Equilibrium on Toeplitz extensions of higher dimensional noncommutative tori

Camila F. Sehnem

University of Waterloo

joint work with Z. Afsar, M. Laca and J. Ramagge

Canadian Operator Symposium - COSy Western University May 25, 2023

Camila F. Sehnem

Equilibrium on Toeplitz noncommutative tori

May 25, 2023

♦ Let $\theta \in \mathbb{R}$. The rotation algebra \mathcal{A}_{θ} is the universal C*-algebra generated by two unitaries U and V satisfying the relation

$$UV = e^{-2\pi i\theta} VU;$$

the C*-algebra \mathcal{A}_{θ} is also known as *noncommutative torus*.

 $\diamond \ \mathcal{A}_{\theta}$ can also be described as the crossed product of $C(\mathbb{T})$ by the automorphism induced by rotation by θ :

$$\varphi(f)(z) := f(e^{-2\pi i \theta} z), \quad f \in \mathcal{C}(\mathbb{T}), z \in \mathbb{T}.$$

♦ Alternatively, \mathcal{A}_{θ} can be viewed as a twisted group C^{*}-algebra C^{*}($\mathbb{Z}^2, \sigma_{\Theta}$), where the 2-cocycle $\sigma_{\Theta} : \mathbb{Z}^2 \times \mathbb{Z}^2 \to \mathbb{T}$ is given by

$$\sigma_{\Theta}(x,y) \coloneqq e^{-\pi i \langle x \mid \Theta y \rangle}$$

where Θ is the antisymmetric matrix $(a_{ij})_{i,j}$ such that $a_{12} = \theta$.

Camila F. Sehnem

♦ Let $\theta \in \mathbb{R}$. The rotation algebra \mathcal{A}_{θ} is the universal C*-algebra generated by two unitaries U and V satisfying the relation

$$UV = e^{-2\pi i\theta} VU;$$

the C*-algebra \mathcal{A}_{θ} is also known as *noncommutative torus*.

♦ \mathcal{A}_{θ} can also be described as the crossed product of C(T) by the automorphism induced by rotation by θ :

$$\varphi(f)(z) := f(e^{-2\pi i \theta} z), \quad f \in \mathrm{C}(\mathbb{T}), z \in \mathbb{T}.$$

♦ Alternatively, \mathcal{A}_{θ} can be viewed as a twisted group C^{*}-algebra C^{*}($\mathbb{Z}^2, \sigma_{\Theta}$), where the 2-cocycle $\sigma_{\Theta} : \mathbb{Z}^2 \times \mathbb{Z}^2 \to \mathbb{T}$ is given by

$$\sigma_{\Theta}(x,y) \coloneqq e^{-\pi i \langle x \mid \Theta y \rangle}$$

where Θ is the antisymmetric matrix $(a_{ij})_{i,j}$ such that $a_{12} = \theta$.

Camila F. Sehnem

♦ Let $\theta \in \mathbb{R}$. The rotation algebra \mathcal{A}_{θ} is the universal C*-algebra generated by two unitaries U and V satisfying the relation

$$UV = e^{-2\pi i\theta} VU;$$

the C*-algebra \mathcal{A}_{θ} is also known as *noncommutative torus*.

♦ \mathcal{A}_{θ} can also be described as the crossed product of C(T) by the automorphism induced by rotation by θ :

$$\varphi(f)(z) := f(e^{-2\pi i \theta} z), \quad f \in \mathrm{C}(\mathbb{T}), z \in \mathbb{T}.$$

♦ Alternatively, \mathcal{A}_{θ} can be viewed as a twisted group C*-algebra C*($\mathbb{Z}^2, \sigma_{\Theta}$), where the 2-cocycle $\sigma_{\Theta} : \mathbb{Z}^2 \times \mathbb{Z}^2 \to \mathbb{T}$ is given by

$$\sigma_{\Theta}(x,y) \coloneqq e^{-\pi i \langle x \mid \Theta y \rangle}$$

where Θ is the antisymmetric matrix $(a_{ij})_{i,j}$ such that $a_{12} = \theta$.

♦ Let $\theta \in \mathbb{R}$. The rotation algebra \mathcal{A}_{θ} is the universal C*-algebra generated by two unitaries U and V satisfying the relation

$$UV = e^{-2\pi i\theta} VU;$$

the C*-algebra \mathcal{A}_{θ} is also known as *noncommutative torus*.

