Almost Elementary C^{*}-Dynamics and \mathcal{Z}-Stability of Crossed Products

Joachim Zacharias
University of Glasgow

Joint work with
Joan Bosa, Francesc Perera and Jianchao Wu
May 23, 2023

Elliott classification of separable simple nuclear C^{*}-algebras A by their Elliott invariant $E(A)$ (K-theory and traces) has been very successful.

Elliott classification of separable simple nuclear C^{*}-algebras A by their Elliott invariant $E(A)$ (K-theory and traces) has been very successful.

Not all such algebras are classified by Elliott invariant but modulo UCT class of algebras for which classification is possible identified in the Toms-Winter Conjecture (now largely Theorem)

Elliott classification of separable simple nuclear C^{*}-algebras A by their Elliott invariant $E(A)$ (K-theory and traces) has been very successful. Not all such algebras are classified by Elliott invariant but modulo UCT class of algebras for which classification is possible identified in the Toms-Winter Conjecture (now largely Theorem)

Conjecture (Toms-Winter)

For a simple separable unital nuclear C^{*}-algebra A tfae:
(1) A has finite nuclear dimension;
(2) $A \cong A \otimes \mathcal{Z}$, ie A is \mathcal{Z}-stable;
(3) A has strict comparison, ie $d_{\tau}([a])<d_{\tau}([b]) \forall \tau$ trace implies $[a] \preceq[b]$ in Cuntz semigroup of A.
(Here $d_{\tau}([a])=\lim _{n} \tau\left(a^{1 / n}\right)$ is the "measure" of the support of a)

Elliott classification of separable simple nuclear C^{*}-algebras A by their Elliott invariant $E(A)$ (K-theory and traces) has been very successful.
Not all such algebras are classified by Elliott invariant but modulo UCT class of algebras for which classification is possible identified in the Toms-Winter Conjecture (now largely Theorem)

Conjecture (Toms-Winter)

For a simple separable unital nuclear C^{*}-algebra A tfae:
(1) A has finite nuclear dimension;
(2) $A \cong A \otimes \mathcal{Z}$, ie A is \mathcal{Z}-stable;
(3) A has strict comparison, ie $d_{\tau}([a])<d_{\tau}([b]) \forall \tau$ trace implies $[a] \preceq[b]$ in Cuntz semigroup of A.
(Here $d_{\tau}([a])=\lim _{n} \tau\left(a^{1 / n}\right)$ is the "measure" of the support of a)
Work of many (Matui, Rørdam, Sato, Tikuisis, White, Winter,..): $(1) \Leftrightarrow(2) \Rightarrow(3)$ and $(2) \Leftarrow(3)$ in many cases (uniform property Γ).

Elliott classification of separable simple nuclear C^{*}-algebras A by their Elliott invariant $E(A)$ (K-theory and traces) has been very successful.
Not all such algebras are classified by Elliott invariant but modulo UCT class of algebras for which classification is possible identified in the Toms-Winter Conjecture (now largely Theorem)

Conjecture (Toms-Winter)

For a simple separable unital nuclear C^{*}-algebra A tfae:
(1) A has finite nuclear dimension;
(2) $A \cong A \otimes \mathcal{Z}$, ie A is \mathcal{Z}-stable;
(3) A has strict comparison, ie $d_{\tau}([a])<d_{\tau}([b]) \forall \tau$ trace implies $[a] \preceq[b]$ in Cuntz semigroup of A.
(Here $d_{\tau}([a])=\lim _{n} \tau\left(a^{1 / n}\right)$ is the "measure" of the support of a)
Work of many (Matui, Rørdam, Sato, Tikuisis, White, Winter,...): $(1) \Leftrightarrow(2) \Rightarrow(3)$ and $(2) \Leftarrow(3)$ in many cases (uniform property Γ). \mathcal{Z}-stability minimal regularity condition since $E(A)=E(A \otimes \mathcal{Z})$.

What are condition 1 and 2?

What are condition 1 and 2?

```
Definition (Winter, Z)
A cpc map \(\varphi: A \rightarrow B\) is order zero (" \(c p c_{\perp}\) ") if \(\forall a_{1}, a_{2} \in A_{+}, a_{1} a_{2}=0 \Rightarrow \varphi\left(a_{1}\right) \varphi\left(a_{2}\right)=0\).
```


What are condition 1 and 2?

Definition (Winter, Z)

A cpc map $\varphi: A \rightarrow B$ is order zero (" $c p c_{\perp}$ ") if $\forall a_{1}, a_{2} \in A_{+}, a_{1} a_{2}=0 \Rightarrow \varphi\left(a_{1}\right) \varphi\left(a_{2}\right)=0$.

Such maps factorise $\varphi(a)=h \pi(a)=\pi(a) h$, where $\pi: A \rightarrow M\left(C^{*}(\varphi(A))\right)^{*}$-hom., $0 \leq h \leq 1$.

What are condition 1 and 2 ?

Definition (Winter, Z)

A cpc map $\varphi: A \rightarrow B$ is order zero (" $c p c_{\perp}$ ") if
$\forall a_{1}, a_{2} \in A_{+}, a_{1} a_{2}=0 \Rightarrow \varphi\left(a_{1}\right) \varphi\left(a_{2}\right)=0$.
Such maps factorise $\varphi(a)=h \pi(a)=\pi(a) h$, where $\pi: A \rightarrow M\left(C^{*}(\varphi(A))\right)^{*}$-hom., $0 \leq h \leq 1$.

Definition (nuclear dimension, (Winter, Z))

$\operatorname{dim}_{\text {nuc }}(A) \leq d$ iff $\forall F \subset \subset A, \forall \varepsilon>0, \exists$ finite-dimensional C^{*}-algebra C, cpc maps $\psi: A \rightarrow C=C_{0} \oplus \ldots \oplus C_{d}$ and order zero maps (cpc $)$ $\varphi_{i}: C_{i} \rightarrow A$ such that $\left\|\left(\varphi_{0}+\ldots+\varphi_{d}\right) \circ \psi(a)-a\right\|<\varepsilon, \forall a \in F$.

