INTERACTING PARTICLE SYSTEMS: Zero-Range Interaction and Properties

Anamaria Savu

UNIVERSITY OF ALBERTA Edmonton, Canada

24 05 2023

SECTION 1: ZERO-RANGE PROCESSES

Particle is positioned at o and after waiting an exponential amount of time it jumps one site to the left.

- Inter-jump time $\sim Exp(\lambda)$
- **Particle position at time** $t \sim Pois(\lambda t)$
- Expected position of the particle at time $t = \lambda t$
- Particle positions over time is a Poisson process $(N(t))_{t \ge 0}$

Several particles are positioned at sites of the one-dimensional lattice. Independently, each waits an exponential amount of time and then jumps one site to the left.

- Particle distribution at time o is a product of Poisson distributions
- Inter-jump time $\sim Exp(\lambda)$
- Particle distribution at time t is a product of Poisson distributions

Define the configuration $\eta = (\eta(x))_{x \in \mathbb{Z}}$, where $\eta(x)$ is the number of particles at site x.

$$(Lf)(\eta) = \sum_{\mathsf{X} \in \mathbb{Z}} \eta(\mathsf{X})(f(\eta^{\mathsf{X},-}) - f(\eta)) = \sum_{\mathsf{X} \in \mathbb{Z}} \eta(\mathsf{X})(\mathsf{X}_{\mathsf{X}}(f))(\eta))$$

$$\eta^{x,-}(y) = \begin{cases} \eta(y) - 1 & \text{if } y = x \\ \eta(y) + 1 & \text{if } y = x - 1 \\ \eta(y) & \text{otherwise} \end{cases}$$

$$X_{\mathsf{X}}(f)(\eta) = f(\eta^{\mathsf{X},-}) - f(\eta)$$

 $\{X_x\}_{x\in\mathbb{Z}}$ are operators that define the dynamics

A Markov jump process with generator

$$(Lf)(\eta) = \sum_{\mathbf{x}\in\mathbb{Z}} g(\eta(\mathbf{x}))(X_{\mathbf{x}}(f))(\eta)$$

- totally: jumps occur only to the left
- asymmetric: jumps to the left are more likely to occur than jumps to the right
- zero-range: jump rate depends on the departure occupancy, only
- $g : \{0, 1, 2, ...\} \rightarrow \mathbb{R}_+$ bounded, non-decreasing function with g(0) = 0

TAZRP: Q-BOSON

TAZRP with $g(n) = [n] = \frac{1-q^n}{1-q}$ = q-BOSON of Sasamoto and Wadati¹ = q-TAZRP of Borodin and Corwin ²

TAZRP with multispecies (smaller species of particles have priority to hop) 3 4

¹Sasamoto T, Wadati M, Exact results for one-dimensional totaly asymmetric diffusion models, J. Phys. A 31 (1998) 6057-6071

²Borodin A, Corwin I, Macdonald Processes, Probab Theor Rel Fields 158 (2014) 225-400

³Kuniba A, Maruyama S, Okado M, Multispecies totally asymmetric zero range process: I. Multiline process and combinatorial R, J Integrable Syst 1 (2016) xyw002

⁴Kuniba A, Maruyama S, Okado M, Multispecies totally asymmetric zero range process: II. Hat relation and tetrahedron equation, J Integrable Syst 1 (2016) xyw008 TAZRP classical: Invariant measures that are translation-invariant and product measures

$$u^{
ho}(k) = rac{1}{Z(\lambda)} rac{\lambda^k}{g(1)...g(k)}$$

λ is selected so that the expected value of ν^ρ is ρ
 Z(λ) is a normalizing constant
 ν^ρ(η(1),...,η(L)) = ν^ρ(η(1)) ×···× ν^ρ(η(L))

TAZRP multispecies: Invariant measures via matrix product formula

$$P(\eta(1),\ldots,\eta(L)) = Tr(X_{\eta(1)}(\rho_1)\ldots X_{\eta(L)}(\rho_L))$$

 $X_k(\rho)$ are operators that satisfy special relationships. Are constructed using *R* matrix.

