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Dimension 2: rotation algebras

⋄ Let θ ∈ R. The rotation algebra Aθ is the universal C∗-algebra
generated by two unitaries U and V satisfying the relation

UV = e−2πiθVU;

the C∗-algebra Aθ is also known as noncommutative torus.
⋄ Aθ can also be described as the crossed product of C(T) by the

automorphism induced by rotation by θ:

φ(f )(z) := f (e−2πiθz), f ∈ C(T), z ∈ T.

⋄ Alternatively, Aθ can be viewed as a twisted group C∗-algebra
C∗(Z2, σΘ), where the 2-cocycle σΘ : Z2 × Z2 → T is given by

σΘ(x , y) := e−πi⟨x | Θy⟩

where Θ is the antisymmetric matrix (aij)i ,j such that a12 = θ.
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Motivation from noncommutative solenoids

⋄ Solenoids are inverse limits of tori, and so the algebra of continuous
functions on a solenoid is a direct limit of C(T);

⋄ Latremoliere–Packer, ’18 defined noncommutative solenoids: certain
twisted group algebras of abelian discrete groups QN ×QN , where QN
has a solenoid as its Pontryagin dual.

⋄ A noncommutative solenoid is a direct limit of noncommutative tori
lim−→(Aθn , ψn);

⋄ Toeplitz noncommutative solenoid by Brownlowe–Hawkins–Sims, ’17:
replaced one unitary generator of Aθn by an isometry and considered
the KMS state structure of the resulting direct limit.
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Higher-rank noncommutative tori

⋄ The algebra of continuous functions C(Tn) is (isomorphic to) the
universal C∗-algebra generated by n commuting unitaries, where T is
the unit circle; equivalently, C(Tn) is the group C∗-algebra C∗(Zn).

⋄ Let Θ = (θi ,j) be an n × n antisymmetric matrix with real coefficients.
The n-dimensional noncommutative torus AΘ is the universal
C∗-algebra generated by unitaries U1, . . . ,Un satisfying

UjUk = e−2πiθj,k UkUj j , k = 1, 2, . . . , n.

⋄ The matrix Θ determines a 2-cocycle σΘ : Zn × Zn → T by

σΘ(x , y) := e−πi⟨x | Θy⟩,

and AΘ is isomorphic to the twisted group C∗-algebra C∗(Zn, σΘ).
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A Toeplitz extension of a noncommutative torus

Let n = k + d and Λ ∈ Mk,d(R). Afsar–an Huef–Raeburn–Sims, ’19 defined
the higher-rank Toeplitz noncommutative torus BΛ as the universal
C∗-algebra generated by a Nica-covariant isometric representation
V : Nk → BΛ and a unitary representation U : Zd → BΛ satisfying relations
encoded in Λ.

⋄ A vector r ∈ (0,∞)k determines a strongly continuous one-parameter
automorphism group {αr

t | t ∈ R} of BΛ characterised by

αr
t(Vp) = ei⟨p | r⟩tVp, αr

t(Ux ) = Ux (p ∈ Nk , x ∈ Zd).

⋄ AaHRS studied the KMS state structure for the dynamics αr , and also
considered certain direct limits lim−→(BΛn , ψn), called higher-rank
noncommutative solenoids.
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An approach using twisted semigroup C∗-algebras of Nn

Let n = k + d and let Θ = (θi ,j) be an n × n antisymmetric matrix with real
coefficients, and let σΘ : Zn × Zn → T be given by σΘ(x , y) := e−πi⟨x | Θy⟩.
Let {δq | q ∈ Nn} be the canonical orthonormal basis of ℓ2(Nn). Then for
each p ∈ Nn, the map Lσ

p defined by

Lσ
pδq := σΘ(p, q)δp+q, (q ∈ Nn)

induces an isometric σΘ-representation of Nn such that

(Lσ
p)∗(Lσ

q) = σ(p, (p ∨ q) − p)σ(q, (p ∨ q) − q)Lσ
−p+(p∨q)L

σ
−q+(p∨q)

∗.

Definition (Afsar-Laca-Ramagge-S., ’21)
The n-dimensional Toeplitz noncommutative torus associated to Θ is the
twisted semigroup C∗-algebra Tr (Nn, σΘ).
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Relationship to AaHRS’s Toeplitz noncommutative tori

Proposition (Afsar-Laca-Ramagge-S., 21)
Suppose k and d are nonnegative integers with n = k + d. For each
rectangular k × d matrix Λ ∈ Mk,d([0,∞)) define Θ ∈ Mk+d(R) by

Θ :=
[

0k×k Λ
−ΛT 0d×d

]
.