What are condition 1 and 2 ?

Definition (Winter, Z)

A cpc map $\varphi: A \rightarrow B$ is order zero (" $c p c_{\perp}$ ") if
$\forall a_{1}, a_{2} \in A_{+}, a_{1} a_{2}=0 \Rightarrow \varphi\left(a_{1}\right) \varphi\left(a_{2}\right)=0$.
Such maps factorise $\varphi(a)=h \pi(a)=\pi(a) h$, where $\pi: A \rightarrow M\left(C^{*}(\varphi(A))\right)^{*}$-hom., $0 \leq h \leq 1$.

Definition (nuclear dimension, (Winter, Z))

$\operatorname{dim}_{\text {nuc }}(A) \leq d$ iff $\forall F \subset \subset A, \forall \varepsilon>0, \exists$ finite-dimensional C^{*}-algebra C, cpc maps $\psi: A \rightarrow C=C_{0} \oplus \ldots \oplus C_{d}$ and order zero maps (cpc $)$ $\varphi_{i}: C_{i} \rightarrow A$ such that $\left\|\left(\varphi_{0}+\ldots+\varphi_{d}\right) \circ \psi(a)-a\right\|<\varepsilon, \forall a \in F$.

Theorem (tracial \mathcal{Z}-stability, (Hirshberg-Orovitz))

A simple unital nuclear C^{*}-algebra A is \mathcal{Z}-stable if $\forall F \subset \subset A, \forall \varepsilon>0, \forall n$, $\forall b \in A_{+} \backslash\{0\}, \exists c p c_{\perp} \varphi: M_{n} \rightarrow A$ s.t. $\left\|\left[F, \varphi\left(\left(M_{n}\right)_{\leq 1}\right)\right]\right\|<\varepsilon$ and $1-\varphi(1) \preceq c_{u} b$.

Theorem (By very many)
Simple separable unital nuclear C*-algebras of finite nuclear dimension satisfying the UCT are classifiable.

Theorem (By very many)

Simple separable unital nuclear C*-algebras of finite nuclear dimension satisfying the UCT are classifiable.

Hence same true for \mathcal{Z}-stable UCT algebras; alternative approach to classification starting from \mathcal{Z}-stability currently developed.

Theorem (By very many)

Simple separable unital nuclear C*-algebras of finite nuclear dimension satisfying the UCT are classifiable.

Hence same true for \mathcal{Z}-stable UCT algebras; alternative approach to classification starting from \mathcal{Z}-stability currently developed.
Very natural class of simple separable unital nuclear C*-algebras come from dynamical systems,

$$
\alpha: G \curvearrowright X \quad \text { or } \quad \alpha: G \curvearrowright A \text {, }
$$

with associated crossed product C^{*}-algebras

$$
C(X) \rtimes_{\alpha} G \quad \text { or } \quad A \rtimes_{\alpha} G .
$$

Good criteria for their simplicity, tools to determine their K-theory; nuclear if A is and G amenable; UCT automatic for $C(X) \rtimes_{\alpha} G$ and for many $A \rtimes_{\alpha} G$.

Theorem (By very many)

Simple separable unital nuclear C^{*}-algebras of finite nuclear dimension satisfying the UCT are classifiable.

Hence same true for \mathcal{Z}-stable UCT algebras; alternative approach to classification starting from \mathcal{Z}-stability currently developed.
Very natural class of simple separable unital nuclear C*-algebras come from dynamical systems,

$$
\alpha: G \curvearrowright X \quad \text { or } \quad \alpha: G \curvearrowright A,
$$

with associated crossed product C^{*}-algebras

$$
C(X) \rtimes_{\alpha} G \quad \text { or } \quad A \rtimes_{\alpha} G .
$$

Good criteria for their simplicity, tools to determine their K-theory; nuclear if A is and G amenable; UCT automatic for $C(X) \rtimes_{\alpha} G$ and for many $A \rtimes_{\alpha} G$.

Goal:

Identify conditions on $\alpha: G \curvearrowright A$ ensuring classifiability of $A \rtimes_{\alpha} G$.

For A commutative, ie actions $\alpha: G \curvearrowright X$ on cpt metric spaces, the concept of almost finite actions (Kerr) is a very effective tool to prove \mathcal{Z}-stablity of $C(X) \rtimes_{\alpha} G$, close to being equivalent.

For A commutative, ie actions $\alpha: G \curvearrowright X$ on cpt metric spaces, the concept of almost finite actions (Kerr) is a very effective tool to prove \mathcal{Z}-stablity of $C(X) \rtimes_{\alpha} G$, close to being equivalent.

Theorem (Kerr+ generalising Rokhlin dim results by Szabo-Wu-Z)
Crossed products by almost finite actions are \mathcal{Z}-stable. Almost finite actions of amenable groups on Cantor sets are generic. Free minimal actions of elementary amenable groups on finite dimensional compact spaces are almost finite.

For A commutative, ie actions $\alpha: G \curvearrowright X$ on cpt metric spaces, the concept of almost finite actions (Kerr) is a very effective tool to prove \mathcal{Z}-stablity of $C(X) \rtimes_{\alpha} G$, close to being equivalent.

Theorem (Kerr+ generalising Rokhlin dim results by Szabo-Wu-Z)

Crossed products by almost finite actions are \mathcal{Z}-stable.
Almost finite actions of amenable groups on Cantor sets are generic.
Free minimal actions of elementary amenable groups on finite dimensional compact spaces are almost finite.

We define new property, almost elementariness of $\alpha: G \curvearrowright A$, A noncommutative, ensuring classifiability of $A \rtimes_{\alpha} G$, reducing to \mathcal{Z}-stability for $G=\{e\}$, and almost finiteness for $A=C(X)$.

To do so we need to generalise the following two concepts for actions $\alpha: G \curvearrowright X$ on spaces to actions $\alpha: G \curvearrowright A$ on general C*-algebras.

To do so we need to generalise the following two concepts for actions $\alpha: G \curvearrowright X$ on spaces to actions $\alpha: G \curvearrowright A$ on general C^{*}-algebras.