MODEL HIERARCHY

SECTION 2: ALGEBRAIC PROPERTIES

Deformed affine Hecke algebra of type A_{k-1}

Generators

$$T's:T_1,\ldots,T_{k-1} \quad \text{and} \quad X's:X_1,\ldots,X_k,X_1^{-1},\ldots,X_k^{-1}$$

Eigenvalue relations

$$(T_i - 1)(T_i + q) = 0, \quad i = 1, ..., k$$

Braid relations

$$T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}, \quad i = 1, ..., k$$

 $T_i T_j = T_j T_i, \quad |i - j| > 1$

Laurent relations

$$X_i X_j = X_j X_i, \quad X_i X_i^{-1} = X_i^{-1} X_i, \quad i, j = 1, \dots, k$$

Simple action relations

$$T_i X_i T_i = q X_{i+1} \quad i = 1, \dots, k-1$$

$$T_i X_j = X_j T_i \quad i \neq j, j-1$$

Deformed action relations

$$\begin{aligned} X_{i+1}\mathsf{T}_i - \mathsf{T}_i X_i &= \mathsf{T}_i X_{i+1} - \mathsf{T}_i X_i = (\alpha + \beta X_i)(\gamma + \delta X_{i+1}) \quad i = 1, \dots, k-1\\ T_i X_j &= X_j \mathsf{T}_i \quad i \neq j, j-1 \end{aligned}$$

	type A_{k-1}	affine	deformed ⁵	
Parameters	q	q	$lpha,eta,\gamma,\delta$	
			$\mathbf{q} = 1 + \beta \gamma - \alpha \delta$	
Generators	T's	T's, X's	T's, X's	
Eigenvalue	\checkmark	\checkmark	\checkmark	
Braid	\checkmark	\checkmark	\checkmark	
Laurent		\checkmark	\checkmark	
Action		simple	deformed	

⁵Takeyama Y, A deformation of affine Hecke algebra and integrable stochastic particle systems, J. Phys. A 47(46) (2014)

THE MODEL OF TAKEYAMA: Q-BLOCK

TAKEYAMA'S HAMILTONIAN

$$H(\alpha, \beta, \gamma, \delta) = -\alpha\gamma \sum_{j=1}^{k} \frac{[d_j^+]}{1 + \beta\gamma[d_j^+]}$$
$$+ \sum_{r=1}^{k} (-\beta\gamma)^{r-1}[r-1]! q^{(r(r-1)/2)}$$
$$\times \sum_{1 \le j_1 < \dots < j_r \le k} \frac{q^{d_{j_1}^- + \dots + d_{j_r}^-} \delta_{j_1,\dots,j_r}}{\prod_{p=0}^{r-1} (1 + \beta\gamma[d_{j_1}^+ + d_{j_1}^- - p])} \mathbf{X}_{j_1} \dots \mathbf{X}_{j_r}$$

When $(\alpha + \beta)(\gamma + \delta) = 0$, $H(\alpha, \beta, \gamma, \delta)$ is the generator of a Markov jump process. The dynamics involve movement to the **left** of more than one particle from one site to the neighboring site.

TAZRP: THE MODEL OF TAKEYAMA (Q-BLOCK)

j particles move to the left from a cluster with *a* particles at

rate =
$$r(a,j) = \frac{s^{j-1}}{[j]} \prod_{p=0}^{j-1} \frac{[a-p]}{1+s[a-1-p]}$$

for r = 1, rate = r(a, 1) =
$$\frac{[a]}{1+s[a-1]}$$
for r = 2, rate = r(a, 2) = $\frac{s[a][a-1]}{(1+q)(1+s[a-1])(1+s[a-2])}$
imiting cases:

- s = 0, 0 < q < 1, q-BOSON of Sasamoto and Wadati⁶
- \blacksquare s = 0, q = 1, Independent Random Walks.

