Equilibrium on Toeplitz extensions of higher dimensional noncommutative tori

Camila F. Sehnem

University of Waterloo

joint work with Z. Afsar, M. Laca and J. Ramagge

$$
\begin{gathered}
\text { Canadian Operator Symposium - COSy } \\
\text { Western University } \\
\text { May } 25,2023
\end{gathered}
$$

Dimension 2: rotation algebras

\diamond Let $\theta \in \mathbb{R}$. The rotation algebra \mathcal{A}_{θ} is the universal C*-algebra generated by two unitaries U and V satisfying the relation

$$
U V=e^{-2 \pi i \theta} V U
$$

the C^{*}-algebra \mathcal{A}_{θ} is also known as noncommutative torus.

Alternatively, \mathcal{A}_{θ} can be viewed as a twisted group C^{*}-algebra $\mathrm{C}^{*}\left(\mathbb{Z}^{2}, \sigma_{\Theta}\right)$, where the 2-cocycle $\sigma_{\Theta}: \mathbb{Z}^{2} \times \mathbb{Z}^{2} \rightarrow \mathbb{T}$ is given by

Dimension 2: rotation algebras

\diamond Let $\theta \in \mathbb{R}$. The rotation algebra \mathcal{A}_{θ} is the universal C^{*}-algebra generated by two unitaries U and V satisfying the relation

$$
U V=e^{-2 \pi i \theta} V U
$$

the C^{*}-algebra \mathcal{A}_{θ} is also known as noncommutative torus.
$\diamond \mathcal{A}_{\theta}$ can also be described as the crossed product of $\mathrm{C}(\mathbb{T})$ by the automorphism induced by rotation by θ :

$$
\varphi(f)(z):=f\left(e^{-2 \pi i \theta} z\right), \quad f \in \mathbb{C}(\mathbb{T}), z \in \mathbb{T}
$$

Alternatively, \mathcal{A}_{θ} can be viewed as a twisted group C^{*}-algebra $\mathrm{C}^{*}\left(\mathbb{Z}^{2}, \sigma_{\Theta}\right)$, where the 2-cocycle $\sigma_{\Theta}: \mathbb{Z}^{2} \times \mathbb{Z}^{2} \rightarrow \mathbb{T}$ is given by
where Θ is the antisymmetric matrix $\left(a_{i j}\right)$ i, such that $\underset{4}{a 12} \overline{=} \theta$.

Dimension 2: rotation algebras

\diamond Let $\theta \in \mathbb{R}$. The rotation algebra \mathcal{A}_{θ} is the universal C^{*}-algebra generated by two unitaries U and V satisfying the relation

$$
U V=e^{-2 \pi i \theta} V U
$$

the C^{*}-algebra \mathcal{A}_{θ} is also known as noncommutative torus.
$\diamond \mathcal{A}_{\theta}$ can also be described as the crossed product of $\mathrm{C}(\mathbb{T})$ by the automorphism induced by rotation by θ :

$$
\varphi(f)(z):=f\left(e^{-2 \pi i \theta} z\right), \quad f \in \mathbb{C}(\mathbb{T}), z \in \mathbb{T}
$$

\diamond Alternatively, \mathcal{A}_{θ} can be viewed as a twisted group C^{*}-algebra $\mathrm{C}^{*}\left(\mathbb{Z}^{2}, \sigma_{\Theta}\right)$, where the 2-cocycle $\sigma_{\Theta}: \mathbb{Z}^{2} \times \mathbb{Z}^{2} \rightarrow \mathbb{T}$ is given by

$$
\sigma_{\Theta}(x, y):=e^{-\pi i\langle x \mid \Theta y\rangle}
$$

where Θ is the antisymmetric matrix $\left(a_{i j}\right)_{i, j}$ such that $a_{12}=\theta$.

