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Motivation: Quantum Gravity

When constructing a theory of Quantum Gravity one tries to make
sense of a partition function that “sums or integrates over
manifolds” and a path integral over some matter field:

Z =
∑∫

e−S(g ,X )dgdX .

What is dg? Usually this interpreted as summing over geometric
degrees of freedom.

We would like to consider such integrals in the setting of
Noncommutative Geometry (NCG).
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Motivation: Noncommutative Geometry

In NCG, Spectral Triples (A,H,D) mimic the data given by a
smooth Riemannian manifold with spin structure.

A is a involutive complex algebra acting by bounded operators on a
Hilbert space H, and D is a self-adjoint (in general unbounded)
operator acting on H. This data is required to satisfy some
regularity conditions.1

In particular Riemmanian spinc manifolds can be reconstructed from
their spectral triples via Conne’s Reconstruction theorem.2

1Alain Connes. “Noncommutative geometry and reality”. In: Journal of Mathematical Physics 36.11 (1995), pp. 6194–6231.

2Alain Connes. “On the spectral characterization of manifolds”. In: Journal of Noncommutative Geometry 7.1 (2013), pp. 1–82.
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Fuzzy Spectral Triples

In 2015 John Barrett3 proposed parameterizing the partition
function of a theory of quantum gravity by the moduli space of all
possible Dirac operators for a fixed algebra and Hilbert space:∫

g

e−S(g)dg →
∫
D
e−Tr S(D)dD.

To make sense of these integrals he considered certain natural real
finite spectral triples where the algebra and Hilbert space are
replaced by an algebra of matrices. Such spectral triples
(MN(C),MN(C)⊗ V ,D) are called fuzzy geometries.

These integrals are in fact matrix integrals.4

3John W Barrett. “Matrix geometries and fuzzy spaces as finite spectral triples”. In: Journal of Mathematical Physics 56.8 (2015),
p. 082301.

4John W Barrett and Lisa Glaser. “Monte Carlo simulations of random non-commutative geometries”. In: Journal of Physics A:
Mathematical and Theoretical 49.24 (2016), p. 245001.
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Fuzzy spectral triples

The Dirac operators of fuzzy geometries can be written in term of
gamma matrices and the commutators or anti-commutators with
Hermitian matrices H and skew-Hermitian matrices L. For example:

D = {H, ·}
D = −i [L, ·]

γ1 =

(
i 0
0 −i

)
, γ2 =

(
0 1
−1 0

)
.

Then,
D = γ1 ⊗ [L1, ·] + γ2 ⊗ [L2, ·],

where L1, L2 are both skew-Hermitian.

The entries of these matrices are not specified in Barrett’s
classification. They are our geometric degrees of freedom!
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Dirac Ensembles

The general form of these Dirac operators of a fuzzy geometry is

D =
∑
j

αi ⊗ [Lj , ·] +
∑
k

βk ⊗ {Hk , ·}

=
∑
ℓ

αℓ ⊗ {Lℓ, ·}+
∑
r

β′
ℓ ⊗ [Hr , ·]

where the alpha’s and beta’s are certain products of gamma
matrices that depend on the space of spinors. H’s are Hermitian and
L skew-Hermitian N × N matrices.
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Example

We refer to a fuzzy geometry (MN(C),MN(C)⊗ V ,D) equipped
with a probability distribution on the entries of D as a Dirac
ensemble.

For example let our spectral triple be (MN(C),MN(C)⊗ C, {H, ·})
with

Z =

∫
D
e−g Tr D2−TrD4

dD

where g is a coupling constant.

The measure becomes the Lebesgue measure on the space of N × N
Hermitian matrices:

dD = dH =
N∏
i=1

dHii

∏
1≤i<j≤N

d(Re(Hij)) d(Im(Hij)).
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A type (1, 0) ensemble

The integral

Z =

∫
D
e−g Tr D2−TrD4

dD

then becomes a bi-tracial matrix integral

=

∫
Hn

exp(−(2NgTrH2 + 2g(TrH)2 + 2NTr(H4)

+ 8TrHTrH3 + 6(TrH2)2))dH.

In general Dirac ensembles with polynomial potentials are bi-tracial
multi-matrix ensembles.
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A quartic type (2, 0) ensemble

The integral

Z =

∫
D
e−g Tr D2−TrD4

dD,

where

TrD2 = 4N
(
TrH2

1 + TrH2
2

)
+ 4

(
(TrH1)

2 + (TrH2)
2
)

TrD4 = 4N
(
TrH4

1 + TrH4
2 + 4TrH2

1H
2
2 − 2TrH1H2H1H2

)
+ 16

(
TrH1

(
TrH3

1 + TrH2
2H1

)
+TrH2

(
TrH2

1H2 + TrH3
2

)
+ (TrH1H2)

2
)

+ 12
((

TrH2
1

)2
+
(
TrH2

2

)2)
+ 8TrH2

1 TrH
2
2 .
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Dirac ensembles

Adding matter fields to this framework is the result of more recent
work. See Luuk’s talk today!