1. Dynamical strict comparison:

Definition (Kerr (using ideas by Winter))
Given $\alpha: G \curvearrowright X$ we define for open sets $U, V \subseteq X$,

$$
U \preceq_{G} V
$$

if \forall compact $K \subseteq U, \exists U_{1}, \ldots, U_{k} \subseteq X$ open, $\exists g_{1}, \ldots, g_{k} \in G$ s.t. $K \subseteq U_{1} \cup \ldots \cup U_{k}$ and $g_{1} U_{1} \ldots g_{k} U_{k}$ are disjoint subsets in V.

2. Almost finite actions

2. Almost finite actions

Definition (Kerr (Winter))

Given $\alpha: G \curvearrowright X, X$ cpt metric space, define

2. Almost finite actions

Definition (Kerr (Winter))

Given $\alpha: G \curvearrowright X, X$ cpt metric space, define
Open tower: (S, B) ($=$ (shape, base)), where $S \subset \subset G$ and $B \subseteq X$ open s.t. the sets $g B$, where $g \in S$ are pairwise disjoint.

2. Almost finite actions

Definition (Kerr (Winter))

Given $\alpha: G \curvearrowright X, X$ cpt metric space, define
Open tower: (S, B) (=(shape, base)), where $S \subset \subset G$ and $B \subseteq X$ open s.t. the sets $g B$, where $g \in S$ are pairwise disjoint.

Open castle: finite disjoint union of open towers.

2. Almost finite actions

Definition (Kerr (Winter))

Given $\alpha: G \curvearrowright X, X$ cpt metric space, define
Open tower: (S, B) (=(shape, base)), where $S \subset \subset G$ and $B \subseteq X$ open s.t. the sets $g B$, where $g \in S$ are pairwise disjoint.

Open castle: finite disjoint union of open towers.
For G amenable, $\alpha: G \curvearrowright X$ is almost finite if

2. Almost finite actions

Definition (Kerr (Winter))

Given $\alpha: G \curvearrowright X, X$ cpt metric space, define
Open tower: (S, B) ($=($ shape, base) $)$, where $S \subset \subset G$ and $B \subseteq X$ open s.t. the sets $g B$, where $g \in S$ are pairwise disjoint.

Open castle: finite disjoint union of open towers.
For G amenable, $\alpha: G \curvearrowright X$ is almost finite if
$\forall F \subset \subset G, \forall \varepsilon>0, \exists$ open castle in X s.t.
(1) diam (each level) $<\varepsilon$,
(2) each shape is (F, ε)-Følner,
(3) the remainder of the castle is small:

$$
\exists S_{i}^{\prime} \subset S_{i}, \frac{\left|S_{i}^{\prime}\right|}{\left|S_{i}\right|}<\varepsilon: X \backslash \bigcup_{i} S_{i} B_{i} \preceq G \bigcup_{i} S_{i}^{\prime} B_{i}
$$

2. Almost finite actions

Definition (Kerr (Winter))

Given $\alpha: G \curvearrowright X, X$ cpt metric space, define
Open tower: (S, B) ($=$ (shape, base)), where $S \subset \subset G$ and $B \subseteq X$ open s.t. the sets $g B$, where $g \in S$ are pairwise disjoint.

Open castle: finite disjoint union of open towers.
For G amenable, $\alpha: G \curvearrowright X$ is almost finite if
$\forall F \subset \subset G, \forall \varepsilon>0, \exists$ open castle in X s.t.
(1) diam (each level) $<\varepsilon$,
(2) each shape is (F, ε)-Følner,
(3) the remainder of the castle is small:

$$
\exists S_{i}^{\prime} \subset S_{i}, \frac{\left|S_{i}^{\prime}\right|}{\left|S_{i}\right|}<\varepsilon: X \backslash \bigcup_{i} S_{i} B_{i} \preceq G \bigcup_{i} S_{i}^{\prime} B_{i}
$$

A castle can be regarded as a simultaneous approximation of the space and the action up to a dynamically/tracially small remainder.

Ad 1. Dynamical comparison for general actions $\alpha: G \curvearrowright A$:

Ad 1. Dynamical comparison for general actions $\alpha: G \curvearrowright A$:

Start off with usual Cuntz comparison: for $a, b \in A_{+}$(or $\left.M_{\infty}(A)_{+}\right)$, write $a \preceq c_{u} b$ or just $a \preceq b$ if $\inf _{x \in A}\left\|a-x^{*} b x\right\|=0$, leading to
$W(A):=\left(M_{\infty}(A)_{+}, \oplus, \preceq c_{u}\right) ; \quad C u(A):=\left((A \otimes K)_{+}, \oplus, \preceq C_{u}\right)$.

Ad 1. Dynamical comparison for general actions $\alpha: G \curvearrowright A$:
Start off with usual Cuntz comparison: for $a, b \in A_{+}$(or $\left.M_{\infty}(A)_{+}\right)$, write $a \preceq c_{u} b$ or just $a \preceq b$ if $\inf _{x \in A}\left\|a-x^{*} b x\right\|=0$, leading to
$W(A):=\left(M_{\infty}(A)_{+}, \oplus, \preceq C_{u}\right) ; \quad C u(A):=\left((A \otimes K)_{+}, \oplus, \preceq C_{u}\right)$.

Definition (BPWZ)

Given $a, b \in A_{+}$we say a is elementarily dynamically subequivalent to b, written

$$
a \preceq_{0} b
$$

Ad 1. Dynamical comparison for general actions $\alpha: G \curvearrowright A$:
Start off with usual Cuntz comparison: for $a, b \in A_{+}$(or $\left.M_{\infty}(A)_{+}\right)$, write $a \preceq c u b$ or just $a \preceq b$ if $\inf _{x \in A}\left\|a-x^{*} b x\right\|=0$, leading to $W(A):=\left(M_{\infty}(A)_{+}, \oplus, \preceq c_{u}\right) ; \quad C u(A):=\left((A \otimes K)_{+}, \oplus, \preceq c_{u}\right)$.

