A \rtimes G$ as unitaries λ_g .
- The action $G \curvearrowright A$ is inner in $A \rtimes G$, i.e. $\lambda_g a \lambda_g^* = g \cdot a$.

2/13

Assume A is a unital C*-algebra, and G is a countable discrete group acting on A by *-automorphisms.

Similar to semidirect products for groups, can form a crossed product $A \rtimes G$:

- $A \subseteq A \rtimes G$
- $G \subseteq A \rtimes G$ as unitaries λ_g .
- The action $G \curvearrowright A$ is inner in $A \rtimes G$, i.e. $\lambda_g a \lambda_g^* = g \cdot a$.

Intuition: contains $\{\sum_{\text{finite}} a_t \lambda_t \mid t \in G, a_t \in A\}$ as a dense subset, and

$$a\lambda_s b\lambda_t = a\lambda_s b\lambda_s^*\lambda_s\lambda_t = (a(s \cdot b))\lambda_{st}.$$

Assume A is a unital C*-algebra, and G is a countable discrete group acting on A by *-automorphisms.

Similar to semidirect products for groups, can form a crossed product $A \rtimes G$:

- $A \subseteq A \rtimes G$
- $G \subseteq A \rtimes G$ as unitaries λ_g .
- The action $G \curvearrowright A$ is inner in $A \rtimes G$, i.e. $\lambda_g a \lambda_g^* = g \cdot a$.

Intuition: contains $\{\sum_{\text{finite}} a_t \lambda_t \mid t \in G, a_t \in A\}$ as a dense subset, and

$$a\lambda_sb\lambda_t = a\lambda_sb\lambda_s^*\lambda_s\lambda_t = (a(s \cdot b))\lambda_{st}.$$

The reduced crossed product $A \rtimes_r G$ is the unique norm completion such that $E(\sum a_t \lambda_t) = a_e$ is a faithful conditional expectation.

(人間) トイヨト イヨト ニヨ

Classical results on C*-simplicity can be summarized as follows:

Simplicity of $C_r^*(\mathbb{F}_2)$	Powers, 1975
many like $C^*_r(\mathbb{F}_2)$	many
$A \rtimes_r G$ is simple if $G \curvearrowright A$ properly	Elliott, Kishimoto, Olesen-
outer, but not if and only if	Pedersen (1978-1982)
Simplicity of $C(X) \rtimes_r G$, amenable G	Archbold-Spielberg, 1994

< 4[™] >

э

Classical results on C*-simplicity can be summarized as follows:

Simplicity of $C_r^*(\mathbb{F}_2)$	Powers, 1975
many like $C^*_r(\mathbb{F}_2)$	many
$A \rtimes_r G$ is simple if $G \curvearrowright A$ properly	Elliott, Kishimoto, Olesen-
outer, but not if and only if	Pedersen (1978-1982)
Simplicity of $C(X) \rtimes_r G$, amenable G	Archbold-Spielberg, 1994

Modern results begin as follows:

3/13

Classical results on C*-simplicity can be summarized as follows:

Simplicity of $C_r^*(\mathbb{F}_2)$	Powers, 1975
many like $C^*_r(\mathbb{F}_2)$	many
$A \rtimes_r G$ is simple if $G \curvearrowright A$ properly	Elliott, Kishimoto, Olesen-
outer, but not if and only if	Pedersen (1978-1982)
Simplicity of $C(X) \rtimes_r G$, amenable G	Archbold-Spielberg, 1994

Modern results begin as follows:

Simplicity of $C_r^*(G)$, arbitrary G	Breuillard, Kalantar, Kennedy,
	Ozawa (2017, 2017, 2020)
Simplicity of $C(X) \rtimes_r G$, arbitrary G	Kawabe, 2020
Simplicity of $A \rtimes_r G$ (A noncommu-	Kennedy-Schafhauser, 2020
tative), partial results	

What goes into the modern results?

Image: A matrix and A matrix

æ

What goes into the modern results?

[easier in practice] $A \subseteq I(A) \subseteq I_G(A)$ [easier in theory]

< 47 ▶

What goes into the modern results?

[easier in practice] $A \subseteq I(A) \subseteq I_G(A)$ [easier in theory]

Consider the category of C*-algebras, with unital and completely positive maps as morphisms.

What goes into the modern results?

[easier in practice] $A \subseteq I(A) \subseteq I_G(A)$ [easier in theory]

Consider the category of C*-algebras, with unital and completely positive maps as morphisms.