There has also been work aimed at incorporating the Standard
Model.5

Ideally, since we have considered a class of finite dimensional
spectral triples, we would like to find a continuum limit as the
matrix size N goes to infinity and relate these models to physics.

Additionally, as mathematical objects they are inherently interesting,
especially from the perspective of Random Matrix Theory (RMT).

5Carlos I Perez-Sanchez. “On multimatrix models motivated by random noncommutative geometry II: A Yang-Mills-Higgs matrix
model”. In: Annales Henri Poincaré. Vol. 23. 6. Springer. 2022, pp. 1979–2023.
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The distributions of eigenvalues

In RMT one studies the bounded distribution of eigenvalues of
random matrices in the large N limit.

In spectral geometry one uses the spectra of an operator, such as
the Dirac operator or Laplacian, to recover geometric information
using a heat kernel expansion. However, this is done using
asymptotic properties of the unbounded spectrum.

Question: how do we recover/interpret geometric properties of Dirac
Ensembles?

Proposed Answer: we study spectral phase transitions!
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Spectral phase transitions

A spectral phase transition is when the number of connected
components of the support of the eigenvalue distribution of a
random matrix changes.

The most common example is when the eigenvalue distribution of a
random matrix is supported on a single interval and then for some
value of the coupling constants the support splits into two intervals.6

Figure: The eigenvalues of S(D) = Tr(gD2 + D4) for N = 10 and g =1,
1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5. The lines are coloured from red through to yellow.

6John W Barrett and Lisa Glaser. “Monte Carlo simulations of random non-commutative geometries”. In: Journal of Physics A:
Mathematical and Theoretical 49.24 (2016), p. 245001.
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Spectral phase transitions

Qualitatively, Barrett and Glaser found that near the spectral phase
transition the spectrum of many Dirac ensembles strongly resembled
that of the fuzzy sphere. Later a metric between spectra was
defined. The spectral distance between many models and the fuzzy
sphere was zero near their phase transition.

Figure: The eigenvalue distributions near the phase transition compared with
the fuzzy sphere for N=10.
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Spectral phase transitions

For simple Dirac ensembles the phase transition can be found
explicitly7 but in general requires numerical methods.8

Additionally, there are notations of spectral dimension and volume9

as well as an algorithm for generating states of the random fuzzy
geometry.10

Further analytical results are needed.

7Masoud Khalkhali and Nathan Pagliaroli. “Phase transition in random noncommutative geometries”. In: Journal of Physics A:
Mathematical and Theoretical 54.3 (2020), p. 035202.

8Lisa Glaser. “Scaling behaviour in random non-commutative geometries”. In: Journal of Physics A: Mathematical and Theoretical
50.27 (2017), p. 275201, Hamed Hessam, Masoud Khalkhali, and Nathan Pagliaroli. “Bootstrapping Dirac ensembles”. In: Journal of
Physics A: Mathematical and Theoretical 55.33 (2022), p. 335204.

9John W Barrett, Paul Druce, and Lisa Glaser. “Spectral estimators for finite non-commutative geometries”. In: Journal of Physics A:
Mathematical and Theoretical 52.27 (2019), p. 275203.

10L Glaser. “Computational explorations of a deformed fuzzy sphere”. In: arXiv preprint arXiv:2304.13002 (2023).
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1-Cut Case

When we numerically graph this distribution we find that at some
critical value of g it dips below zero and splits into a two-cut case:

Figure: The equilibrium measure for (1, 0) from the single cut analysis.
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1-Cut Case

The spectral density function of H in the simple example is of the
form

Ψ(x) =
1

π
(−4a2 +

1

2a2
+ 4x2)

√
4a2 − x2+.

Where suppΨ = [−2a, 2a] and a is found as the solution of

0 = 192a848a4 − 4ga2 − 1

for a given value of g .
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The Phase Transition

A precise critical value is found by setting Ψ(x) = 0 and x = 0 and
isolating for a, giving us ac = 1

4√8
.

Plugging ac into the above polynomial we find

gc = −4
√
2.

,
This matches Monte Carlo simulations!
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2-cut case

The spectral density function for H in this case is of the form

Ψ(x) =
2

π
|x |

√
(x2 − a2)(b2 − x2)+,

Where the suppΨ = [−b,−a] ∪ [a, b] and

a2 = −1

8
g +

√
2

2
, (1)

b2 = −1

8
g −

√
2

2
. (2)
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2D quantum gravity from Dirac ensembles

Random matrix theory has been known to have connections to 2D
gravity:

The Kontsevich model and Witten’s conjecture.
Liouville quantum gravity (LQG) i.e. 2D conformal field theories
coupled to gravity.
More recently Jackiw-Teitelboim (JT) gravity.