⁶Sasamoto T, Wadati M, Exact results for one-dimensional totaly asymmetric diffusion models, J. Phys. A 31 (1998) 6057-6071

⁷van Diejen JF, Emsiz E, Diagonalization of the infinite q-boson system, J Functional Analysis 266 (2014) 5801-5817

PROPERTIES OF TAKEYAMA'S HAMILTONIAN

Theorem (Takeyama, 2014) Intertwining property

$$H(\alpha,\beta,\gamma,\delta)G_{X}=G_{X}(X_{1}+\cdots+X_{n})=G_{X}\Delta_{1/2}$$

Proposition

Define $Y_i = X_{k+1-i}^{-1}$ for i = 1, ..., k and $S_i = T_{k-i}$ for i = 1, ..., k-1. Then S's and Y's satisfies the all relations of the deformed affine Hecke algebra with parameters $\delta, \gamma, \beta, \alpha$.

$$X_{i+1}^{-1}(X_{i+1}T_i - T_iX_i)X_i^{-1} = T_iX_i^{-1} - X_{i+1}^{-1}T_i = (\delta + \gamma X_{i+1}^{-1})(\beta + \alpha X_i^{-1})$$
$$X_i^{-1}(T_iX_{i+1} - X_iT_i)X_{i+1}^{-1} = X_i^{-1}T_i - T_iX_{i+1}^{-1} = (\delta + \gamma X_{i+1}^{-1})(\beta + \alpha X_i^{-1})$$

Consequence

$$H(\delta, \gamma, \beta, \alpha)G_y = G_y(Y_1 + \dots + Y_n)$$

$$= G_y(X_n^{-1} + \dots + X_1^{-1}) = G_y\Delta_{-1/2}$$

$$(H(\alpha, \beta, \gamma, \delta) + H(\delta, \gamma, \beta, \alpha))G$$

$$= G(X_1 + \dots + X_n + X_1^{-1} + \dots + X_n^{-1}) = G\Delta$$

 $H(\alpha, \beta, \gamma, \delta) + H(\delta, \gamma, \beta, \alpha)$ encodes particle movement to both **left** and **right** (AZRP).

Consequence: Eigenvectors of the Hamiltonian can be constructed from the eigenvectors of the Laplacian. The Laplacian's eigenvectors are calculated via Bethe Ansatz. Knowledge of these eigenvectors help calculate transition probabilities.

For q-BOSON transition probabilities can be calculated ⁸ 9

 $^{8}\mbox{Borodin}$ A, Corwin I, Petrov L, and Sasamoto T, SPECTRAL THEORY for the q-BOSON PARTICLE SYSTEM

⁹Korhonen M and Lee E, The transition probability and the probability for the left-most particle's position of the q-TAZRP

SECTION 3: ANALYTIC/ASYMPTOTIC PROPERTIES

Theorem (Rezakhanlou¹⁰, 1991)

TAZRP has a hydrodynamic scaling limit given by the solution of the quasi-linear hyperbolic equation of first order

 $\partial_t \rho = \partial_x (J(\rho))$

$$\rho(\mathbf{O},\mathbf{X})=\rho_{\mathbf{O}}(\mathbf{X})$$

where $J(\rho) = E_{\nu\rho}[g]$ is the expected microscopic current through a site

¹⁰Rezakhanlou F, Hydrodynamic Limit for Attractive Particle Systems on Z^d, Commun. Math. Phys. 140, 417-448 (1991)

TAZRP: Hydrodynamic Scaling Limit

Initial particle distribution
$$\rho(0, x) = \begin{cases} b & x < 0 \\ a & x \ge 0 \end{cases}$$

Independent Random Walks q-Boson

TAZRP: Hydrodynamic Scaling Limit

Proposition (in progress) (Savu)

For $s \le q$, the *q*-BLOCK is attractive. Should the definition of attractiveness be weakened, as in the work of Thierry Gobron?

$$s[b+1] = s(1+q+\dots+q^b) = s(1+q[b]) \le q + sq[b] = q(1+s[b])$$

$$\Rightarrow$$

$$\begin{aligned} r(a+k,j+k) &= r(a,j) \times \frac{|j|}{|j+k|} \times \frac{s[a+k]}{1+s[a+k-1]} \times \cdots \times \frac{s[a+1]}{1+s[a]} \\ &\leq r(a,j) \times \frac{q^k[j]}{|j+k|} \leq r(a,j) \end{aligned}$$

Q-BLOCK: ATTRACTIVENESS

The following coupling does not preserve the order of the initial configuration.