Dimension 2: rotation algebras

\diamond Let $\theta \in \mathbb{R}$. The rotation algebra \mathcal{A}_{θ} is the universal C^{*}-algebra generated by two unitaries U and V satisfying the relation

$$
U V=e^{-2 \pi i \theta} V U
$$

the C^{*}-algebra \mathcal{A}_{θ} is also known as noncommutative torus.
$\diamond \mathcal{A}_{\theta}$ can also be described as the crossed product of $\mathrm{C}(\mathbb{T})$ by the automorphism induced by rotation by θ :

$$
\varphi(f)(z):=f\left(e^{-2 \pi i \theta} z\right), \quad f \in \mathbb{C}(\mathbb{T}), z \in \mathbb{T}
$$

\diamond Alternatively, \mathcal{A}_{θ} can be viewed as a twisted group C^{*}-algebra $\mathrm{C}^{*}\left(\mathbb{Z}^{2}, \sigma_{\Theta}\right)$, where the 2-cocycle $\sigma_{\Theta}: \mathbb{Z}^{2} \times \mathbb{Z}^{2} \rightarrow \mathbb{T}$ is given by

$$
\sigma_{\Theta}(x, y):=e^{-\pi i\langle x \mid \Theta y\rangle}
$$

where Θ is the antisymmetric matrix $\left(a_{i j}\right)_{i, j}$ such that $a_{12}=\theta$.

Motivation from noncommutative solenoids

\diamond Solenoids are inverse limits of tori, and so the algebra of continuous functions on a solenoid is a direct limit of $\mathrm{C}(\mathbb{T})$;
\diamond Latremoliere-Packer, '18 defined noncommutative solenoids: certain twisted group algebras of abelian discrete groups $\mathbb{Q}_{N} \times \mathbb{Q}_{N}$, where \mathbb{Q}_{N} has a solenoid as its Pontryagin dual.
\diamond A noncommutative solenoid is a direct limit of noncommutative tori $\underset{\longrightarrow}{\lim }\left(\mathcal{A}_{\theta_{n}}, \psi_{n}\right)$;
\diamond Toeplitz noncommutative solenoid by Brownlowe-Hawkins-Sims, '17: replaced one unitary generator of $\mathcal{A}_{\theta_{n}}$ by an isometry and considered the KMS state structure of the resulting direct limit.

Higher-rank noncommutative tori

\diamond The algebra of continuous functions $\mathrm{C}\left(\mathbb{T}^{n}\right)$ is (isomorphic to) the universal C^{*}-algebra generated by n commuting unitaries, where \mathbb{T} is the unit circle; equivalently, $\mathrm{C}\left(\mathbb{T}^{n}\right)$ is the group C^{*}-algebra $\mathrm{C}^{*}\left(\mathbb{Z}^{n}\right)$.
\diamond Let $\Theta=\left(\theta_{i, j}\right)$ be an $n \times n$ antisymmetric matrix with real coefficients.
The n-dimensional noncommutative torus \mathcal{A}_{Θ} is the universal C^{*}-algebra generated by unitaries U_{1}, \ldots, U_{n} satisfying

$$
U_{j} U_{k}=e^{-2 \pi i \theta_{j, k}} U_{k} U_{j} \quad j, k=1,2, \ldots, n
$$

\diamond The matrix Θ determines a 2-cocycle $\sigma_{\Theta}: \mathbb{Z}^{n} \times \mathbb{Z}^{n} \rightarrow \mathbb{T}$ by

$$
\sigma_{\Theta}(x, y):=e^{-\pi i\langle x \mid \Theta y\rangle}
$$

and \mathcal{A}_{Θ} is isomorphic to the twisted group C^{*}-algebra $\mathrm{C}^{*}\left(\mathbb{Z}^{n}, \sigma_{\Theta}\right)$.

A Toeplitz extension of a noncommutative torus

Let $n=k+d$ and $\Lambda \in M_{k, d}(\mathbb{R})$. Afsar-an Huef-Raeburn-Sims, '19 defined the higher-rank Toeplitz noncommutative torus B_{\wedge} as the universal C^{*}-algebra generated by a Nica-covariant isometric representation $V: \mathbb{N}^{k} \rightarrow B_{\Lambda}$ and a unitary representation $U: \mathbb{Z}^{d} \rightarrow B_{\Lambda}$ satisfying relations encoded in Λ.

A vector $r \in(0, \infty)^{k}$ determines a strongly continuous one-parameter
automorphism group $\left\{\alpha_{t}^{r} \mid t \in \mathbb{R}\right\}$ of B_{\wedge} characterised by

AaHRS studied the KMS state structure for the dynamics α^{r}, and also considered certain direct limits $\underset{\longrightarrow}{\lim }\left(B_{\Lambda_{n}}, \psi_{n}\right)$, called higher-rank noncommutative solenoids.