Then the C∗-algebra BΛ associated to Λ by AaHRS is canonically
isomorphic to the quotient of Tr (Nn, σΘ) by the ideal generated by the
projections 1 − Lej L∗

ej for j = k + 1, k + 2, . . . , k + d.
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Tr(Nn, σΘ) as an extension of AΘ

Proposition
The map that sends an isometry Lp ∈ Tr (Nn, σΘ) to the unitary
λp ∈ C∗

r (Zn, σ̃Θ) ∼= AΘ determines an exact sequence

0 −→ I −→ Tr (Nn, σΘ) −→ AΘ −→ 0,

where I is the ideal of Tr (Nn, σΘ) generated by the projections

{1 − Lej L∗
ej | j = 1, . . . , n}.

Tr (Nn, σΘ) can also be described as the universal C∗-algebra generated by
isometries {wj | j ∈ {1, . . . , n}} satisfying the relations{

wjwk = e−2πiθj,k wkwj j , k = 1, 2, . . . , n;
w∗

j wk = e2πiθj,k wkw∗
j j ̸= k.
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The dynamics on Tr(Nn, σΘ)

Let r ∈ Rn and consider the dynamics αr : R → Aut(Tr (Nn, σΘ)),

αr
t(Lp) = ei⟨p | r⟩tLp (p ∈ Nn, t ∈ R).

Let β ∈ R. A state φ of Tr (Nn, σΘ) is a KMSβ state for (Tr (Nn, σΘ, α
r ) if

it satisfies the KMSβ condition for A αr -analytic and B ∈ Tr (Nn, σΘ)

φ(AB) = φ(Bαr
iβ(A))

If φ is a KMSβ state for αr , then e−⟨p | r⟩β = φ(LpL∗
p) ≤ 1. So:

⋄ If β > 0 and rj < 0 for some j ∈ {1, 2, . . . , n}, then there is no KMSβ

state; similarly, if β < 0 and rj > 0 for some j ∈ {1, 2, . . . , n}, then
there is no KMSβ state.
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On the vanishing coordinates of r

We work with β > 0 and so we fix a vector r ∈ [0,∞)n, and simply write α
instead of αr .

Lemma

Let φβ be a KMSβ state of (Tr (Nn, σΘ), α). Let (Hφβ
, πφβ

) denote the
associated GNS representation. If p ∈ Nn and ⟨p | r⟩ = 0, then πφβ

(Lp) is
unitary. Moreover, φβ factors through the quotient of Tr (Nn, σΘ) modulo
the ideal generated by the projections {1 − Lej L∗

ej | rj = 0}.

⋄ WLOG we assume that all the nonzero coordinates of r appear at the
beginning, so that r = (r1, r2, . . . rk , 0d) with rj > 0 for j = 1, . . . , k.
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The gauge action on Tr(Nn, σ)

There is a canonical gauge action γ of Tn on Tr (Nn, σ) given by
γz(Lp) = zpLp where zp :=

∏n
i=1 zpi

i . This yields a faithful conditional
expectation

E : Tr (Nn, σΘ) → Tr (Nn, σΘ)γ = span{LpL∗
p | p ∈ Nn}.

Proposition
Let n = k + d with k, d ∈ N and let E (k) := ETk×{1d } denote the
conditional expectation associated to the restriction of the gauge action of
Tn to the closed subgroup Tk × {1d}. Then
(1) Tr (Nn, σΘ) = span{LpLxL∗

y L∗
q | p, q ∈ Nk × 0d , x , y ∈ 0k × Nd};

(2) E (k)(Tr (Nn, σΘ)) = span{LpLxL∗
y L∗

p | p ∈ Nk × 0d , x , y ∈ 0k × Nd}.
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A characterisation of KMSβ states of (Tr(Nn, σΘ), α)

Proposition

Let n = k + d with k, d ∈ N and let α be the dynamics determined by
r = (r1, . . . , rk , 0d). Let 0 < β < ∞ and suppose that φ is a KMSβ state
of (Tr (Nn, σΘ), α). Then φ restricts to a trace on the C∗-subalgebra
C∗(Lx : x ∈ 0k × Nd) and satisfies

φ(LpLxL∗
y L∗

q) = δp,qe−β⟨p | r⟩φ(LxL∗
y )

for all p, q ∈ Nk × 0d and x , y ∈ 0k ×Nd , where δp,q is the Kronecker delta.