Of particular interest is LQG. Physicists in the late 80’s and 90’s
knew heuristically that asymptotics of random matrix models
contained artifacts of LQG.
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The double scaling limit

Rough idea:

The Feynman diagrams associated with matrix integrals are surfaces
with embedded graphs (called maps) that can be thought of as
discretized Riemann surfaces.

If the coupling constants of the models were tweaked such that the
number of polygons that form maps goes to infinity, one would in
essence be counting Riemannian surfaces.

These critical points exist in many models, in particular we have
recently shown that they exist in some Dirac ensembles! In
particular we are able to show these models have the same critical
exponents and partition functions as models 2D conformal field
theory coupled to gravity.11

11Hamed Hessam, Masoud Khalkhali, and Nathan Joseph Pagliaroli. “Double scaling limits of Dirac ensembles and Liouville quantum
gravity”. In: Journal of Physics A: Mathematical and Theoretical (2022).
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The double scaling limit

Figure: Intuitively if one fine tunes coupling constants of matrix models such
that the number of polygons in maps goes to infinity, maps are replaced by
smooth surfaces.
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Liouville quantum gravity

Consider now the quartic type (1, 0) Dirac ensemble from earlier

Z =

∫
D
e−t2 Tr D2−t4 TrD

4

dD

then becomes a bi-tracial matrix integral

=

∫
Hn

exp(−(2Nt2TrH
2 + 2t2(TrH)2 + 2t4NTr(H4)

+ 8t4TrHTrH3 + 6t4(TrH
2)2))dH.

One can show that near critical points the Fg ’s have an asymptotic
expansion of the form:

sing(Fg ) = Cg (t4 − tc)
5(1−g)/2

except when g = 1,

sing(F1) = C1 log(t4 − tc).
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Liouville quantum gravity

We can define a new formal series

u(y) =
∞∑
g=0

sing(Fg )y
5(1−g)/2,

then u′′(y) satisfies the Painlevé I equation to all orders

y = (u′′(y))2 − 1

3
u(4)(y).

The Liouville minimal model of conformal field theory coupled to
gravity predicts that its ”generating function of surfaces” should
satisfy this equation!
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Liouville quantum gravity

Different matrix models are associated to different so called minimal
models whose Fg ’s satisfy their own differential equation.

One can find such models by examining how the spectral density
function scales near the critical point(s).

Figure: Borrowed from ”Universal scaling limits of matrix models, and (p, q)
Liouville gravity” by M. Bergère and B. Eynard.
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The phases of the quartic type (1, 0) Dirac ensemble

Figure: The phase diagram of the quartic Dirac ensemble.
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The phases of the quartic type (1, 0) Dirac ensemble

Curve of the spectral phase transition:

t2 = −5t4 + 3√
t4

.

The quartic Hermitian matrix model’s curve:

t2 = − (1 + 12t4)
3/2 − 4− 144t4 + (36t4 + 3)

√
1 + 12t4

72t4
.
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Liouville quantum gravity summary

These minimal models and critical exponents correspond to
representations of the conformal group in two dimensions classified
by two integers (p, q) with critical exponents p/q. For example:

(3, 2) is called pure gravity and corresponds to the cubic and quartic
type (1, 0) Dirac ensembles
(5, 2) is called Lee-Yang edge singularity and corresponds to the
hexic type (1, 0) Dirac ensemble.

In general single trace single matrix model correspond to type (p, 2)
minimal models and general (p, q) can be found in multi-matrix
models. What about other Dirac ensembles?
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A brief summary

Dirac ensembles are path integrals over fuzzy geometries that can be
realized as matrix integrals.

In the spectral approach, one can interpret geometric features, such
as volume and dimension.

In the graphical approach, certain models one can be connected to
LQG.

For more information please see our recent review article.12

12Hamed Hessam et al. “From noncommutative geometry to random matrix theory”. In: Journal of Physics A: Mathematical and
Theoretical 55.41 (2022), p. 413002.
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Open problems

Further work is needed to bring the standard model and fermions
into the picture.

Investigate the limiting eigenvalue distribution and critical points of
Dirac ensembles with more complicated potentials.

Are there conformal field theories associated with higher dimensional
Dirac ensembles?

What other geometric data can one extract from Dirac ensembles?

Is there a way to interpret the Feynman diagrams for complicated
Dirac ensembles as higher dimensional discrete spaces? This is done
when studying random tensor integrals.
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Thank you for listening!
Questions?
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