A Toeplitz extension of a noncommutative torus

Let $n=k+d$ and $\Lambda \in M_{k, d}(\mathbb{R})$. Afsar-an Huef-Raeburn-Sims, '19 defined the higher-rank Toeplitz noncommutative torus B_{Λ} as the universal C^{*}-algebra generated by a Nica-covariant isometric representation $V: \mathbb{N}^{k} \rightarrow B_{\Lambda}$ and a unitary representation $U: \mathbb{Z}^{d} \rightarrow B_{\Lambda}$ satisfying relations encoded in Λ.
\diamond A vector $r \in(0, \infty)^{k}$ determines a strongly continuous one-parameter automorphism group $\left\{\alpha_{t}^{r} \mid t \in \mathbb{R}\right\}$ of B_{Λ} characterised by

$$
\alpha_{t}^{r}\left(V_{p}\right)=e^{i\langle p \mid r\rangle t} V_{p}, \quad \alpha_{t}^{r}\left(U_{x}\right)=U_{x} \quad\left(p \in \mathbb{N}^{k}, x \in \mathbb{Z}^{d}\right)
$$

\diamond AaHRS studied the KMS state structure for the dynamics α^{r}, and also considered certain direct limits $\underset{\longrightarrow}{\lim }\left(B_{\Lambda_{n}}, \psi_{n}\right)$, called higher-rank noncommutative solenoids.

An approach using twisted semigroup C^{*}-algebras of \mathbb{N}^{n}

Let $n=k+d$ and let $\Theta=\left(\theta_{i, j}\right)$ be an $n \times n$ antisymmetric matrix with real coefficients, and let $\sigma_{\Theta}: \mathbb{Z}^{n} \times \mathbb{Z}^{n} \rightarrow \mathbb{T}$ be given by $\sigma_{\Theta}(x, y):=e^{-\pi i\langle x \mid \Theta y\rangle}$. Let $\left\{\delta_{q} \mid q \in \mathbb{N}^{n}\right\}$ be the canonical orthonormal basis of $\ell^{2}\left(\mathbb{N}^{n}\right)$. Then for each $p \in \mathbb{N}^{n}$, the map L_{p}^{σ} defined by

$$
L_{p}^{\sigma} \delta_{q}:=\sigma_{\Theta}(p, q) \delta_{p+q}, \quad\left(q \in \mathbb{N}^{n}\right)
$$

induces an isometric σ_{Θ}-representation of \mathbb{N}^{n} such that

$$
\left(L_{p}^{\sigma}\right)^{*}\left(L_{q}^{\sigma}\right)=\overline{\sigma(p,(p \vee q)-p)} \sigma(q,(p \vee q)-q) L_{-p+(p \vee q)}^{\sigma} L_{-q+(p \vee q)}^{\sigma} .
$$

Definition (Afsar-Laca-Ramagge-S., '21)

The n-dimensional Toeplitz noncommutative torus associated to Θ is the twisted semigroup C^{*}-algebra $\mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma_{\Theta}\right)$.

Relationship to AaHRS's Toeplitz noncommutative tori

Proposition (Afsar-Laca-Ramagge-S., 21)

Suppose k and d are nonnegative integers with $n=k+d$. For each rectangular $k \times d$ matrix $\Lambda \in M_{k, d}([0, \infty))$ define $\Theta \in M_{k+d}(\mathbb{R})$ by

$$
\Theta:=\left[\begin{array}{c|c}
0_{k \times k} & \Lambda \\
\hline-\Lambda^{T} & 0_{d \times d}
\end{array}\right]
$$

Then the C^{*}-algebra B_{\wedge} associated to \wedge by $A a H R S$ is canonically isomorphic to the quotient of $\mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma_{\Theta}\right)$ by the ideal generated by the projections $1-L_{e_{j}} L_{e_{j}}^{*}$ for $j=k+1, k+2, \ldots, k+d$.

$\mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma_{\Theta}\right)$ as an extension of \mathcal{A}_{\ominus}