♦ \mathcal{A}_{θ} can also be described as the crossed product of C(T) by the automorphism induced by rotation by θ :

$$\varphi(f)(z) := f(e^{-2\pi i \theta} z), \quad f \in \mathrm{C}(\mathbb{T}), z \in \mathbb{T}.$$

♦ Alternatively, \mathcal{A}_{θ} can be viewed as a twisted group C*-algebra C*($\mathbb{Z}^2, \sigma_{\Theta}$), where the 2-cocycle $\sigma_{\Theta} : \mathbb{Z}^2 \times \mathbb{Z}^2 \to \mathbb{T}$ is given by

$$\sigma_{\Theta}(x,y) \coloneqq e^{-\pi i \langle x \mid \Theta y \rangle}$$

where Θ is the antisymmetric matrix $(a_{ij})_{i,j}$ such that $a_{12} = \theta$.

Motivation from noncommutative solenoids

- Solenoids are inverse limits of tori, and so the algebra of continuous functions on a solenoid is a direct limit of C(𝔅);
- ♦ Latremoliere–Packer, '18 defined *noncommutative solenoids*: certain twisted group algebras of abelian discrete groups $Q_N \times Q_N$, where Q_N has a solenoid as its Pontryagin dual.
- ♦ A noncommutative solenoid is a direct limit of noncommutative tori $\varinjlim(\mathcal{A}_{\theta_n}, \psi_n);$
- ♦ Toeplitz noncommutative solenoid by Brownlowe–Hawkins–Sims, '17: replaced one unitary generator of \mathcal{A}_{θ_n} by an isometry and considered the KMS state structure of the resulting direct limit.

Higher-rank noncommutative tori

- ◇ The algebra of continuous functions C(Tⁿ) is (isomorphic to) the universal C*-algebra generated by *n commuting* unitaries, where T is the unit circle; equivalently, C(Tⁿ) is the group C*-algebra C*(Zⁿ).
- ♦ Let $\Theta = (\theta_{i,j})$ be an $n \times n$ antisymmetric matrix with real coefficients. The *n*-dimensional noncommutative torus A_{Θ} is the universal C^{*}-algebra generated by unitaries U_1, \ldots, U_n satisfying

$$U_j U_k = e^{-2\pi i \theta_{j,k}} U_k U_j \qquad j,k=1,2,\ldots,n.$$

♦ The matrix Θ determines a 2-cocycle $\sigma_{\Theta} \colon \mathbb{Z}^n \times \mathbb{Z}^n \to \mathbb{T}$ by

$$\sigma_{\Theta}(x,y) \coloneqq e^{-\pi i \langle x \mid \Theta y \rangle},$$

and \mathcal{A}_{Θ} is isomorphic to the twisted group C*-algebra C*($\mathbb{Z}^n, \sigma_{\Theta}$).

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Let n = k + d and $\Lambda \in M_{k,d}(\mathbb{R})$. Afsar-an Huef-Raeburn-Sims, '19 defined the higher-rank Toeplitz noncommutative torus B_{Λ} as the universal \mathbb{C}^* -algebra generated by a Nica-covariant isometric representation $V \colon \mathbb{N}^k \to B_{\Lambda}$ and a unitary representation $U \colon \mathbb{Z}^d \to B_{\Lambda}$ satisfying relations encoded in Λ .

♦ A vector $r \in (0, \infty)^k$ determines a strongly continuous one-parameter automorphism group $\{\alpha_t^r \mid t \in \mathbb{R}\}$ of B_Λ characterised by

$$\alpha_t^r(V_p) = e^{i\langle p \mid r \rangle t} V_p, \qquad \alpha_t^r(U_x) = U_x \quad (p \in \mathbb{N}^k, x \in \mathbb{Z}^d).$$

♦ AaHRS studied the KMS state structure for the dynamics α^r , and also considered certain direct limits $\varinjlim(B_{\Lambda_n}, \psi_n)$, called *higher-rank* noncommutative solenoids.

Let n = k + d and $\Lambda \in M_{k,d}(\mathbb{R})$. Afsar-an Huef-Raeburn-Sims, '19 defined the higher-rank Toeplitz noncommutative torus B_{Λ} as the universal C^* -algebra generated by a Nica-covariant isometric representation $V \colon \mathbb{N}^k \to B_{\Lambda}$ and a unitary representation $U \colon \mathbb{Z}^d \to B_{\Lambda}$ satisfying relations encoded in Λ .