In particular this implies that KMSβ states factor through the conditional
expectation E (k).
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The restriction of σΘ to 0k × Nd

Consider the projection Q :=
∏k

j=1(1 − Lei L∗
ei ) in Tr (Nn, σΘ). Then:

(1) QLp = 0 = L∗
pQ for every p ∈ Nk × 0d \ {0};

(2) QL∗
pLxL∗

y Lp = L∗
pLxL∗

y LpQ for every x , y ∈ 0k × Nd and p ∈ Nk × 0d ;
(3) QTr (Nn, σΘ)Q = span{QLxL∗

y Q | x , y ∈ 0k × Nd}.

Lemma

Let Θd denote the lower right d × d corner of Θ. Then
C∗(Lx : x ∈ 0k × Nd) is canonically isomorphic to the Toeplitz
noncommutative torus Tr (Nd , σΘd ), and the map
ρQ : C∗(Lx : x ∈ 0k × Nd) → QTr (Nn, σΘ)Q given by the compression
X 7→ QXQ is an isomorphism.
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KMSβ states from traces on the corner

Suppose that φ is a KMSβ state for (Tr (Nn, σΘ), α). Let
Q =

∏k
j=1(1 − Lei L∗

ei ). Then φ(Q) > 0 and φ(Q)−1 = Z (β), where

Z (β) :=
∑

p∈Nk×0d

e−β⟨p | r⟩.

Proposition
Let β > 0. For each tracial state ω of the corner QTr (Nn, σΘ)Q, define

Tβ(ω)(X ) := 1
Z (β)

∑
l∈Nk×0d

e−β⟨l | r⟩ω(QL∗
l XLlQ), X ∈ Tr (Nn, σΘ).

Then Tβ is an affine weak* homeomorphism of the tracial state space of
the corner onto the KMSβ state space of (Tr (Nn, σΘ), α).
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KMSβ states from traces on a noncommutative torus

Proposition
Let ρQ : C∗(Lx | x ∈ 0k × Nd) → QTr (Nn, σΘ)Q be the compression by the
projection Q. For each tracial state τ of Tr (Nd , σΘd ) there is a KMSβ state
of (Tr (Nn, σΘ), α) determined by

Tβ(τ ◦ ρ−1
Q )(LpLxL∗

y L∗
q) = δp,q τ(LxL∗

y )
k∏

j=1

e−βrj pj (1 − e−βrj )
1 − e−βrj +2πi⟨Θ(x−y) | ej ⟩

,

where x , y ∈ 0k × Nd ∼= Nd . The map τ 7→ Tβ(τ ◦ ρ−1
Q ) is an affine weak*

homeomorphism of the tracial state space of Tr (Nd , σΘd ) onto the simplex
of KMSβ states of (Tr (Nn, σΘ), α).
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Traces on higher-rank noncommutative tori
Let D be an antisymmetric, real, d × d matrix.

⋄ The degeneracy index of D is m := rank H where H is the subgroup

H := {x ∈ Zd | ⟨x | Dy⟩ ∈ Z for all y ∈ Zd}.

⋄ AD is simple iff D is nondegenerate (i.e. m = 0) (Slawny; Phillips).
⋄ There is an action of a compact group

Λ = Za1 × · · ·Zam × Td−m ⊂ Td

whose fixed-point algebra is the center Z(AD) of AD.
⋄ Z(AD) is isomorphic to C(Tm).

Proposition
Let EΛ : AD → Z(AD) be the canonical conditional expectation associated
to the action of Λ. Then the map ω 7→ ω ◦ EΛ is an affine homeomorphism
of the state space of Z(AD) onto the space of tracial states of AD.
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The main theorem: a parametrisation of KMSβ states

Theorem (Afsar-Laca-Ramagge-S.,21)

Let Θ =
[

Θk Λ
−ΛT Θd

]
and let m be the degeneracy index of Θd . Then

there is an affine weak* homeomorphism of the space M1(Tm) of probability
measures on Tm onto the space of KMSβ states of (Tr (Nn, σΘ), αr ). If
{p1, . . . , pd} is a basis for Zd such that {a1p1, . . . , ampm} is a basis for H
then the homeomorphism can be chosen so that the extremal KMSβ state
φβ,z associated to the unit point mass at z ∈ Tm is given by

φβ,z(LpLxL∗
y L∗

q) = δp,q [x − y ∈ H]λx−y zc
k∏

j=1

e−βrj pj (1 − e−βrj )
1 − e−βrj +2πi⟨Θ(x−y) | ej ⟩

where c = (c1, . . . , cm) is the vector of coefficients of x − y with respect to
the basis {a1p1, . . . , ampm} of H and λx−y ∈ {−1, 1}.
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Thanks!

Camila F. Sehnem Equilibrium on Toeplitz noncommutative tori May 25, 2023 18 / 18