A C*-algebra C is injective if, whenever A ⊆ B and φ : A → C is a UCP map, it extends to some ψ : B → C.

What goes into the modern results?

[easier in practice] $A \subseteq I(A) \subseteq I_G(A)$ [easier in theory]

Consider the category of C*-algebras, with unital and completely positive maps as morphisms.

- A C*-algebra C is injective if, whenever A ⊆ B and φ : A → C is a UCP map, it extends to some ψ : B → C.
- A C*-algebra C is the **injective envelope** of A if C is injective, $A \subseteq C$, and there is no smaller injective B with $A \subseteq B \subsetneqq C$. [slight lie]

4/13

What goes into the modern results?

[easier in practice] $A \subseteq I(A) \subseteq I_G(A)$ [easier in theory]

Consider the category of C*-algebras, with unital and completely positive maps as morphisms.

- A C*-algebra C is injective if, whenever A ⊆ B and φ : A → C is a UCP map, it extends to some ψ : B → C.
- A C*-algebra C is the **injective envelope** of A if C is injective, $A \subseteq C$, and there is no smaller injective B with $A \subseteq B \subsetneq C$. [slight lie]

You've seen this before. $\mathbb C$ is injective in the category of Banach spaces.

What goes into the modern results?

[easier in practice] $A \subseteq I(A) \subseteq I_G(A)$ [easier in theory]

Consider the category of C*-algebras, with unital and completely positive maps as morphisms.

- A C*-algebra C is injective if, whenever A ⊆ B and φ : A → C is a UCP map, it extends to some ψ : B → C.
- A C*-algebra C is the **injective envelope** of A if C is injective, $A \subseteq C$, and there is no smaller injective B with $A \subseteq B \subsetneq C$. [slight lie]

You've seen this before. \mathbb{C} is injective in the category of Banach spaces. *G*-injective envelopes are the same. Fix a group *G*, use the category of

G-C*-algebras and G-equivariant morphisms.

< 回 > < 三 > < 三 > -

What goes into the modern results?

[easier in practice] $A \subseteq I(A) \subseteq I_G(A)$ [easier in theory]

Consider the category of C*-algebras, with unital and completely positive maps as morphisms.

- A C*-algebra C is injective if, whenever A ⊆ B and φ : A → C is a UCP map, it extends to some ψ : B → C.
- A C*-algebra C is the **injective envelope** of A if C is injective, $A \subseteq C$, and there is no smaller injective B with $A \subseteq B \subsetneq C$. [slight lie]

You've seen this before. ${\mathbb C}$ is injective in the category of Banach spaces.

G-injective envelopes are the same. Fix a group *G*, use the category of G-C*-algebras and *G*-equivariant morphisms.

Theorem (Hamana)

Injective and G-injective envelopes always exist. Denoted I(A) and $I_G(A)$.

In the **commutative** setting, the first main result is the following:

Theorem (Breuillard, Kalantar, Kawabe, Kennedy, Ozawa)

Assume $G \curvearrowright X$ is minimal. Let $I_G(C(X)) = C(Z)$. Then $C(X) \rtimes_r G$ is simple if and only if the action of G on Z is free.

In the **commutative** setting, the first main result is the following:

Theorem (Breuillard, Kalantar, Kawabe, Kennedy, Ozawa)

Assume $G \curvearrowright X$ is minimal. Let $I_G(C(X)) = C(Z)$. Then $C(X) \rtimes_r G$ is simple if and only if the action of G on Z is free.

Is there a noncommutative analogue of freeness?

Assume A is **monotone complete**. Basically \approx von Neumann algebra. Examples: I(A) and $I_G(A)$.

э

Assume A is **monotone complete**. Basically \approx von Neumann algebra. Examples: I(A) and $I_G(A)$.

We know what $\alpha \in Aut(A)$ is *inner* and *outer* means.

Assume A is **monotone complete**. Basically \approx von Neumann algebra. Examples: I(A) and $I_G(A)$.

We know what $\alpha \in Aut(A)$ is *inner* and *outer* means. We say that $\alpha \in Aut(A)$ is **properly outer** if there is no corner pAp on which the action is inner.

Assume A is **monotone complete**. Basically \approx von Neumann algebra. Examples: I(A) and $I_G(A)$.

We know what $\alpha \in Aut(A)$ is *inner* and *outer* means. We say that $\alpha \in Aut(A)$ is **properly outer** if there is no corner pAp on which the action is inner.

 $G \curvearrowright A$ is properly outer if every α_t is properly outer for $t \neq e$.