♦ A vector $r \in (0, \infty)^k$ determines a strongly continuous one-parameter automorphism group $\{\alpha_t^r \mid t \in \mathbb{R}\}$ of B_{Λ} characterised by

$$\alpha_t^r(V_p) = e^{i\langle p \mid r \rangle t} V_p, \qquad \alpha_t^r(U_x) = U_x \quad (p \in \mathbb{N}^k, x \in \mathbb{Z}^d).$$

♦ AaHRS studied the KMS state structure for the dynamics α^r , and also considered certain direct limits $\varinjlim(B_{\Lambda_n}, \psi_n)$, called *higher-rank* noncommutative solenoids.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うらつ

An approach using twisted semigroup C^* -algebras of \mathbb{N}^n

Let n = k + d and let $\Theta = (\theta_{i,j})$ be an $n \times n$ antisymmetric matrix with real coefficients, and let $\sigma_{\Theta} \colon \mathbb{Z}^n \times \mathbb{Z}^n \to \mathbb{T}$ be given by $\sigma_{\Theta}(x, y) \coloneqq e^{-\pi i \langle x \mid \Theta y \rangle}$. Let $\{\delta_q \mid q \in \mathbb{N}^n\}$ be the canonical orthonormal basis of $\ell^2(\mathbb{N}^n)$. Then for each $p \in \mathbb{N}^n$, the map L_p^{σ} defined by

$$L^{\sigma}_{p}\delta_{q} \coloneqq \sigma_{\Theta}(p,q)\delta_{p+q}, \qquad (q \in \mathbb{N}^{n})$$

induces an isometric σ_{Θ} -representation of \mathbb{N}^n such that

$$(L_{p}^{\sigma})^{*}(L_{q}^{\sigma}) = \overline{\sigma(p, (p \lor q) - p)} \sigma(q, (p \lor q) - q) L_{-p+(p \lor q)}^{\sigma} L_{-q+(p \lor q)}^{\sigma}^{*}$$

Definition (Afsar-Laca-Ramagge-S., '21)

The *n*-dimensional *Toeplitz noncommutative torus* associated to Θ is the twisted semigroup C*-algebra $\mathcal{T}_r(\mathbb{N}^n, \sigma_{\Theta})$.

Proposition (Afsar-Laca-Ramagge-S., 21)

Suppose k and d are nonnegative integers with n = k + d. For each rectangular $k \times d$ matrix $\Lambda \in M_{k,d}([0,\infty))$ define $\Theta \in M_{k+d}(\mathbb{R})$ by

$$\Theta \coloneqq \begin{bmatrix} 0_{k \times k} & \Lambda \\ \hline -\Lambda^T & 0_{d \times d} \end{bmatrix}.$$

Then the C*-algebra B_{Λ} associated to Λ by AaHRS is canonically isomorphic to the quotient of $\mathcal{T}_r(\mathbb{N}^n, \sigma_{\Theta})$ by the ideal generated by the projections $1 - L_{e_j}L_{e_j}^*$ for j = k + 1, k + 2, ..., k + d.

$\mathcal{T}_r(\mathbb{N}^n,\sigma_\Theta)$ as an extension of \mathcal{A}_Θ

Proposition

The map that sends an isometry $L_p \in \mathcal{T}_r(\mathbb{N}^n, \sigma_{\Theta})$ to the unitary $\lambda_p \in C^*_r(\mathbb{Z}^n, \tilde{\sigma}_{\Theta}) \cong \mathcal{A}_{\Theta}$ determines an exact sequence

$$0 \to \mathcal{I} \to \mathcal{T}_r(\mathbb{N}^n, \sigma_{\Theta}) \to \mathcal{A}_{\Theta} \to 0,$$

where \mathcal{I} is the ideal of $\mathcal{T}_r(\mathbb{N}^n, \sigma_{\Theta})$ generated by the projections

$$\{1-L_{e_j}L_{e_j}^*\mid j=1,\ldots,n\}.$$

 $\mathcal{T}_r(\mathbb{N}^n, \sigma_{\Theta})$ can also be described as the universal C*-algebra generated by isometries $\{w_j \mid j \in \{1, \ldots, n\}\}$ satisfying the relations

$$\begin{cases} w_j w_k = e^{-2\pi i \theta_{j,k}} w_k w_j & j, k = 1, 2, \dots, n; \\ w_j^* w_k = e^{2\pi i \theta_{j,k}} w_k w_j^* & j \neq k. \end{cases}$$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ う ○ ()