Proposition

The map that sends an isometry $L_{p} \in \mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma_{\Theta}\right)$ to the unitary $\lambda_{p} \in \mathrm{C}_{r}^{*}\left(\mathbb{Z}^{n}, \tilde{\sigma}_{\Theta}\right) \cong \mathcal{A}_{\Theta}$ determines an exact sequence

$$
0 \rightarrow \mathcal{I} \rightarrow \mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma_{\Theta}\right) \rightarrow \mathcal{A}_{\Theta} \rightarrow 0
$$

where \mathcal{I} is the ideal of $\mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma_{\Theta}\right)$ generated by the projections

$$
\left\{1-L_{e_{j}} L_{e_{j}}^{*} \mid j=1, \ldots, n\right\}
$$

$\mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma_{\Theta}\right)$ can also be described as the universal C^{*}-algebra generated by isometries $\left\{w_{j} \mid j \in\{1, \ldots, n\}\right\}$ satisfying the relations

$$
\begin{cases}w_{j} w_{k}=e^{-2 \pi i \theta_{j, k}} w_{k} w_{j} & j, k=1,2, \ldots, n ; \\ w_{j}^{*} w_{k}=e^{2 \pi i \theta_{j, k}} w_{k} w_{j}^{*} & j \neq k\end{cases}
$$

The dynamics on $\mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma_{\Theta}\right)$

Let $r \in \mathbb{R}^{n}$ and consider the dynamics $\alpha^{r}: \mathbb{R} \rightarrow \operatorname{Aut}\left(\mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma_{\Theta}\right)\right)$,

$$
\alpha_{t}^{r}\left(L_{p}\right)=e^{i\langle p \mid r\rangle t} L_{p} \quad\left(p \in \mathbb{N}^{n}, t \in \mathbb{R}\right)
$$

Let $\beta \in \mathbb{R}$. A state φ of $\mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma_{\Theta}\right)$ is a KMS_{β} state for $\left(\mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma_{\Theta}, \alpha^{r}\right)\right.$ if it satisfies the KMS_{β} condition for $A \alpha^{r}$-analytic and $B \in \mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma_{\Theta}\right)$

$$
\varphi(A B)=\varphi\left(B \alpha_{i \beta}^{r}(A)\right)
$$

If φ is a KMS_{β} state for α^{r}, then $e^{-\langle p \mid r\rangle \beta}=\varphi\left(L_{p} L_{p}^{*}\right) \leq 1$.
state; similarly, if $\beta<0$ and $r_{j}>0$ for some $j \in\{1,2, \ldots, n\}$, then
there is no KMS_{β} state.

The dynamics on $\mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma_{\Theta}\right)$

Let $r \in \mathbb{R}^{n}$ and consider the dynamics $\alpha^{r}: \mathbb{R} \rightarrow \operatorname{Aut}\left(\mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma_{\Theta}\right)\right)$,

$$
\alpha_{t}^{r}\left(L_{p}\right)=e^{i\langle p \mid r\rangle t} L_{p} \quad\left(p \in \mathbb{N}^{n}, t \in \mathbb{R}\right)
$$

Let $\beta \in \mathbb{R}$. A state φ of $\mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma_{\Theta}\right)$ is a KMS_{β} state for $\left(\mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma_{\Theta}, \alpha^{r}\right)\right.$ if it satisfies the KMS_{β} condition for $A \alpha^{r}$-analytic and $B \in \mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma_{\Theta}\right)$

$$
\varphi(A B)=\varphi\left(B \alpha_{i \beta}^{r}(A)\right)
$$

If φ is a KMS_{β} state for α^{r}, then $e^{-\langle p \mid r\rangle \beta}=\varphi\left(L_{p} L_{p}^{*}\right) \leq 1$. So:
\diamond If $\beta>0$ and $r_{j}<0$ for some $j \in\{1,2, \ldots, n\}$, then there is no KMS_{β} state; similarly, if $\beta<0$ and $r_{j}>0$ for some $j \in\{1,2, \ldots, n\}$, then there is no KMS_{β} state.

On the vanishing coordinates of r

We work with $\beta>0$ and so we fix a vector $r \in[0, \infty)^{n}$, and simply write α instead of α^{r}.

Lemma

Let φ_{β} be a KMS_{β} state of $\left(\mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma_{\Theta}\right), \alpha\right)$. Let $\left(\mathcal{H}_{\varphi_{\beta}}, \pi_{\varphi_{\beta}}\right)$ denote the associated GNS representation. If $p \in \mathbb{N}^{n}$ and $\langle p \mid r\rangle=0$, then $\pi_{\varphi_{\beta}}\left(L_{p}\right)$ is unitary. Moreover, φ_{β} factors through the quotient of $\mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma_{\Theta}\right)$ modulo the ideal generated by the projections $\left\{1-L_{e_{j}} L_{e_{j}}^{*} \mid r_{j}=0\right\}$.
\diamond WLOG we assume that all the nonzero coordinates of r appear at the beginning, so that $r=\left(r_{1}, r_{2}, \ldots r_{k}, 0_{d}\right)$ with $r_{j}>0$ for $j=1, \ldots, k$.