Definition (BPWZ)

Given $a, b \in A_{+}$we say a is elementarily dynamically subequivalent to b, written

$$
a \preceq_{0} b
$$

if for any $\varepsilon>0$ there is $\delta>0, n \in \mathbb{N}$, elements $g_{1}, \ldots, g_{n} \in G$ and positive elements $x_{1}, \ldots, x_{n} \in M_{\infty}(A)$ such that

$$
(a-\varepsilon)_{+} \preceq \bigoplus_{i} \alpha_{g_{i}}\left(x_{i}\right) \text { and } \bigoplus_{i} x_{i} \preceq(b-\delta)_{+}
$$

Ad 1. Dynamical comparison for general actions $\alpha: G \curvearrowright A$:
Start off with usual Cuntz comparison: for $a, b \in A_{+}$(or $\left.M_{\infty}(A)_{+}\right)$, write $a \preceq c u b$ or just $a \preceq b$ if $\inf _{x \in A}\left\|a-x^{*} b x\right\|=0$, leading to $W(A):=\left(M_{\infty}(A)_{+}, \oplus, \preceq C_{u}\right) ; \quad C u(A):=\left((A \otimes K)_{+}, \oplus, \preceq C_{u}\right)$.

Definition (BPWZ)

Given $a, b \in A_{+}$we say a is elementarily dynamically subequivalent to b, written

$$
a \preceq_{0} b
$$

if for any $\varepsilon>0$ there is $\delta>0, n \in \mathbb{N}$, elements $g_{1}, \ldots, g_{n} \in G$ and positive elements $x_{1}, \ldots, x_{n} \in M_{\infty}(A)$ such that

$$
(a-\varepsilon)_{+} \preceq \bigoplus_{i} \alpha_{g_{i}}\left(x_{i}\right) \text { and } \bigoplus_{i} x_{i} \preceq(b-\delta)_{+}
$$

This relation is not transitive in general;

Ad 1. Dynamical comparison for general actions $\alpha: G \curvearrowright A$:
Start off with usual Cuntz comparison: for $a, b \in A_{+}$(or $\left.M_{\infty}(A)_{+}\right)$, write $a \preceq c_{u} b$ or just $a \preceq b$ if $\inf _{x \in A}\left\|a-x^{*} b x\right\|=0$, leading to $W(A):=\left(M_{\infty}(A)_{+}, \oplus, \preceq c_{u}\right) ; \quad C u(A):=\left((A \otimes K)_{+}, \oplus, \preceq C_{u}\right)$.

Definition (BPWZ)

Given $a, b \in A_{+}$we say a is elementarily dynamically subequivalent to b, written

$$
a \preceq_{0} b
$$

if for any $\varepsilon>0$ there is $\delta>0, n \in \mathbb{N}$, elements $g_{1}, \ldots, g_{n} \in G$ and positive elements $x_{1}, \ldots, x_{n} \in M_{\infty}(A)$ such that

$$
(a-\varepsilon)_{+} \preceq \bigoplus_{i} \alpha_{g_{i}}\left(x_{i}\right) \text { and } \bigoplus_{i} x_{i} \preceq(b-\delta)_{+}
$$

This relation is not transitive in general; develop a general quotient/adjoining construction to define $W_{G}(A)=W(A) / \sim_{G}$.

Ad 2. Noncommutative castle/AE for general actions: $\alpha: G \curvearrowright A$

Ad 2. Noncommutative castle/AE for general actions: $\alpha: G \curvearrowright A$

Definition (BPWZ)

A tower for $\alpha: G \curvearrowright A$ is a $c p c_{\perp}$ map $\lambda: M_{n} \otimes C(S) \rightarrow A$, where $S \subset \subset G$, st $\forall g, h \in S$, we have

$$
\alpha_{g^{-1}} \circ \lambda\left(\cdot \otimes \delta_{g}\right)=\alpha_{h^{-1}} \circ \lambda\left(\cdot \otimes \delta_{h}\right): M_{n} \rightarrow A,
$$

or

Ad 2. Noncommutative castle/AE for general actions: $\alpha: G \curvearrowright A$

Definition (BPWZ)

A tower for $\alpha: G \curvearrowright A$ is a $c p c_{\perp}$ map $\lambda: M_{n} \otimes C(S) \rightarrow A$, where $S \subset \subset G$, st $\forall g, h \in S$, we have

$$
\alpha_{g^{-1}} \circ \lambda\left(\cdot \otimes \delta_{g}\right)=\alpha_{h^{-1}} \circ \lambda\left(\cdot \otimes \delta_{h}\right): M_{n} \rightarrow A,
$$

or

$$
\lambda\left(\cdot \otimes \delta_{g}\right)=\alpha_{g h^{-1}} \circ \lambda\left(\cdot \otimes \delta_{h}\right): M_{n} \rightarrow A,
$$

(partial covariance condition)

Ad 2. Noncommutative castle/AE for general actions: $\alpha: G \curvearrowright A$

Definition (BPWZ)

A tower for $\alpha: G \curvearrowright A$ is a $c p c_{\perp}$ map $\lambda: M_{n} \otimes C(S) \rightarrow A$, where $S \subset \subset G$, st $\forall g, h \in S$, we have

$$
\alpha_{g^{-1}} \circ \lambda\left(\cdot \otimes \delta_{g}\right)=\alpha_{h^{-1}} \circ \lambda\left(\cdot \otimes \delta_{h}\right): M_{n} \rightarrow A,
$$

or

$$
\lambda\left(\cdot \otimes \delta_{g}\right)=\alpha_{g h^{-1}} \circ \lambda\left(\cdot \otimes \delta_{h}\right): M_{n} \rightarrow A,
$$

(partial covariance condition)
A castle for $\alpha: G \curvearrowright A$ is a $c p c_{\perp} \operatorname{map} \lambda: \bigoplus_{i=1}^{k} M_{n_{i}} \otimes C\left(S_{i}\right) \rightarrow A$ st $\lambda_{i}=\lambda \mid M_{n_{i}} \otimes C\left(S_{i}\right)$ is a tower.