Let $r \in \mathbb{R}^n$ and consider the dynamics $\alpha^r \colon \mathbb{R} \to \operatorname{Aut}(\mathcal{T}_r(\mathbb{N}^n, \sigma_{\Theta}))$,

$$\alpha_t^r(L_p) = e^{i\langle p \mid r \rangle t} L_p \qquad (p \in \mathbb{N}^n, t \in \mathbb{R}).$$

Let $\beta \in \mathbb{R}$. A state φ of $\mathcal{T}_r(\mathbb{N}^n, \sigma_{\Theta})$ is a KMS_β state for $(\mathcal{T}_r(\mathbb{N}^n, \sigma_{\Theta}, \alpha^r))$ if it satisfies the KMS_β condition for $A \alpha^r$ -analytic and $B \in \mathcal{T}_r(\mathbb{N}^n, \sigma_{\Theta})$

$$\varphi(AB) = \varphi(B\alpha_{i\beta}^r(A))$$

If φ is a KMS_{β} state for α^r , then $e^{-\langle p | r \rangle \beta} = \varphi(L_p L_p^*) \leq 1$. So:

♦ If $\beta > 0$ and $r_j < 0$ for some $j \in \{1, 2, ..., n\}$, then there is no KMS_{β} state; similarly, if $\beta < 0$ and $r_j > 0$ for some $j \in \{1, 2, ..., n\}$, then there is no KMS_{β} state.

Let $r \in \mathbb{R}^n$ and consider the dynamics $\alpha^r \colon \mathbb{R} \to \operatorname{Aut}(\mathcal{T}_r(\mathbb{N}^n, \sigma_{\Theta}))$,

$$\alpha_t^r(L_p) = e^{i\langle p \mid r \rangle t} L_p \qquad (p \in \mathbb{N}^n, t \in \mathbb{R}).$$

Let $\beta \in \mathbb{R}$. A state φ of $\mathcal{T}_r(\mathbb{N}^n, \sigma_{\Theta})$ is a KMS_β state for $(\mathcal{T}_r(\mathbb{N}^n, \sigma_{\Theta}, \alpha^r))$ if it satisfies the KMS_β condition for $A \alpha^r$ -analytic and $B \in \mathcal{T}_r(\mathbb{N}^n, \sigma_{\Theta})$

$$\varphi(AB) = \varphi(B\alpha_{i\beta}^r(A))$$

If φ is a KMS_{β} state for α^r , then $e^{-\langle p | r \rangle \beta} = \varphi(L_p L_p^*) \leq 1$. So:

♦ If $\beta > 0$ and $r_j < 0$ for some $j \in \{1, 2, ..., n\}$, then there is no KMS_{β} state; similarly, if $\beta < 0$ and $r_j > 0$ for some $j \in \{1, 2, ..., n\}$, then there is no KMS_{β} state.

We work with $\beta > 0$ and so we fix a vector $r \in [0, \infty)^n$, and simply write α instead of α^r .

Lemma

Let φ_{β} be a KMS_{β} state of $(\mathcal{T}_r(\mathbb{N}^n, \sigma_{\Theta}), \alpha)$. Let $(\mathcal{H}_{\varphi_{\beta}}, \pi_{\varphi_{\beta}})$ denote the associated GNS representation. If $p \in \mathbb{N}^n$ and $\langle p | r \rangle = 0$, then $\pi_{\varphi_{\beta}}(L_p)$ is unitary. Moreover, φ_{β} factors through the quotient of $\mathcal{T}_r(\mathbb{N}^n, \sigma_{\Theta})$ modulo the ideal generated by the projections $\{1 - L_{e_j}L_{e_i}^* | r_j = 0\}$.

♦ WLOG we assume that all the nonzero coordinates of *r* appear at the beginning, so that $r = (r_1, r_2, ..., r_k, 0_d)$ with $r_j > 0$ for j = 1, ..., k.

We work with $\beta > 0$ and so we fix a vector $r \in [0, \infty)^n$, and simply write α instead of α^r .

Lemma

Let φ_{β} be a KMS_{β} state of $(\mathcal{T}_r(\mathbb{N}^n, \sigma_{\Theta}), \alpha)$. Let $(\mathcal{H}_{\varphi_{\beta}}, \pi_{\varphi_{\beta}})$ denote the associated GNS representation. If $p \in \mathbb{N}^n$ and $\langle p | r \rangle = 0$, then $\pi_{\varphi_{\beta}}(L_p)$ is unitary. Moreover, φ_{β} factors through the quotient of $\mathcal{T}_r(\mathbb{N}^n, \sigma_{\Theta})$ modulo the ideal generated by the projections $\{1 - L_{e_j}L_{e_i}^* | r_j = 0\}$.