On the vanishing coordinates of r

We work with $\beta>0$ and so we fix a vector $r \in[0, \infty)^{n}$, and simply write α instead of α^{r}.

Lemma

Let φ_{β} be a KMS_{β} state of $\left(\mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma_{\Theta}\right), \alpha\right)$. Let $\left(\mathcal{H}_{\varphi_{\beta}}, \pi_{\varphi_{\beta}}\right)$ denote the associated GNS representation. If $p \in \mathbb{N}^{n}$ and $\langle p \mid r\rangle=0$, then $\pi_{\varphi_{\beta}}\left(L_{p}\right)$ is unitary. Moreover, φ_{β} factors through the quotient of $\mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma_{\Theta}\right)$ modulo the ideal generated by the projections $\left\{1-L_{e_{j}} L_{e_{j}}^{*} \mid r_{j}=0\right\}$.
\diamond WLOG we assume that all the nonzero coordinates of r appear at the beginning, so that $r=\left(r_{1}, r_{2}, \ldots r_{k}, 0_{d}\right)$ with $r_{j}>0$ for $j=1, \ldots, k$.

The gauge action on $\mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma\right)$

There is a canonical gauge action γ of \mathbb{T}^{n} on $\mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma\right)$ given by $\gamma_{z}\left(L_{p}\right)=z^{p} L_{p}$ where $z^{p}:=\prod_{i=1}^{n} z_{i}^{p_{i}}$. This yields a faithful conditional expectation

$$
E: \mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma_{\Theta}\right) \rightarrow \mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma_{\Theta}\right)^{\gamma}=\overline{\operatorname{span}}\left\{L_{p} L_{p}^{*} \mid p \in \mathbb{N}^{n}\right\} .
$$

Proposition

Let $n=k+d$ with $k, d \in \mathbb{N}$ and let $E^{(k)}:=E^{\mathbb{T}^{k} \times\left\{11_{d}\right\}}$ denote the
conditional expectation associated to the restriction of the gauge action of \mathbb{T}^{n} to the closed subgroup $\mathbb{T}^{k} \times\left\{1_{d}\right\}$. Then (1) $\mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma_{\Theta}\right)=\operatorname{span}\left\{L_{p} L_{x} L_{y}^{*} L_{q}^{*} \mid p, q \in \mathbb{N}^{k} \times 0_{d}, x, y \in 0_{k} \times \mathbb{N}^{d}\right\}$;
\square

The gauge action on $\mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma\right)$

There is a canonical gauge action γ of \mathbb{T}^{n} on $\mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma\right)$ given by $\gamma_{z}\left(L_{p}\right)=z^{p} L_{p}$ where $z^{p}:=\prod_{i=1}^{n} z_{i}^{p_{i}}$. This yields a faithful conditional expectation

$$
E: \mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma_{\Theta}\right) \rightarrow \mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma_{\Theta}\right)^{\gamma}=\overline{\operatorname{span}}\left\{L_{p} L_{p}^{*} \mid p \in \mathbb{N}^{n}\right\}
$$

Proposition

Let $n=k+d$ with $k, d \in \mathbb{N}$ and let $E^{(k)}:=E^{\mathbb{T}^{k} \times\left\{1_{d}\right\}}$ denote the conditional expectation associated to the restriction of the gauge action of \mathbb{T}^{n} to the closed subgroup $\mathbb{T}^{k} \times\left\{1_{d}\right\}$. Then
(1) $\mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma_{\Theta}\right)=\overline{\operatorname{span}}\left\{L_{p} L_{x} L_{y}^{*} L_{q}^{*} \mid p, q \in \mathbb{N}^{k} \times 0_{d}, x, y \in 0_{k} \times \mathbb{N}^{d}\right\}$;
(2) $E^{(k)}\left(\mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma_{\Theta}\right)\right)=\overline{\operatorname{span}}\left\{L_{p} L_{x} L_{y}^{*} L_{p}^{*} \mid p \in \mathbb{N}^{k} \times 0_{d}, x, y \in 0_{k} \times \mathbb{N}^{d}\right\}$.