Ad 2. Noncommutative castle/AE for general actions: $\alpha: G \curvearrowright A$

Definition (BPWZ)

A tower for $\alpha: G \curvearrowright A$ is a $c p c_{\perp}$ map $\lambda: M_{n} \otimes C(S) \rightarrow A$, where $S \subset \subset G$, st $\forall g, h \in S$, we have

$$
\alpha_{g^{-1}} \circ \lambda\left(\cdot \otimes \delta_{g}\right)=\alpha_{h^{-1}} \circ \lambda\left(\cdot \otimes \delta_{h}\right): M_{n} \rightarrow A,
$$

or

$$
\lambda\left(\cdot \otimes \delta_{g}\right)=\alpha_{g h^{-1}} \circ \lambda\left(\cdot \otimes \delta_{h}\right): M_{n} \rightarrow A,
$$

(partial covariance condition)
A castle for $\alpha: G \curvearrowright A$ is a $c p c_{\perp} \operatorname{map} \lambda: \bigoplus_{i=1}^{k} M_{n_{i}} \otimes C\left(S_{i}\right) \rightarrow A$ st $\lambda_{i}=\lambda \mid M_{n_{i}} \otimes C\left(S_{i}\right)$ is a tower.

For a castle $\lambda: \oplus_{i=1}^{k} M_{n_{i}} \otimes C\left(S_{i}\right) \rightarrow C(X)$ we must have $n_{i}=1$ for all i, hence λ is of the form $\lambda: \oplus_{i=1}^{k} C\left(S_{i}\right) \rightarrow C(X)$. Then the open supports of $\lambda_{i}\left(\delta_{g}\right)_{i=1, \ldots, k ; g \in S_{i}}$ form a castle of open sets in X.

Ad 2. Noncommutative castle/AE for general actions: $\alpha: G \curvearrowright A$

Definition (BPWZ)

A tower for $\alpha: G \curvearrowright A$ is a $c p c_{\perp}$ map $\lambda: M_{n} \otimes C(S) \rightarrow A$, where $S \subset \subset G$, st $\forall g, h \in S$, we have

$$
\alpha_{g^{-1}} \circ \lambda\left(\cdot \otimes \delta_{g}\right)=\alpha_{h^{-1}} \circ \lambda\left(\cdot \otimes \delta_{h}\right): M_{n} \rightarrow A
$$

or

$$
\lambda\left(\cdot \otimes \delta_{g}\right)=\alpha_{g h^{-1}} \circ \lambda\left(\cdot \otimes \delta_{h}\right): M_{n} \rightarrow A,
$$

(partial covariance condition)
A castle for $\alpha: G \curvearrowright A$ is a $c p c_{\perp}$ map $\lambda: \bigoplus_{i=1}^{k} M_{n_{i}} \otimes C\left(S_{i}\right) \rightarrow A$ st $\lambda_{i}=\lambda \mid M_{n_{i}} \otimes C\left(S_{i}\right)$ is a tower.

For a castle $\lambda: \oplus_{i=1}^{k} M_{n_{i}} \otimes C\left(S_{i}\right) \rightarrow C(X)$ we must have $n_{i}=1$ for all i, hence λ is of the form $\lambda: \oplus_{i=1}^{k} C\left(S_{i}\right) \rightarrow C(X)$. Then the open supports of $\lambda_{i}\left(\delta_{g}\right)_{i=1, \ldots, k ; g \in S_{i}}$ form a castle of open sets in X.
In this case castles are families of orthogonal positive elements covariant along towers.

Definition (Almost Elementariness, covering version, (BPWZ))

$\alpha: G \curvearrowright A$ is $A E_{a b s}$ if $\forall F \subset \subset A, \forall E \subset \subset G, \forall \varepsilon>0, \forall b \in A_{+} \backslash\{0\}$, $\exists(\lambda, h): \lambda: C:=\bigoplus_{i=1}^{k} M_{n_{i}} \otimes C\left(S_{i}\right) \rightarrow A_{\infty}$ castle, $h \in C_{+, \leq 1}$ st

Definition (Almost Elementariness, covering version, (BPWZ))

$\alpha: G \curvearrowright A$ is $A E_{a b s}$ if $\forall F \subset \subset A, \forall E \subset \subset G, \forall \varepsilon>0, \forall b \in A_{+} \backslash\{0\}$, $\exists(\lambda, h): \lambda: C:=\bigoplus_{i=1}^{k} M_{n_{i}} \otimes C\left(S_{i}\right) \rightarrow A_{\infty}$ castle, $h \in C_{+, \leq 1}$ st
(1) $\operatorname{dist}\left(\lambda(h)^{1 / 2} F \lambda(h)^{1 / 2}, \lambda(C)\right)<\varepsilon$ (approximation)

Definition (Almost Elementariness, covering version, (BPWZ))

$\alpha: G \curvearrowright A$ is $A E_{\text {abs }}$ if $\forall F \subset \subset A, \forall E \subset \subset G, \forall \varepsilon>0, \forall b \in A_{+} \backslash\{0\}$, $\exists(\lambda, h): \lambda: C:=\bigoplus_{i=1}^{k} M_{n_{i}} \otimes C\left(S_{i}\right) \rightarrow A_{\infty}$ castle, $h \in C_{+, \leq 1}$ st
(1) $\operatorname{dist}\left(\lambda(h)^{1 / 2} F \lambda(h)^{1 / 2}, \lambda(C)\right)<\varepsilon$ (approximation)
(2) $\|[F, \lambda(h)]\|<\varepsilon$ (almost central),

Definition (Almost Elementariness, covering version, (BPWZ))

$\alpha: G \curvearrowright A$ is $A E_{a b s}$ if $\forall F \subset \subset A, \forall E \subset \subset G, \forall \varepsilon>0, \forall b \in A_{+} \backslash\{0\}$, $\exists(\lambda, h): \lambda: C:=\bigoplus_{i=1}^{k} M_{n_{i}} \otimes C\left(S_{i}\right) \rightarrow A_{\infty}$ castle, $h \in C_{+, \leq 1}$ st
(1) $\operatorname{dist}\left(\lambda(h)^{1 / 2} F \lambda(h)^{1 / 2}, \lambda(C)\right)<\varepsilon$ (approximation)
(2) $\|[F, \lambda(h)]\|<\varepsilon$ (almost central),
(3) $1-\lambda(h) \preceq_{G} b,\|\lambda(h)\|=1$ (small remainder, non-deg),