6/13

Assume A is **monotone complete**. Basically \approx von Neumann algebra. Examples: I(A) and $I_G(A)$.

We know what $\alpha \in Aut(A)$ is *inner* and *outer* means. We say that $\alpha \in Aut(A)$ is **properly outer** if there is no corner pAp on which the action is inner.

 $G \curvearrowright A$ is properly outer if every α_t is properly outer for $t \neq e$. Well-known that this plays a role in simplicity of $A \rtimes_r G$.

Assume A is **monotone complete**. Basically \approx von Neumann algebra. Examples: I(A) and $I_G(A)$.

We know what $\alpha \in Aut(A)$ is *inner* and *outer* means. We say that $\alpha \in Aut(A)$ is **properly outer** if there is no corner pAp on which the action is inner.

 $G \curvearrowright A$ is properly outer if every α_t is properly outer for $t \neq e$. Well-known that this plays a role in simplicity of $A \rtimes_r G$.

Proposition (Kallman, Hamana)

Every $\alpha \in Aut(A)$ decomposes as $\alpha = \alpha_1 \oplus \alpha_2$ on $Ap \oplus A(1-p)$, where p is an α -invariant central projection, and α_1 is inner and α_2 is properly outer.

6/13

Assume A is **monotone complete**. Basically \approx von Neumann algebra. Examples: I(A) and $I_G(A)$.

We know what $\alpha \in Aut(A)$ is *inner* and *outer* means. We say that $\alpha \in Aut(A)$ is **properly outer** if there is no corner pAp on which the action is inner.

 $G \curvearrowright A$ is properly outer if every α_t is properly outer for $t \neq e$. Well-known that this plays a role in simplicity of $A \rtimes_r G$.

Proposition (Kallman, Hamana)

Every $\alpha \in Aut(A)$ decomposes as $\alpha = \alpha_1 \oplus \alpha_2$ on $Ap \oplus A(1-p)$, where p is an α -invariant central projection, and α_1 is inner and α_2 is properly outer.

Example: if C(Z) is monotone complete, then $Fix(\alpha)$ is clopen. So

 $C(Z) \cong C(Z)p_{\mathsf{Fix}(\alpha)} \oplus C(Z)p_{\mathsf{Fix}(\alpha)^\complement}$ (inner and free parts)

イロト 不得 トイヨト イヨト

Theorem (Kennedy-Schafhauser)

(Always $G \curvearrowright A$ minimal).

• Assume that $G \curvearrowright I_G(A)$ properly outer. Then $A \rtimes_r G$ is simple.

Theorem (Kennedy-Schafhauser)

(Always $G \curvearrowright A$ minimal).

- Assume that $G \curvearrowright I_G(A)$ properly outer. Then $A \rtimes_r G$ is simple.
- If G ∼ A has an "untwisting" assumption known as vanishing obstruction, then the converse is true.

Theorem (Kennedy-Schafhauser)

(Always $G \curvearrowright A$ minimal).

- Assume that $G \curvearrowright I_G(A)$ properly outer. Then $A \rtimes_r G$ is simple.
- If G ∼ A has an "untwisting" assumption known as vanishing obstruction, then the converse is true.

Example (Finite-dimensional counterexample to converse)

Consider $G = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} = \langle u \rangle \times \langle v \rangle$ and $A = M_2$, with G acting by

$$u = \operatorname{Ad} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad v = \operatorname{Ad} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Dan Ursu (University of Münster)

Simplicity of $A \rtimes_r G$ for FCH G

Theorem (Kennedy-Schafhauser)

(Always $G \curvearrowright A$ minimal).

- Assume that $G \curvearrowright I_G(A)$ properly outer. Then $A \rtimes_r G$ is simple.
- If G ∼ A has an "untwisting" assumption known as vanishing obstruction, then the converse is true.

Example (Finite-dimensional counterexample to converse)

Consider $G = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} = \langle u \rangle \times \langle v \rangle$ and $A = M_2$, with G acting by

$$u = \operatorname{Ad} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad v = \operatorname{Ad} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

In fact, $A = I(A) = I_G(A)$.

Theorem (Kennedy-Schafhauser)

(Always $G \curvearrowright A$ minimal).

- Assume that $G \curvearrowright I_G(A)$ properly outer. Then $A \rtimes_r G$ is simple.
- If G ∼ A has an "untwisting" assumption known as vanishing obstruction, then the converse is true.