Theorem (in progress)

For $s \le q$, the q-BLOCK has a hydrodynamic scaling limit given by the solution of the quasi-linear hyperbolic equation of first order

 $\partial_{\mathbf{t}}\rho = \partial_{\mathbf{x}}(J(\rho))$

$$\rho(\mathbf{O}, \mathbf{X}) = \rho_{\mathbf{O}}(\mathbf{X})$$

where $J(\rho) = E_{\nu\rho(da)} \left[\sum_{j=1}^{a} jr(a,j) \right]$ is the expected microscopic current through a site.

Challenging because it is not clear the kind of attractiveness satisfied by the process.

Q-BLOCK: KOLMOGOROV FORWARD EQUATION 2P

$$\frac{dP_t}{dt}(y,x) = P_t(y+1,x) + P_t(y,x+1) - 2P_t(y,x), \quad y \ge x+2$$

$$\frac{dP_t}{dt}(x+1,x) = P_t(x+2,x) + uP_t(x+1,x+1) - 2P_t(x+1,x)$$

$$\frac{dP_t}{dt}(x,x) = P_t(x+1,x) + vP_t(x+1,x+1) - (u+v)P_t(x,x)$$

$$u = r(2, 1) = \frac{1+q}{1+s} = (1+q)(1-\lambda)$$
$$v = r(2, 2) = \frac{s}{1+s} = \lambda$$

Q-BLOCK: KOLMOGOROV FORWARD EQUATION 2P

Let P_0 be the solution

$$\frac{dP_{t}^{o}}{dt}(y,x) = P_{t}^{o}(y+1,x) + P_{t}^{o}(y,x+1) - 2P_{t}^{o}(y,x), \quad y_{x\in\mathbb{Z}}$$

satisfying the boundary condition

 $P_t^{o}(x, x+1) = (u-1)P_t^{o}(x+1, x) + vP_t^{o}(x+1, x+1) - (u+v-2)P_t^{o}(x, x)$

Then P_t satisfies KF equation for 2 particles

$$P_t(y,x) = \begin{cases} P_t^{o}(y,x), & \text{for } y \ge x+1\\ \frac{1}{y}P_t^{o}(x,x), & \text{for } y = x \end{cases}$$

Weighting \rightarrow RED EQ. Weighting + Boundary Condition \rightarrow BLUE EQ.

Q-BLOCK: KOLMOGOROV FORWARD EQUATION 3P

$$\begin{aligned} \frac{dP_t}{dt}(z,y,x) &= P_t(z+1,y,x) + P_t(z,y+1,x) + P_t(z,y,x+1) - 3P_t(z,y,x), \quad z \ge y+2 \ge x+4 \\ \frac{dP_t}{dt}(z,x+1,x) &= P_t(z+1,x+1,x) + P_t(z,x+2,x+1) + r_1^2P_t(z,x+1,x+1) - 3P_t(z,x+1,x), \quad z \ge x+3 \\ \frac{dP_t}{dt}(x+1,x,y) &= P_t(x+2,x,y) + r_1^2P_t(x+1,x+1,y) + P_t(x+1,x,y+1) - 3P_t(x+1,x,y), \quad x \ge y+2 \\ \frac{dP_t}{dt}(x+1,x,x-1) &= P_t(x+2,x,x-1) + r_1^2P_t(x+1,x+1,x-1) + r_1^2P_t(x+1,x,x) - 3P_t(x+1,x,x-1) \\ \frac{dP_t}{dt}(z,x,x) &= P_t(z+1,x,x) + P_t(z,x+1,x) + r_2^2P_t(z,x+1,x+1) - (1+r_1^2+r_2^2)P_t(z,x,x), \quad z \ge x+2 \\ \frac{dP_t}{dt}(x,x,y) &= P_t(x+1,x,y) + r_2^2P_t(x+1,x+1,y) + P_t(x,x,y+1) - (1+r_1^2+r_2^2)P_t(x,x,y), \quad x \ge y+2 \\ \frac{dP_t}{dt}(x+1,x,x) &= P_t(x+2,x,x) + r_1^2P_t(x+1,x+1,x) + r_2^3P_t(x+1,x+1,x+1) - (1+r_1^2+r_2^2)P_t(x+1,x,x)) \\ \frac{dP_t}{dt}(x,x,x-1) &= P_t(x+1,x,x-1) + r_2^2P_t(x+1,x+1,x-1) + r_1^3P_t(x,x,x) - (1+r_1^2+r_2^2)P_t(x,x,x-1) \\ \frac{dP_t}{dt}(x,x,x) &= P_t(x+1,x,x) + r_2^2P_t(x+1,x+1,x) + r_3^3P_t(x+1,x+1,x+1) - (r_1^3+r_2^3+r_3^3)P_t(x,x,x) \end{aligned}$$