Definition (Almost Elementariness, covering version, (BPWZ))

$\alpha: G \curvearrowright A$ is $A E_{a b s}$ if $\forall F \subset \subset A, \forall E \subset \subset G, \forall \varepsilon>0, \forall b \in A_{+} \backslash\{0\}$, $\exists(\lambda, h): \lambda: C:=\bigoplus_{i=1}^{k} M_{n_{i}} \otimes C\left(S_{i}\right) \rightarrow A_{\infty}$ castle, $h \in C_{+, \leq 1}$ st
(1) $\operatorname{dist}\left(\lambda(h)^{1 / 2} F \lambda(h)^{1 / 2}, \lambda(C)\right)<\varepsilon$ (approximation)
(2) $\|[F, \lambda(h)]\|<\varepsilon$ (almost central),
(3) $1-\lambda(h) \preceq_{G} b,\|\lambda(h)\|=1$ (small remainder, non-deg),
(9) $\|h-g \cdot h\|<\varepsilon, \forall g \in E$ (almost invariant).

Definition (Almost Elementariness, covering version, (BPWZ))

$\alpha: G \curvearrowright A$ is $A E_{a b s}$ if $\forall F \subset \subset A, \forall E \subset \subset G, \forall \varepsilon>0, \forall b \in A_{+} \backslash\{0\}$, $\exists(\lambda, h): \lambda: C:=\bigoplus_{i=1}^{k} M_{n_{i}} \otimes C\left(S_{i}\right) \rightarrow A_{\infty}$ castle, $h \in C_{+, \leq 1}$ st
(1) $\operatorname{dist}\left(\lambda(h)^{1 / 2} F \lambda(h)^{1 / 2}, \lambda(C)\right)<\varepsilon$ (approximation)
(2) $\|[F, \lambda(h)]\|<\varepsilon$ (almost central),
(3) $1-\lambda(h) \preceq_{G} b,\|\lambda(h)\|=1$ (small remainder, non-deg),
(9) $\|h-g \cdot h\|<\varepsilon, \forall g \in E$ (almost invariant).

Definition (equivalent approximation version, (BPWZ))

$\alpha: G \curvearrowright A$ is $\widehat{\mathrm{AE}}_{a b s}$ if

Definition (Almost Elementariness, covering version, (BPWZ))

$\alpha: G \curvearrowright A$ is $\mathrm{AE}_{\text {abs }}$ if $\forall F \subset \subset A, \forall E \subset \subset G, \forall \varepsilon>0, \forall b \in A_{+} \backslash\{0\}$, $\exists(\lambda, h): \lambda: C:=\bigoplus_{i=1}^{k} M_{n_{i}} \otimes C\left(S_{i}\right) \rightarrow A_{\infty}$ castle, $h \in C_{+, \leq 1}$ st
(1) $\operatorname{dist}\left(\lambda(h)^{1 / 2} F \lambda(h)^{1 / 2}, \lambda(C)\right)<\varepsilon$ (approximation)
(2) $\|[F, \lambda(h)]\|<\varepsilon$ (almost central),
(3) $1-\lambda(h) \preceq_{G} b,\|\lambda(h)\|=1$ (small remainder, non-deg),
(9) $\|h-g \cdot h\|<\varepsilon, \forall g \in E$ (almost invariant).

Definition (equivalent approximation version, (BPWZ))

$\alpha: G \curvearrowright A$ is $\widehat{A E}_{a b s}$ if $\forall F \subset \subset A, \forall E \subset \subset G, \forall \varepsilon>0, \forall b \in A_{+} \backslash\{0\}$,

Definition (Almost Elementariness, covering version, (BPWZ))

$\alpha: G \curvearrowright A$ is $\mathrm{AE}_{\text {abs }}$ if $\forall F \subset \subset A, \forall E \subset \subset G, \forall \varepsilon>0, \forall b \in A_{+} \backslash\{0\}$, $\exists(\lambda, h): \lambda: C:=\bigoplus_{i=1}^{k} M_{n_{i}} \otimes C\left(S_{i}\right) \rightarrow A_{\infty}$ castle, $h \in C_{+, \leq 1}$ st
(1) $\operatorname{dist}\left(\lambda(h)^{1 / 2} F \lambda(h)^{1 / 2}, \lambda(C)\right)<\varepsilon$ (approximation)
(2) $\|[F, \lambda(h)]\|<\varepsilon$ (almost central),
(3) $1-\lambda(h) \preceq_{G} b,\|\lambda(h)\|=1$ (small remainder, non-deg),
(9) $\|h-g \cdot h\|<\varepsilon, \forall g \in E$ (almost invariant).

Definition (equivalent approximation version, (BPWZ))

$\alpha: G \curvearrowright A$ is $\widehat{A E}_{a b s}$ if $\forall F \subset \subset A, \forall E \subset \subset G, \forall \varepsilon>0, \forall b \in A_{+} \backslash\{0\}$, $\exists(\gamma, \lambda, \theta): \lambda: C:=\bigoplus_{i=1}^{k} M_{n_{i}} \otimes C\left(S_{i}\right) \rightarrow A_{\infty}$ castle, $\gamma: A \rightarrow C$ срс, $\theta: A \rightarrow A_{\infty}$, st

Definition (Almost Elementariness, covering version, (BPWZ))

$\alpha: G \curvearrowright A$ is $\mathrm{AE}_{\text {abs }}$ if $\forall F \subset \subset A, \forall E \subset \subset G, \forall \varepsilon>0, \forall b \in A_{+} \backslash\{0\}$, $\exists(\lambda, h): \lambda: C:=\bigoplus_{i=1}^{k} M_{n_{i}} \otimes C\left(S_{i}\right) \rightarrow A_{\infty}$ castle, $h \in C_{+, \leq 1}$ st
(1) $\operatorname{dist}\left(\lambda(h)^{1 / 2} F \lambda(h)^{1 / 2}, \lambda(C)\right)<\varepsilon$ (approximation)
(2) $\|[F, \lambda(h)]\|<\varepsilon$ (almost central),
(3) $1-\lambda(h) \preceq_{G} b,\|\lambda(h)\|=1$ (small remainder, non-deg),
(9) $\|h-g \cdot h\|<\varepsilon, \forall g \in E$ (almost invariant).