♦ WLOG we assume that all the nonzero coordinates of *r* appear at the beginning, so that $r = (r_1, r_2, ..., r_k, 0_d)$ with $r_j > 0$ for j = 1, ..., k.

The gauge action on $\mathcal{T}_r(\mathbb{N}^n, \sigma)$

There is a canonical gauge action γ of \mathbb{T}^n on $\mathcal{T}_r(\mathbb{N}^n, \sigma)$ given by $\gamma_z(L_p) = z^p L_p$ where $z^p := \prod_{i=1}^n z_i^{p_i}$. This yields a faithful conditional expectation

$$E\colon \mathcal{T}_r(\mathbb{N}^n, \sigma_{\Theta}) \to \mathcal{T}_r(\mathbb{N}^n, \sigma_{\Theta})^{\gamma} = \overline{\operatorname{span}}\{L_p L_p^* \mid p \in \mathbb{N}^n\}.$$

Proposition

Let n = k + d with $k, d \in \mathbb{N}$ and let $E^{(k)} := E^{\mathbb{T}^{k} \times \{\mathbf{1}_{d}\}}$ denote the conditional expectation associated to the restriction of the gauge action of \mathbb{T}^{n} to the closed subgroup $\mathbb{T}^{k} \times \{\mathbf{1}_{d}\}$. Then (1) $\mathcal{T}_{r}(\mathbb{N}^{n}, \sigma_{\Theta}) = \overline{\operatorname{span}}\{L_{p}L_{x}L_{y}^{*}L_{q}^{*} \mid p, q \in \mathbb{N}^{k} \times 0_{d}, x, y \in 0_{k} \times \mathbb{N}^{d}\};$ (2) $E^{(k)}(\mathcal{T}_{r}(\mathbb{N}^{n}, \sigma_{\Theta})) = \overline{\operatorname{span}}\{L_{p}L_{x}L_{y}^{*}L_{p}^{*} \mid p \in \mathbb{N}^{k} \times 0_{d}, x, y \in 0_{k} \times \mathbb{N}^{d}\}.$

The gauge action on $\mathcal{T}_r(\mathbb{N}^n, \sigma)$

There is a canonical gauge action γ of \mathbb{T}^n on $\mathcal{T}_r(\mathbb{N}^n, \sigma)$ given by $\gamma_z(\mathcal{L}_p) = z^p \mathcal{L}_p$ where $z^p := \prod_{i=1}^n z_i^{p_i}$. This yields a faithful conditional expectation

$$E: \mathcal{T}_r(\mathbb{N}^n, \sigma_{\Theta}) \to \mathcal{T}_r(\mathbb{N}^n, \sigma_{\Theta})^{\gamma} = \overline{\operatorname{span}}\{L_p L_p^* \mid p \in \mathbb{N}^n\}.$$

Proposition

Let n = k + d with $k, d \in \mathbb{N}$ and let $E^{(k)} := E^{\mathbb{T}^k \times \{\mathbf{1}_d\}}$ denote the conditional expectation associated to the restriction of the gauge action of \mathbb{T}^n to the closed subgroup $\mathbb{T}^k \times \{\mathbf{1}_d\}$. Then (1) $\mathcal{T}_r(\mathbb{N}^n, \sigma_{\Theta}) = \overline{\operatorname{span}}\{L_p L_x L_y^* L_q^* \mid p, q \in \mathbb{N}^k \times 0_d, x, y \in 0_k \times \mathbb{N}^d\};$ (2) $E^{(k)}(\mathcal{T}_r(\mathbb{N}^n, \sigma_{\Theta})) = \overline{\operatorname{span}}\{L_p L_x L_y^* L_p^* \mid p \in \mathbb{N}^k \times 0_d, x, y \in 0_k \times \mathbb{N}^d\}.$

11/18

Proposition

Let n = k + d with $k, d \in \mathbb{N}$ and let α be the dynamics determined by $r = (r_1, \ldots, r_k, 0_d)$. Let $0 < \beta < \infty$ and suppose that φ is a KMS_{β} state of $(\mathcal{T}_r(\mathbb{N}^n, \sigma_{\Theta}), \alpha)$. Then φ restricts to a trace on the C*-subalgebra $C^*(L_x : x \in 0_k \times \mathbb{N}^d)$ and satisfies

$$\varphi(L_p L_x L_y^* L_q^*) = \delta_{p,q} e^{-\beta \langle p \mid r \rangle} \varphi(L_x L_y^*)$$

for all $p, q \in \mathbb{N}^k \times 0_d$ and $x, y \in 0_k \times \mathbb{N}^d$, where $\delta_{p,q}$ is the Kronecker delta.