Example (Finite-dimensional counterexample to converse)

Consider $G = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} = \langle u \rangle \times \langle v \rangle$ and $A = M_2$, with G acting by

$$u = \operatorname{Ad} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad v = \operatorname{Ad} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

In fact, $A = I(A) = I_G(A)$. The action of G on $I_G(A)$ is not properly outer, but $A \rtimes_r G \cong M_4$ is simple. Vanishing obstruction also cannot hold (easy to check manually).

Everything here shares the same characterizations, but different obstructions in each proof.

Image: A matrix and a matrix

э

Everything here shares the same characterizations, but different obstructions in each proof.

The easier case:

Simplicity of A ⋊_r G for FC groups G, in terms of I(A).
 [FC = every conjugacy class is finite]

Everything here shares the same characterizations, but different obstructions in each proof.

The easier case:

Simplicity of A ⋊_r G for FC groups G, in terms of I(A).
 [FC = every conjugacy class is finite]

The harder cases:

• The intersection property, FC groups G, in terms of I(A).

Everything here shares the same characterizations, but different obstructions in each proof.

The easier case:

Simplicity of A ⋊_r G for FC groups G, in terms of I(A).
 [FC = every conjugacy class is finite]

The harder cases:

- The intersection property, FC groups G, in terms of I(A).
- Simplicity, FC-hypercentral groups G, in terms of I(A).
 [virtually nilpotent ⊆ FCH if finitely generated, virtually nilpotent = FCH = polynomial growth]

8/13

Everything here shares the same characterizations, but different obstructions in each proof.

The easier case:

Simplicity of A ⋊_r G for FC groups G, in terms of I(A).
 [FC = every conjugacy class is finite]

The harder cases:

- The intersection property, FC groups G, in terms of I(A).
- Simplicity, FC-hypercentral groups G, in terms of I(A).
 [virtually nilpotent ⊆ FCH if finitely generated, virtually nilpotent = FCH = polynomial growth]
- Primality, minimal $G \curvearrowright A$ and **arbitrary** groups G, in terms of I(A).

Everything here shares the same characterizations, but different obstructions in each proof.

The easier case:

Simplicity of A ⋊_r G for FC groups G, in terms of I(A).
 [FC = every conjugacy class is finite]

The harder cases:

- The intersection property, FC groups G, in terms of I(A).
- Simplicity, FC-hypercentral groups G, in terms of I(A).
 [virtually nilpotent ⊆ FCH if finitely generated, virtually nilpotent = FCH = polynomial growth]
- Primality, minimal $G \curvearrowright A$ and **arbitrary** groups G, in terms of I(A).

The mental health hazard:

• Characterizing everything in terms of A instead of I(A).

★ 3 → 3

All of the previous problems basically have the same characterization.

All of the previous problems basically have the same characterization.

Theorem (Geffen-U.)

Assume we are in situation $\langle X \rangle$ (ex: G is FC-hypercentral).

All of the previous problems basically have the same characterization.

Theorem (Geffen-U.)

Assume we are in situation $\langle X \rangle$ (ex: G is FC-hypercentral). Then $A \rtimes_r G$ lacks property $\langle Y \rangle$ (ex: $A \rtimes_r G$ is **not** simple) if and only if:

All of the previous problems basically have the same characterization.

Theorem (Geffen-U.)

Assume we are in situation $\langle X \rangle$ (ex: G is FC-hypercentral). Then $A \rtimes_r G$ **lacks** property $\langle Y \rangle$ (ex: $A \rtimes_r G$ is **not** simple) if and only if: There exist:

• $t \in FC(G) \setminus \{e\}$

All of the previous problems basically have the same characterization.

Theorem (Geffen-U.)

Assume we are in situation $\langle X \rangle$ (ex: G is FC-hypercentral). Then $A \rtimes_r G$ **lacks** property $\langle Y \rangle$ (ex: $A \rtimes_r G$ is **not** simple) if and only if: There exist:

- $t \in FC(G) \setminus \{e\}$
- $p \in Z(I(A))$ nonzero t-invariant central projection

9/13

All of the previous problems basically have the same characterization.

Theorem (Geffen-U.)

Assume we are in situation $\langle X \rangle$ (ex: G is FC-hypercentral). Then $A \rtimes_r G$ **lacks** property $\langle Y \rangle$ (ex: $A \rtimes_r G$ is **not** simple) if and only if: There exist:

- $t \in FC(G) \setminus \{e\}$
- $p \in Z(I(A))$ nonzero t-invariant central projection
- $u \in U(I(A)p)$ unitary

All of the previous problems basically have the same characterization.