Definition (equivalent approximation version, (BPWZ))

$\alpha: G \curvearrowright A$ is $\widehat{\mathrm{AE}}_{a b s}$ if $\forall F \subset \subset A, \forall E \subset \subset G, \forall \varepsilon>0, \forall b \in A_{+} \backslash\{0\}$, $\exists(\gamma, \lambda, \theta): \lambda: C:=\bigoplus_{i=1}^{k} M_{n_{i}} \otimes C\left(S_{i}\right) \rightarrow A_{\infty}$ castle, $\gamma: A \rightarrow C$ срс, $\theta: A \rightarrow A_{\infty}$, st
(1) $\|(\lambda \circ \gamma+\theta)(a)-a\|<\varepsilon, \forall a \in F$ (approximation),

Definition (Almost Elementariness, covering version, (BPWZ))

$\alpha: G \curvearrowright A$ is $A E_{a b s}$ if $\forall F \subset \subset A, \forall E \subset \subset G, \forall \varepsilon>0, \forall b \in A_{+} \backslash\{0\}$, $\exists(\lambda, h): \lambda: C:=\bigoplus_{i=1}^{k} M_{n_{i}} \otimes C\left(S_{i}\right) \rightarrow A_{\infty}$ castle, $h \in C_{+, \leq 1}$ st
(1) $\operatorname{dist}\left(\lambda(h)^{1 / 2} F \lambda(h)^{1 / 2}, \lambda(C)\right)<\varepsilon$ (approximation)
(2) $\|[F, \lambda(h)]\|<\varepsilon$ (almost central),
(3) $1-\lambda(h) \preceq_{G} b,\|\lambda(h)\|=1$ (small remainder, non-deg),
(9) $\|h-g \cdot h\|<\varepsilon, \forall g \in E$ (almost invariant).

Definition (equivalent approximation version, (BPWZ))

$\alpha: G \curvearrowright A$ is $\widehat{\mathrm{AE}}_{a b s}$ if $\forall F \subset \subset A, \forall E \subset \subset G, \forall \varepsilon>0, \forall b \in A_{+} \backslash\{0\}$, $\exists(\gamma, \lambda, \theta): \lambda: C:=\bigoplus_{i=1}^{k} M_{n_{i}} \otimes C\left(S_{i}\right) \rightarrow A_{\infty}$ castle, $\gamma: A \rightarrow C$ срс, $\theta: A \rightarrow A_{\infty}$, st
(1) $\|(\lambda \circ \gamma+\theta)(a)-a\|<\varepsilon, \forall a \in F$ (approximation),
(2) $\|[F, \theta(1)]\|<\varepsilon$ (almost central),

Definition (Almost Elementariness, covering version, (BPWZ))

$\alpha: G \curvearrowright A$ is $A E_{a b s}$ if $\forall F \subset \subset A, \forall E \subset \subset G, \forall \varepsilon>0, \forall b \in A_{+} \backslash\{0\}$, $\exists(\lambda, h): \lambda: C:=\bigoplus_{i=1}^{k} M_{n_{i}} \otimes C\left(S_{i}\right) \rightarrow A_{\infty}$ castle, $h \in C_{+, \leq 1}$ st
(1) $\operatorname{dist}\left(\lambda(h)^{1 / 2} F \lambda(h)^{1 / 2}, \lambda(C)\right)<\varepsilon$ (approximation)
(2) $\|[F, \lambda(h)]\|<\varepsilon$ (almost central),
(3) $1-\lambda(h) \preceq_{G} b,\|\lambda(h)\|=1$ (small remainder, non-deg),
(9) $\|h-g \cdot h\|<\varepsilon, \forall g \in E$ (almost invariant).

Definition (equivalent approximation version, (BPWZ))

$\alpha: G \curvearrowright A$ is $\widehat{A E}_{a b s}$ if $\forall F \subset \subset A, \forall E \subset \subset G, \forall \varepsilon>0, \forall b \in A_{+} \backslash\{0\}$, $\exists(\gamma, \lambda, \theta): \lambda: C:=\bigoplus_{i=1}^{k} M_{n_{i}} \otimes C\left(S_{i}\right) \rightarrow A_{\infty}$ castle, $\gamma: A \rightarrow C$ срс, $\theta: A \rightarrow A_{\infty}$, st
(1) $\|(\lambda \circ \gamma+\theta)(a)-a\|<\varepsilon, \forall a \in F$ (approximation),
(2) $\|[F, \theta(1)]\|<\varepsilon$ (almost central),
(3) $\theta(1) \approx 1-\lambda \circ \gamma(1) \preceq G b,\|\lambda \circ \gamma(1)\|=1$ (small remainder, non-deg),

Definition (Almost Elementariness, covering version, (BPWZ))

$\alpha: G \curvearrowright A$ is $\mathrm{AE}_{\text {abs }}$ if $\forall F \subset \subset A, \forall E \subset \subset G, \forall \varepsilon>0, \forall b \in A_{+} \backslash\{0\}$, $\exists(\lambda, h): \lambda: C:=\bigoplus_{i=1}^{k} M_{n_{i}} \otimes C\left(S_{i}\right) \rightarrow A_{\infty}$ castle, $h \in C_{+, \leq 1}$ st
(1) $\operatorname{dist}\left(\lambda(h)^{1 / 2} F \lambda(h)^{1 / 2}, \lambda(C)\right)<\varepsilon$ (approximation)
(2) $\|[F, \lambda(h)]\|<\varepsilon$ (almost central),
(3) $1-\lambda(h) \preceq_{G} b,\|\lambda(h)\|=1$ (small remainder, non-deg),
(9) $\|h-g \cdot h\|<\varepsilon, \forall g \in E$ (almost invariant).