In particular this implies that KMS_{β} states factor through the conditional expectation $E^{(k)}$.

The restriction of σ_{Θ} to $\mathbf{0}_k \times \mathbb{N}^d$

Consider the projection $Q := \prod_{j=1}^{k} (1 - L_{e_j} L_{e_j}^*)$ in $\mathcal{T}_r(\mathbb{N}^n, \sigma_{\Theta})$. Then:

(1)
$$QL_p = 0 = L_p^*Q$$
 for every $p \in \mathbb{N}^k \times 0_d \setminus \{0\}$;

(2)
$$QL_p^*L_xL_y^*L_p = L_p^*L_xL_y^*L_pQ$$
 for every $x, y \in 0_k \times \mathbb{N}^d$ and $p \in \mathbb{N}^k \times 0_d$;

(3)
$$Q\mathcal{T}_r(\mathbb{N}^n, \sigma_{\Theta})Q = \overline{\operatorname{span}}\{QL_xL_y^*Q \mid x, y \in 0_k \times \mathbb{N}^d\}.$$

Lemma

Let Θ_d denote the lower right $d \times d$ corner of Θ . Then $C^*(L_x : x \in 0_k \times \mathbb{N}^d)$ is canonically isomorphic to the Toeplitz noncommutative torus $\mathcal{T}_r(\mathbb{N}^d, \sigma_{\Theta_d})$, and the map $\rho_Q : C^*(L_x : x \in 0_k \times \mathbb{N}^d) \to Q\mathcal{T}_r(\mathbb{N}^n, \sigma_{\Theta})Q$ given by the compression $X \mapsto QXQ$ is an isomorphism.

KMS_β states from traces on the corner

Suppose that φ is a KMS_{β} state for $(\mathcal{T}_r(\mathbb{N}^n, \sigma_{\Theta}), \alpha)$. Let $Q = \prod_{j=1}^k (1 - L_{e_i} L_{e_i}^*)$. Then $\varphi(Q) > 0$ and $\varphi(Q)^{-1} = Z(\beta)$, where

$$Z(eta)\coloneqq \sum_{oldsymbol{p}\in\mathbb{N}^k imes 0_d} e^{-eta\langleoldsymbol{p}\,|\,oldsymbol{r}
angle}.$$

Proposition

Let $\beta > 0$. For each tracial state ω of the corner $Q\mathcal{T}_r(\mathbb{N}^n, \sigma_{\Theta})Q$, define

$$T_{\beta}(\omega)(X) := \frac{1}{Z(\beta)} \sum_{I \in \mathbb{N}^k \times \mathbf{0}_d} e^{-\beta \langle I \mid r \rangle} \omega(QL_I^* X L_I Q), \qquad X \in \mathcal{T}_r(\mathbb{N}^n, \sigma_{\Theta}).$$

Then T_{β} is an affine weak* homeomorphism of the tracial state space of the corner onto the KMS_{β} state space of $(\mathcal{T}_r(\mathbb{N}^n, \sigma_{\Theta}), \alpha)$.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

KMS_β states from traces on the corner

Suppose that φ is a KMS_{β} state for $(\mathcal{T}_r(\mathbb{N}^n, \sigma_{\Theta}), \alpha)$. Let $Q = \prod_{j=1}^k (1 - L_{e_i} L_{e_i}^*)$. Then $\varphi(Q) > 0$ and $\varphi(Q)^{-1} = Z(\beta)$, where

$$Z(eta)\coloneqq \sum_{oldsymbol{p}\in\mathbb{N}^k imes 0_d} e^{-eta\langle oldsymbol{p}\,|\,oldsymbol{r}
angle}.$$

Proposition

Let $\beta > 0$. For each tracial state ω of the corner $Q\mathcal{T}_r(\mathbb{N}^n, \sigma_{\Theta})Q$, define

$$T_{\beta}(\omega)(X) \coloneqq \frac{1}{Z(\beta)} \sum_{I \in \mathbb{N}^{k} \times \mathbf{0}_{d}} e^{-\beta \langle I | r \rangle} \omega(QL_{I}^{*}XL_{I}Q), \qquad X \in \mathcal{T}_{r}(\mathbb{N}^{n}, \sigma_{\Theta}).$$

Then T_{β} is an affine weak* homeomorphism of the tracial state space of the corner onto the KMS_{β} state space of $(\mathcal{T}_r(\mathbb{N}^n, \sigma_{\Theta}), \alpha)$.