A characterisation of KMS_{β} states of $\left(\mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma_{\Theta}\right), \alpha\right)$

Proposition

Let $n=k+d$ with $k, d \in \mathbb{N}$ and let α be the dynamics determined by $r=\left(r_{1}, \ldots, r_{k}, 0_{d}\right)$. Let $0<\beta<\infty$ and suppose that φ is a KMS_{β} state of $\left(\mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma_{\Theta}\right), \alpha\right)$. Then φ restricts to a trace on the C^{*}-subalgebra $\mathrm{C}^{*}\left(L_{x}: x \in 0_{k} \times \mathbb{N}^{d}\right)$ and satisfies

$$
\varphi\left(L_{p} L_{x} L_{y}^{*} L_{q}^{*}\right)=\delta_{p, q} e^{-\beta\langle p \mid r\rangle} \varphi\left(L_{x} L_{y}^{*}\right)
$$

for all $p, q \in \mathbb{N}^{k} \times 0_{d}$ and $x, y \in 0_{k} \times \mathbb{N}^{d}$, where $\delta_{p, q}$ is the Kronecker delta.
In particular this implies that KMS_{β} states factor through the conditional expectation $E^{(k)}$.

The restriction of σ_{Θ} to $0_{k} \times \mathbb{N}^{d}$

Consider the projection $Q:=\prod_{j=1}^{k}\left(1-L_{e_{i}} L_{e_{i}}^{*}\right)$ in $\mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma_{\Theta}\right)$. Then:
(1) $Q L_{p}=0=L_{p}^{*} Q$ for every $p \in \mathbb{N}^{k} \times 0_{d} \backslash\{0\}$;
(2) $Q L_{p}^{*} L_{x} L_{y}^{*} L_{p}=L_{p}^{*} L_{x} L_{y}^{*} L_{p} Q$ for every $x, y \in 0_{k} \times \mathbb{N}^{d}$ and $p \in \mathbb{N}^{k} \times 0_{d}$;
(3) $Q \mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma_{\Theta}\right) Q=\overline{\operatorname{span}}\left\{Q L_{x} L_{y}^{*} Q \mid x, y \in 0_{k} \times \mathbb{N}^{d}\right\}$.

Lemma

Let Θ_{d} denote the lower right $d \times d$ corner of Θ. Then $\mathrm{C}^{*}\left(L_{x}: x \in 0_{k} \times \mathbb{N}^{d}\right)$ is canonically isomorphic to the Toeplitz noncommutative torus $\mathcal{T}_{r}\left(\mathbb{N}^{d}, \sigma_{\Theta_{d}}\right)$, and the map $\rho_{Q}: \mathrm{C}^{*}\left(L_{x}: x \in 0_{k} \times \mathbb{N}^{d}\right) \rightarrow Q \mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma_{\Theta}\right) Q$ given by the compression $X \mapsto Q X Q$ is an isomorphism.

KMS_{β} states from traces on the corner

Suppose that φ is a KMS_{β} state for $\left(\mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma_{\Theta}\right), \alpha\right)$. Let $Q=\prod_{j=1}^{k}\left(1-L_{e_{i}} L_{e_{i}}^{*}\right)$. Then $\varphi(Q)>0$ and $\varphi(Q)^{-1}=Z(\beta)$, where

$$
Z(\beta):=\sum_{p \in \mathbb{N}^{k} \times 0_{d}} e^{-\beta\langle p \mid r\rangle} .
$$

Proposition

Let $\beta>0$. For each tracial state ω of the corner $Q T_{r}\left(\mathbb{N}^{n}, \sigma_{\ominus}\right) Q$, define

Then T_{β} is an affine weak* homeomorphism of the tracial state space of the corner onto the KMS_{β} state space of $\left(\mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma_{\Theta}\right), \alpha\right)$

KMS_{β} states from traces on the corner

Suppose that φ is a KMS_{β} state for $\left(\mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma_{\Theta}\right), \alpha\right)$. Let
$Q=\prod_{j=1}^{k}\left(1-L_{e_{i}} L_{e_{i}}^{*}\right)$. Then $\varphi(Q)>0$ and $\varphi(Q)^{-1}=Z(\beta)$, where

$$
Z(\beta):=\sum_{p \in \mathbb{N}^{k} \times 0_{d}} e^{-\beta\langle p \mid r\rangle} .
$$

Proposition

Let $\beta>0$. For each tracial state ω of the corner $Q \mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma_{\Theta}\right) Q$, define

$$
T_{\beta}(\omega)(X):=\frac{1}{Z(\beta)} \sum_{I \in \mathbb{N}^{k} \times 0_{d}} e^{-\beta\langle ||r\rangle} \omega\left(Q L_{l}^{*} X L_{l} Q\right), \quad X \in \mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma_{\Theta}\right)
$$

Then T_{β} is an affine weak* homeomorphism of the tracial state space of the corner onto the KMS_{β} state space of $\left(\mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma_{\Theta}\right), \alpha\right)$.