Definition (equivalent approximation version, (BPWZ))

$\alpha: G \curvearrowright A$ is $\widehat{\mathrm{AE}}_{a b s}$ if $\forall F \subset \subset A, \forall E \subset \subset G, \forall \varepsilon>0, \forall b \in A_{+} \backslash\{0\}$, $\exists(\gamma, \lambda, \theta): \lambda: C:=\bigoplus_{i=1}^{k} M_{n_{i}} \otimes C\left(S_{i}\right) \rightarrow A_{\infty}$ castle, $\gamma: A \rightarrow C$ срс, $\theta: A \rightarrow A_{\infty}$, st
(1) $\|(\lambda \circ \gamma+\theta)(a)-a\|<\varepsilon, \forall a \in F$ (approximation),
(2) $\|[F, \theta(1)]\|<\varepsilon$ (almost central),
(3) $\theta(1) \approx 1-\lambda \circ \gamma(1) \preceq G b,\|\lambda \circ \gamma(1)\|=1$ (small remainder, non-deg),
(9) $\left\|\gamma\left(\alpha_{g}(a)\right)-g \gamma(a)\right\|<\varepsilon, \forall g \in E, a \in F$ (almost invariant).

Relative almost elementariness $\mathrm{AE}_{r e l}$ requires existence of tracially small projection $p \in C$ with

$$
1-\lambda(h) \preceq_{G} \lambda(p) \text { and }[1 / \varepsilon][p] \leq_{G}\left[(h-1 / 2)_{+}\right] \text {in } C \text {; }
$$

Relative almost elementariness $\mathrm{AE}_{r e l}$ requires existence of tracially small projection $p \in C$ with

$$
1-\lambda(h) \preceq_{G} \lambda(p) \text { and }[1 / \varepsilon][p] \leq_{G}\left[(h-1 / 2)_{+}\right] \text {in } C \text {; }
$$

General AE is a combination of both.

Relative almost elementariness $\mathrm{AE}_{\text {rel }}$ requires existence of tracially small projection $p \in C$ with

$$
1-\lambda(h) \preceq_{G} \lambda(p) \text { and }[1 / \varepsilon][p] \leq_{G}\left[(h-1 / 2)_{+}\right] \text {in } C ;
$$

General AE is a combination of both.
Finally can determine smallness also just as smallness in all invariant measures: $d_{\tau}(1-\lambda(h))<d_{\tau}(b), \forall \tau$ invariant trace.

Relative almost elementariness $\mathrm{AE}_{\text {rel }}$ requires existence of tracially small projection $p \in C$ with

$$
1-\lambda(h) \preceq_{G} \lambda(p) \text { and }[1 / \varepsilon][p] \leq_{G}\left[(h-1 / 2)_{+}\right] \text {in } C ;
$$

General AE is a combination of both.
Finally can determine smallness also just as smallness in all invariant measures: $d_{\tau}(1-\lambda(h))<d_{\tau}(b), \forall \tau$ invariant trace.

Theorem (BPWZ)

Let $\alpha: G \curvearrowright A$ be a minimal action, then
$\mathrm{AE}, A E_{a b s}, A E_{r e l}, A E_{a b s}^{m e a}+(D S C), A E_{r e l}^{m e a}+(D S C)$
are all equivalent.

Relative almost elementariness $\mathrm{AE}_{\text {rel }}$ requires existence of tracially small projection $p \in C$ with

$$
1-\lambda(h) \preceq_{G} \lambda(p) \text { and }[1 / \varepsilon][p] \leq_{G}\left[(h-1 / 2)_{+}\right] \text {in } C ;
$$

General AE is a combination of both.
Finally can determine smallness also just as smallness in all invariant measures: $d_{\tau}(1-\lambda(h))<d_{\tau}(b), \forall \tau$ invariant trace.

Theorem (BPWZ)

Let $\alpha: G \curvearrowright A$ be a minimal action, then
$\mathrm{AE}, \mathrm{AE}_{a b s}, \mathrm{AE}_{r e l}, \mathrm{AE}_{a b s}^{m e a}+(\mathrm{DSC}), \mathrm{AE}_{\text {rel }}^{\text {mea }}+(\mathrm{DSC})$ are all equivalent.

Theorem (BPWZ)

For $A=C(X)$ and G amenable, $\alpha: G \curvearrowright A$ is almost elementary iff $\alpha: G \curvearrowright X$ is almost finite.

Thinking of a C*-algebra as dynamical system with the trivial group acting it makes sense to talk about $A E$ for C^{*}-algebras.

Thinking of a C*-algebra as dynamical system with the trivial group acting it makes sense to talk about AE for C^{*}-algebras.

Theorem (BPWZ)

Let A be a simple separable nuclear unital infinite-dimensional C^{*}-algebra. Then A is almost elementary if and only if A is \mathcal{Z}-stable.

Thinking of a C*-algebra as dynamical system with the trivial group acting it makes sense to talk about AE for C^{*}-algebras.

Theorem (BPWZ)

Let A be a simple separable nuclear unital infinite-dimensional C^{*}-algebra. Then A is almost elementary if and only if A is \mathcal{Z}-stable.

Theorem (BPWZ)

If $\alpha: G \curvearrowright A$ is almost elementary then $A \rtimes_{\alpha} G$ is almost elementary hence \mathcal{Z}-stable.

Thinking of a C*-algebra as dynamical system with the trivial group acting it makes sense to talk about AE for C^{*}-algebras.

Theorem (BPWZ)

Let A be a simple separable nuclear unital infinite-dimensional C^{*}-algebra. Then A is almost elementary if and only if A is \mathcal{Z}-stable.

Theorem (BPWZ)

If $\alpha: G \curvearrowright A$ is almost elementary then $A \rtimes_{\alpha} G$ is almost elementary hence \mathcal{Z}-stable.

Theorem (BPWZ)

Let A be simple and \mathcal{Z}-stable and let $\alpha: G \curvearrowright A$ have the weak tracial Rokhlin property. Then $\alpha: G \curvearrowright A$ is almost elementary.

Thank you very much !