Theorem (Geffen-U.)

Assume we are in situation $\langle X \rangle$ (ex: G is FC-hypercentral). Then $A \rtimes_r G$ **lacks** property $\langle Y \rangle$ (ex: $A \rtimes_r G$ is **not** simple) if and only if: There exist:

- $t \in FC(G) \setminus \{e\}$
- $p \in Z(I(A))$ nonzero t-invariant central projection
- $u \in U(I(A)p)$ unitary

such that:

• t acts by Ad u on I(A)p

All of the previous problems basically have the same characterization.

Theorem (Geffen-U.)

Assume we are in situation $\langle X \rangle$ (ex: G is FC-hypercentral). Then $A \rtimes_r G$ **lacks** property $\langle Y \rangle$ (ex: $A \rtimes_r G$ is **not** simple) if and only if: There exist:

- $t \in FC(G) \setminus \{e\}$
- $p \in Z(I(A))$ nonzero t-invariant central projection
- $u \in U(I(A)p)$ unitary

such that:

- t acts by Ad u on I(A)p
- $s \cdot u = u$ whenever st = ts

All of the previous problems basically have the same characterization.

Theorem (Geffen-U.)

Assume we are in situation $\langle X \rangle$ (ex: G is FC-hypercentral). Then $A \rtimes_r G$ lacks property $\langle Y \rangle$ (ex: $A \rtimes_r G$ is **not** simple) if and only if: There exist:

- $t \in FC(G) \setminus \{e\}$
- $p \in Z(I(A))$ nonzero t-invariant central projection
- $u \in U(I(A)p)$ unitary

such that:

- t acts by Ad u on I(A)p
- $s \cdot u = u$ whenever st = ts

Without the last part, this would say "not simple/etc..." if and only if "not properly outer". But some invariance is necessary.

Dan Ursu (University of Münster)

Simplicity of $A \rtimes_r G$ for FCH G

We saw simplicity of $A \rtimes_r G$ is equivalent to some weaker equivariant version of proper outerness on I(A).

We saw simplicity of $A \rtimes_r G$ is equivalent to some weaker equivariant version of proper outerness on I(A). Is there a version on A?

We saw simplicity of $A \rtimes_r G$ is equivalent to some weaker equivariant version of proper outerness on I(A). Is there a version on A?

Elliott's definition, non-equivariant intrinsic version

Assume $\alpha \in Aut(A)$, where A is separable. The following are equivalent:

We saw simplicity of $A \rtimes_r G$ is equivalent to some weaker equivariant version of proper outerness on I(A). Is there a version on A?

Elliott's definition, non-equivariant intrinsic version

Assume $\alpha \in Aut(A)$, where A is separable. The following are equivalent:

There exist

- α -invariant nonzero central projection $p \in I(A)$
- Unitary $u \in U(I(A)p)$

such that $\alpha = \operatorname{Ad} u$ on I(A)p

We saw simplicity of $A \rtimes_r G$ is equivalent to some weaker equivariant version of proper outerness on I(A). Is there a version on A?

Elliott's definition, non-equivariant intrinsic version

Assume $\alpha \in Aut(A)$, where A is separable. The following are equivalent:

There exist

- α -invariant nonzero central projection $p \in I(A)$
- Unitary $u \in U(I(A)p)$

such that $\alpha = \operatorname{Ad} u$ on I(A)p

There exist

• α -invariant nonzero ideal $J \triangleleft A$.

• Unitary $u \in U(M(J))$, where M(J) is the multiplier algebra.

With $\|\alpha\|_J - \operatorname{Ad} u\| < 2$.

Theorem (Geffen-U.)

Assume A is separable, and we are in a situation from before. The following are equivalent:

There exist

- $t \in FC(G) \setminus \{e\}$
- t-invariant nonzero central projection $p \in I(A)$
- Unitary $u \in U(I(A)p)$

such that

- $\alpha_t = \operatorname{Ad} u \text{ on } I(A)p$
- $s \cdot p = p$ for all $s \in C_G(t)$
- $s \cdot u = u$ for all $s \in C_G(t)$

11/13

Theorem (Geffen-U.)

Assume A is separable, and we are in a situation from before. The following are equivalent:

There exist

- $t \in FC(G) \setminus \{e\}$
- t-invariant nonzero central projection $p \in I(A)$
- Unitary $u \in U(I(A)p)$

such that

- $\alpha_t = \operatorname{Ad} u \text{ on } I(A)p$
- $s \cdot p = p$ for all $s \in C_G(t)$
- $s \cdot u = u$ for all $s \in C_G(t)$

continued on next slide ...