Q-BLOCK: KOLMOGOROV FORWARD EQUATION 3P

Let P_0 be the solution

 $\frac{dP_{t}^{o}}{dt}(z,y,x) = P_{t}^{o}(z+1,y,x) + P_{t}^{o}(z,y+1,x) + P_{t}^{o}(z,y,x+1) - 3P_{t}^{o}(z,y,x), \quad z,y,x \in \mathbb{Z}$

satisfying the boundary condition

$$\begin{split} P^{0}_{t}(x,x+1,y) &= (r^{2}_{1}-1)P^{0}_{t}(x+1,x,y) + r^{2}_{2}P^{0}_{t}(x+1,x+1,y) + (2-r^{2}_{1}+r^{2}_{2})P^{0}_{t}(x,x,y) \quad x+1 \geq y \\ P^{0}_{t}(z,x,x+1) &= (r^{2}_{1}-1)P^{0}_{t}(z,x+1,x) + r^{2}_{2}P^{0}_{t}(z,x+1,x+1) + (2-r^{2}_{1}+r^{2}_{2})P^{0}_{t}(z,x,x) \quad z \geq x+1 \end{split}$$

Then *P*_t satisfies KF equation for 3 particles

$$P_t(z, y, x) = \begin{cases} P_t^{o}(z, y, x), & \text{for } z \ge y + 1 \ge x + 2\\ \frac{1}{r(2,1)} P_t^{o}(z, y, x), & \text{for } z = y \ge x + 1 \text{ or } \\ z - 1 \ge y = x\\ \frac{1}{r(2,1)r(3,1)} P_t^{o}(z, y, x), & \text{for } x = y = z \end{cases}$$

28

under the constraints on the transition rates

Constrain 1 $r(3,1) = 1 + \frac{r(2,1)(r(2,1)-1)}{1-r(2,2)(2-r(2,1)-r(2,2))}$ Constrain 2 r(3,2) = r(3,1)r(2,1)Constrain 3 $r(3,3) = \frac{r(2,1)r(2,2)^2}{1-r(2,2)(2-r(2,1)-r(2,2))}$

 $\begin{array}{l} \mbox{Weighting} \rightarrow \mbox{RED EQ}.\\ \mbox{Weighting + Boundary Condition} \rightarrow \mbox{BLUE EQ}.\\ \mbox{Weighting + Boundary Condition + Constrain 2} \rightarrow \mbox{GREEN EQ}.\\ \mbox{Weighting + Boundary Condition + Constrains 2 + Constrains 1, 3} \\ \rightarrow \mbox{ORANGE EQ}. \end{array}$

MODEL	SEP	ZRP	CRSOS
Total number of particles is conserved	YES	YES	YES
Amenable configuration space	NO	YES	YES
Rates depend on surface gradient	YES	NO	YES

SEP: Simple exclusion process ZRP: Zero range process CRSOS: Conservative restricted solid-on-solid model