Proposition

Let ρ_Q : $C^*(L_x \mid x \in 0_k \times \mathbb{N}^d) \to Q\mathcal{T}_r(\mathbb{N}^n, \sigma_{\Theta})Q$ be the compression by the projection Q. For each tracial state τ of $\mathcal{T}_r(\mathbb{N}^d, \sigma_{\Theta_d})$ there is a KMS_β state of $(\mathcal{T}_r(\mathbb{N}^n, \sigma_{\Theta}), \alpha)$ determined by

$$T_{\beta}(\tau \circ \rho_{Q}^{-1})(L_{p}L_{x}L_{y}^{*}L_{q}^{*}) = \delta_{p,q} \tau(L_{x}L_{y}^{*}) \prod_{j=1}^{k} \frac{e^{-\beta r_{j}p_{j}}(1-e^{-\beta r_{j}})}{1-e^{-\beta r_{j}+2\pi i \langle \Theta(x-y) | e_{j} \rangle}},$$

where $x, y \in 0_k \times \mathbb{N}^d \cong \mathbb{N}^d$. The map $\tau \mapsto T_\beta(\tau \circ \rho_Q^{-1})$ is an affine weak* homeomorphism of the tracial state space of $\mathcal{T}_r(\mathbb{N}^d, \sigma_{\Theta_d})$ onto the simplex of KMS_β states of $(\mathcal{T}_r(\mathbb{N}^n, \sigma_{\Theta}), \alpha)$.

Traces on higher-rank noncommutative tori

Let D be an antisymmetric, real, $d \times d$ matrix.

 \diamond The degeneracy index of D is $m := \operatorname{rank} H$ where H is the subgroup

$$H := \{ x \in \mathbb{Z}^d \mid \langle x \mid Dy \rangle \in \mathbb{Z} \text{ for all } y \in \mathbb{Z}^d \}.$$

◇ A_D is simple iff D is nondegenerate (i.e. m = 0) (Slawny; Phillips).
 ◇ There is an action of a compact group

$$\Lambda = \mathbb{Z}_{a_1} \times \cdots \mathbb{Z}_{a_m} \times \mathbb{T}^{d-m} \subset \mathbb{T}^d$$

whose fixed-point algebra is the center $Z(\mathcal{A}_D)$ of \mathcal{A}_D . $\geq Z(\mathcal{A}_D)$ is isomorphic to $C(\mathbb{T}^m)$.

Proposition

Let $E^{\wedge}: \mathcal{A}_D \to Z(\mathcal{A}_D)$ be the canonical conditional expectation associated to the action of Λ . Then the map $\omega \mapsto \omega \circ E^{\wedge}$ is an affine homeomorphism of the state space of $Z(\mathcal{A}_D)$ onto the space of tracial states of \mathcal{A}_D .

Traces on higher-rank noncommutative tori

Let D be an antisymmetric, real, $d \times d$ matrix.

 \diamond The degeneracy index of D is $m := \operatorname{rank} H$ where H is the subgroup

$$H := \{ x \in \mathbb{Z}^d \mid \langle x \mid Dy \rangle \in \mathbb{Z} \text{ for all } y \in \mathbb{Z}^d \}.$$

◇ A_D is simple iff D is nondegenerate (i.e. m = 0) (Slawny; Phillips).
 ◊ There is an action of a compact group

$$\Lambda = \mathbb{Z}_{a_1} \times \cdots \mathbb{Z}_{a_m} \times \mathbb{T}^{d-m} \subset \mathbb{T}^d$$

whose fixed-point algebra is the center $Z(\mathcal{A}_D)$ of \mathcal{A}_D . > $Z(\mathcal{A}_D)$ is isomorphic to $C(\mathbb{T}^m)$.

Proposition

Let $E^{\Lambda}: \mathcal{A}_D \to Z(\mathcal{A}_D)$ be the canonical conditional expectation associated to the action of Λ . Then the map $\omega \mapsto \omega \circ E^{\Lambda}$ is an affine homeomorphism of the state space of $Z(\mathcal{A}_D)$ onto the space of tracial states of \mathcal{A}_D .

Traces on higher-rank noncommutative tori

Let D be an antisymmetric, real, $d \times d$ matrix.