KMS_{β} states from traces on a noncommutative torus

Proposition

Let $\rho_{Q}: \mathrm{C}^{*}\left(L_{x} \mid x \in 0_{k} \times \mathbb{N}^{d}\right) \rightarrow Q \mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma_{\Theta}\right) Q$ be the compression by the projection Q. For each tracial state τ of $\mathcal{T}_{r}\left(\mathbb{N}^{d}, \sigma_{\Theta_{d}}\right)$ there is a KMS_{β} state of $\left(\mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma_{\Theta}\right), \alpha\right)$ determined by

$$
T_{\beta}\left(\tau \circ \rho_{Q}^{-1}\right)\left(L_{p} L_{x} L_{y}^{*} L_{q}^{*}\right)=\delta_{p, q} \tau\left(L_{x} L_{y}^{*}\right) \prod_{j=1}^{k} \frac{e^{-\beta r_{j} p_{j}}\left(1-e^{-\beta r_{j}}\right)}{1-e^{-\beta r_{j}+2 \pi i\left(\Theta(x-y)\left|e_{j}\right\rangle\right.}},
$$

where $x, y \in 0_{k} \times \mathbb{N}^{d} \cong \mathbb{N}^{d}$. The map $\tau \mapsto T_{\beta}\left(\tau \circ \rho_{Q}^{-1}\right)$ is an affine weak* homeomorphism of the tracial state space of $\mathcal{T}_{r}\left(\mathbb{N}^{d}, \sigma_{\Theta_{d}}\right)$ onto the simplex of KMS_{β} states of $\left(\mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma_{\Theta}\right), \alpha\right)$.

Traces on higher-rank noncommutative tori

Let D be an antisymmetric, real, $d \times d$ matrix.
\diamond The degeneracy index of D is $m:=$ rank H where H is the subgroup

$$
H:=\left\{x \in \mathbb{Z}^{d} \mid\langle x \mid D y\rangle \in \mathbb{Z} \text { for all } y \in \mathbb{Z}^{d}\right\}
$$

> \mathcal{A}_{D} is simple iff D is nondegenerate (i.e. $m=0$) (Slawny; Phillips)
> There is an action of a compact group

whose fixed-point algebra is the center $Z\left(\mathcal{A}_{D}\right)$ of \mathcal{A}_{D}.
$\mathrm{Z}\left(\mathcal{A}_{D}\right)$ is isomorphic to $\mathrm{C}\left(\mathbb{T}^{m}\right)$.

Proposition

Let $E^{\wedge}: \mathcal{A}_{D} \rightarrow Z\left(\mathcal{A}_{D}\right)$ be the canonical conditional expectation associated
to the action of Λ. Then the map $\omega \mapsto \omega \circ E^{\wedge}$ is an affine homeomorphism
of the state space of $\mathrm{Z}\left(\mathcal{A}_{D}\right)$ onto the space of tracial states of \mathcal{A}_{D}.

Traces on higher-rank noncommutative tori

Let D be an antisymmetric, real, $d \times d$ matrix.
\diamond The degeneracy index of D is $m:=$ rank H where H is the subgroup

$$
H:=\left\{x \in \mathbb{Z}^{d} \mid\langle x \mid D y\rangle \in \mathbb{Z} \text { for all } y \in \mathbb{Z}^{d}\right\}
$$

$\diamond \mathcal{A}_{D}$ is simple iff D is nondegenerate (i.e. $m=0$) (Slawny; Phillips).
whose fixed-point algebra is the center $\mathrm{Z}\left(\mathcal{A}_{D}\right)$ of \mathcal{A}_{D}. $\mathrm{Z}\left(\mathcal{A}_{D}\right)$ is isomorphic to $\mathrm{C}\left(\mathbb{T}^{m}\right)$.