There exist

• $t \in FC(G) \setminus \{e\}$

.∋...>

COSy 2023

There exist

- $t \in FC(G) \setminus \{e\}$
- *t*-invariant nonzero ideal $J \triangleleft A$

There exist

- $t \in FC(G) \setminus \{e\}$
- *t*-invariant nonzero ideal $J \triangleleft A$
- Unitary $u \in U(M(J))$ (multiplier algebra)

There exist

- $t \in FC(G) \setminus \{e\}$
- *t*-invariant nonzero ideal $J \triangleleft A$
- Unitary $u \in U(M(J))$ (multiplier algebra)

such that

There exist

- $t \in FC(G) \setminus \{e\}$
- *t*-invariant nonzero ideal $J \triangleleft A$
- Unitary $u \in U(M(J))$ (multiplier algebra)

such that

• $\|\alpha_t|_J - \operatorname{Ad} u\| = \varepsilon_1$

There exist

- $t \in FC(G) \setminus \{e\}$
- *t*-invariant nonzero ideal $J \triangleleft A$
- Unitary $u \in U(M(J))$ (multiplier algebra)

such that

- $\|\alpha_t|_J \operatorname{Ad} u\| = \varepsilon_1$
- $s \cdot J \cap J$ is essential in $s \cdot J$ and J for $s \in C_G(t)$.

12/13

There exist

- $t \in FC(G) \setminus \{e\}$
- *t*-invariant nonzero ideal $J \triangleleft A$
- Unitary $u \in U(M(J))$ (multiplier algebra)

such that

- $\|\alpha_t|_J \operatorname{Ad} u\| = \varepsilon_1$
- $s \cdot J \cap J$ is essential in $s \cdot J$ and J for $s \in C_G(t)$.
- sup_{s∈C_G(t)} ||su − u|| = ε₂
 [I promise this makes sense even if su and u lie in different algebras]

There exist

- $t \in FC(G) \setminus \{e\}$
- *t*-invariant nonzero ideal $J \triangleleft A$
- Unitary $u \in U(M(J))$ (multiplier algebra)

such that

- $\|\alpha_t|_J \operatorname{Ad} u\| = \varepsilon_1$
- $s \cdot J \cap J$ is essential in $s \cdot J$ and J for $s \in C_G(t)$.
- $\sup_{s \in C_G(t)} ||su u|| = \varepsilon_2$ [I promise this makes sense even if su and u lie in different algebras]

such that moreover

$$\operatorname{awful}(\varepsilon_1) + \varepsilon_2 < \sqrt{2}$$

There exist

- $t \in FC(G) \setminus \{e\}$
- *t*-invariant nonzero ideal $J \triangleleft A$
- Unitary $u \in U(M(J))$ (multiplier algebra)

such that

- $\|\alpha_t|_J \operatorname{Ad} u\| = \varepsilon_1$
- $s \cdot J \cap J$ is essential in $s \cdot J$ and J for $s \in C_G(t)$.
- $\sup_{s \in C_G(t)} ||su u|| = \varepsilon_2$ [I promise this makes sense even if su and u lie in different algebras]

such that moreover

$$\operatorname{awful}(\varepsilon_1) + \varepsilon_2 < \sqrt{2}$$

The t, p, and u in one half do **not** need to coincide, at all, with the t, J, and u in the other half.

Dan Ursu (University of Münster)

COSy 2023

There exist

- $t \in FC(G) \setminus \{e\}$
- *t*-invariant nonzero ideal $J \triangleleft A$
- Unitary $u \in U(M(J))$ (multiplier algebra)

such that

- $\|\alpha_t|_J \operatorname{Ad} u\| = \varepsilon_1$
- $s \cdot J \cap J$ is essential in $s \cdot J$ and J for $s \in C_G(t)$.
- $\sup_{s \in C_G(t)} ||su u|| = \varepsilon_2$ [I promise this makes sense even if su and u lie in different algebras]

such that moreover

$$\operatorname{awful}(\varepsilon_1) + \varepsilon_2 < \sqrt{2}$$

The *t*, *p*, and *u* in one half do **not** need to coincide, at all, with the *t*, *J*, and *u* in the other half. Going between them is axiom of choice for **all** of these variables, even the *t*.

Dan Ursu (University of Münster)

Simplicity of $A \rtimes_r G$ for FCH G

COSy 2023

- FIN -

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ -

3