 \diamond The degeneracy index of D is $m := \operatorname{rank} H$ where H is the subgroup

$$H := \{ x \in \mathbb{Z}^d \mid \langle x \mid Dy \rangle \in \mathbb{Z} \text{ for all } y \in \mathbb{Z}^d \}.$$

◇ A_D is simple iff D is nondegenerate (i.e. m = 0) (Slawny; Phillips).
◇ There is an action of a compact group

$$\Lambda = \mathbb{Z}_{a_1} \times \cdots \mathbb{Z}_{a_m} \times \mathbb{T}^{d-m} \subset \mathbb{T}^d$$

whose fixed-point algebra is the center $Z(A_D)$ of A_D .

 $\diamond Z(\mathcal{A}_D)$ is isomorphic to $C(\mathbb{T}^m)$.

Proposition

Let $E^{\Lambda}: \mathcal{A}_D \to Z(\mathcal{A}_D)$ be the canonical conditional expectation associated to the action of Λ . Then the map $\omega \mapsto \omega \circ E^{\Lambda}$ is an affine homeomorphism of the state space of $Z(\mathcal{A}_D)$ onto the space of tracial states of \mathcal{A}_D .

The main theorem: a parametrisation of KMS_β states

Theorem (Afsar-Laca-Ramagge-S.,21) Let $\Theta = \begin{bmatrix} \Theta_k & \Lambda \\ -\Lambda^T & \Theta_d \end{bmatrix}$ and let *m* be the degeneracy index of Θ_d . Then there is an affine weak* homeomorphism of the space $M_1(\mathbb{T}^m)$ of probability measures on \mathbb{T}^m onto the space of KMS_{β} states of $(\mathcal{T}_r(\mathbb{N}^n, \sigma_{\Theta}), \alpha^r)$. If { p_1, \ldots, p_d } is a basis for \mathbb{Z}^d such that { a_1p_1, \ldots, a_mp_m } is a basis for *H* then the homeomorphism can be chosen so that the extremal KMS_{β} state $\varphi_{\beta,z}$ associated to the unit point mass at $z \in \mathbb{T}^m$ is given by

$$\varphi_{\beta,z}(L_p L_x L_y^* L_q^*) = \delta_{p,q} \left[x - y \in H \right] \lambda_{x-y} z^c \prod_{j=1}^n \frac{e^{-\beta r_j + j} (1 - e^{-\beta r_j})}{1 - e^{-\beta r_j + 2\pi i \langle \Theta(x-y) | e_j \rangle}}$$

where $c = (c_1, ..., c_m)$ is the vector of coefficients of x - y with respect to the basis $\{a_1p_1, ..., a_mp_m\}$ of H and $\lambda_{x-y} \in \{-1, 1\}$.

Camila F. Sehnem

May 25, 2023

17 / 18

イロト 不得 トイラト イラト 二日

Theorem (Afsar-Laca-Ramagge-S.,21) Let $\Theta = \begin{bmatrix} \Theta_k & \Lambda \\ -\Lambda^T & \Theta_d \end{bmatrix}$ and let *m* be the degeneracy index of Θ_d . Then there is an affine weak* homeomorphism of the space $M_1(\mathbb{T}^m)$ of probability measures on \mathbb{T}^m onto the space of KMS_{β} states of $(\mathcal{T}_r(\mathbb{N}^n, \sigma_{\Theta}), \alpha^r)$. If $\{p_1, \ldots, p_d\}$ is a basis for \mathbb{Z}^d such that $\{a_1p_1, \ldots, a_mp_m\}$ is a basis for *H* then the homeomorphism can be chosen so that the extremal KMS_{β} state $\varphi_{\beta,z}$ associated to the unit point mass at $z \in \mathbb{T}^m$ is given by

$$\varphi_{\beta,z}(L_p L_x L_y^* L_q^*) = \delta_{p,q} \left[x - y \in H \right] \lambda_{x-y} z^c \prod_{j=1}^k \frac{e^{-\beta r_j p_j} (1 - e^{-\beta r_j})}{1 - e^{-\beta r_j + 2\pi i \langle \Theta(x-y) \mid e_j \rangle}}$$

where $c = (c_1, \ldots, c_m)$ is the vector of coefficients of x - y with respect to the basis $\{a_1p_1, \ldots, a_mp_m\}$ of H and $\lambda_{x-y} \in \{-1, 1\}$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

Thanks!

	< □ ▶ <		E
Camila F. Sehnem	Equilibrium on Toeplitz noncommutative tori	May 25, 2023	18 / 18