Proposition

Let $E^{\wedge}: \mathcal{A}_{D} \rightarrow Z\left(\mathcal{A}_{D}\right)$ be the canonical conditional expectation associated
to the action of Λ. Then the map $\omega \mapsto \omega \circ E^{\wedge}$ is an affine homeomorphism
of the state space of $\mathrm{Z}\left(\mathcal{A}_{D}\right)$ onto the space of tracial states of \mathcal{A}_{D}.

Traces on higher-rank noncommutative tori

Let D be an antisymmetric, real, $d \times d$ matrix.
\diamond The degeneracy index of D is $m:=$ rank H where H is the subgroup

$$
H:=\left\{x \in \mathbb{Z}^{d} \mid\langle x \mid D y\rangle \in \mathbb{Z} \text { for all } y \in \mathbb{Z}^{d}\right\}
$$

$\diamond \mathcal{A}_{D}$ is simple iff D is nondegenerate (i.e. $m=0$) (Slawny; Phillips).
\diamond There is an action of a compact group

$$
\Lambda=\mathbb{Z}_{a_{1}} \times \cdots \mathbb{Z}_{a_{m}} \times \mathbb{T}^{d-m} \subset \mathbb{T}^{d}
$$

whose fixed-point algebra is the center $\mathrm{Z}\left(\mathcal{A}_{D}\right)$ of \mathcal{A}_{D}.
$\diamond \mathrm{Z}\left(\mathcal{A}_{D}\right)$ is isomorphic to $\mathrm{C}\left(\mathbb{T}^{m}\right)$.

Proposition

Let $E^{\wedge}: \mathcal{A}_{D} \rightarrow Z\left(\mathcal{A}_{D}\right)$ be the canonical conditional expectation associated to the action of Λ. Then the map $\omega \mapsto \omega \circ E^{\wedge}$ is an affine homeomorphism of the state space of $\mathrm{Z}\left(\mathcal{A}_{D}\right)$ onto the space of tracial states of \mathcal{A}_{D}.

The main theorem: a parametrisation of KMS_{β} states

Theorem (Afsar-Laca-Ramagge-S.,21)

Let $\Theta=\left[\begin{array}{c|c}\Theta_{k} & \Lambda \\ \hline-\Lambda^{T} & \Theta_{d}\end{array}\right]$ and let m be the degeneracy index of Θ_{d}. Then there is an affine weak* homeomorphism of the space $M_{1}\left(\mathbb{T}^{m}\right)$ of probability measures on \mathbb{T}^{m} onto the space of KMS_{β} states of $\left(\mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma_{\Theta}\right), \alpha^{r}\right)$.
 associated to the unit point mass at $z \in \mathbb{T}^{m}$ is given by

The main theorem: a parametrisation of KMS_{β} states

Theorem (Afsar-Laca-Ramagge-S.,21)

Let $\Theta=\left[\begin{array}{c|c}\Theta_{k} & \Lambda \\ \hline-\Lambda^{T} & \Theta_{d}\end{array}\right]$ and let m be the degeneracy index of Θ_{d}. Then there is an affine weak ${ }^{*}$ homeomorphism of the space $M_{1}\left(\mathbb{T}^{m}\right)$ of probability measures on \mathbb{T}^{m} onto the space of KMS_{β} states of $\left(\mathcal{T}_{r}\left(\mathbb{N}^{n}, \sigma_{\Theta}\right), \alpha^{r}\right)$. If $\left\{p_{1}, \ldots, p_{d}\right\}$ is a basis for \mathbb{Z}^{d} such that $\left\{a_{1} p_{1}, \ldots, a_{m} p_{m}\right\}$ is a basis for H then the homeomorphism can be chosen so that the extremal KMS_{β} state $\varphi_{\beta, z}$ associated to the unit point mass at $z \in \mathbb{T}^{m}$ is given by

$$
\varphi_{\beta, z}\left(L_{p} L_{x} L_{y}^{*} L_{q}^{*}\right)=\delta_{p, q}[x-y \in H] \lambda_{x-y} z^{c} \prod_{j=1}^{k} \frac{e^{-\beta r_{j} p_{j}}\left(1-e^{-\beta r_{j}}\right)}{1-e^{-\beta r_{j}+2 \pi i\left\langle\Theta(x-y) \mid e_{j}\right\rangle}}
$$

where $c=\left(c_{1}, \ldots, c_{m}\right)$ is the vector of coefficients of $x-y$ with respect to the basis $\left\{a_{1} p_{1}, \ldots, a_{m} p_{m}\right\}$ of H and $\lambda_{x-y} \in\{-1,1\}$.

Thanks!

