Semiclassical Analysis and Noncommutative Geometry

Raphaël Ponge

Sichuan University (Chengdu, China) \& uOttawa
COSy, Western University, May 25, 2023

Spectral Triples

Definition (Baaj-Julg, Connes)

A p-summable spectral triple $(\mathscr{A}, \mathscr{H}, D)$ consists of

- A Hilbert space \mathscr{H}.
- A (unital) $*$-subalgebra $\mathscr{A} \subset \mathscr{L}(\mathscr{H})$.
- A selfadjoint (unbounded) operator D on \mathscr{H} s.t.

$$
\begin{gathered}
{[D, a] \in \mathscr{L}(\mathscr{H}) \quad \forall a \in \mathscr{A}} \\
\lambda_{j}\left(|D|^{-1}\right)=\mathrm{O}\left(j^{-\frac{1}{\rho}}\right)
\end{gathered}
$$

Here $\lambda_{0}\left(|D|^{-1}\right) \geq \lambda_{j}\left(|D|^{-1}\right) \geq \cdots$ are the eigenvalues of $|D|^{-1}$

Spectral Triples

Definition (Baaj-Julg, Connes)

A p-summable spectral triple $(\mathscr{A}, \mathscr{H}, D)$ consists of

- A Hilbert space \mathscr{H}.
- A (unital) $*$-subalgebra $\mathscr{A} \subset \mathscr{L}(\mathscr{H})$.
- A selfadjoint (unbounded) operator D on \mathscr{H} s.t.

$$
\begin{gathered}
{[D, a] \in \mathscr{L}(\mathscr{H}) \quad \forall a \in \mathscr{A}} \\
\lambda_{j}\left(|D|^{-1}\right)=\mathrm{O}\left(j^{-\frac{1}{\rho}}\right)
\end{gathered}
$$

Here $\lambda_{0}\left(|D|^{-1}\right) \geq \lambda_{j}\left(|D|^{-1}\right) \geq \cdots$ are the eigenvalues of $|D|^{-1}$

Remarks

(1) $\operatorname{Tr}\left[|D|^{-q}\right]<\infty$ for all $q>p$.
(2) Degree of summability \simeq dimension of $(\mathscr{A}, \mathscr{H}, D)$.

Spectral Triples

Setup

$\left(M^{n}, g\right)$ closed Riemannian manifold.

Spectral Triples

Setup

$\left(M^{n}, g\right)$ closed Riemannian manifold.

Example

$$
\left(C^{\infty}(M), L^{2}(M), \sqrt{\Delta_{g}}\right)
$$

where $\Delta_{g}=d^{*} d$ is the Laplacian of (M, g)

Spectral Triples

Setup

$\left(M^{n}, g\right)$ closed Riemannian manifold.

Example

$$
\left(C^{\infty}(M), L^{2}(M), \sqrt{\Delta_{g}}\right)
$$

where $\Delta_{g}=d^{*} d$ is the Laplacian of (M, g)

Example (Dirac Spectral Triple)

$$
\left(C^{\infty}(M), L^{2}(M, S), D\right)
$$

where \square is the Dirac operator acting on the spinor bundle $\$$.

Spectral Triples

Setup

$\left(M^{n}, g\right)$ closed Riemannian manifold.

Example

$$
\left(C^{\infty}(M), L^{2}(M), \sqrt{\Delta_{g}}\right),
$$

where $\Delta_{g}=d^{*} d$ is the Laplacian of (M, g)

Example (Dirac Spectral Triple)

$$
\left(C^{\infty}(M), L^{2}(M, \$), \not \subset\right)
$$

where \square is the Dirac operator acting on the spinor bundle $\$$.

Remark

These spectral triples are n-summable.

Quantized Calculus (Connes)

Classical	Quantum (Connes)
Complex variable	Operator on Hilbert space \mathcal{H}
Real variable	Selfadjoint operator on \mathcal{H}
Infinitesimal variable	Compact operator on \mathcal{H}
Infinitesimal of order α	Compact operator s.t. $\lambda_{j}(\|T\|)=\mathrm{O}\left(j^{-\alpha}\right)$
Integral $\int f(x) d x$	NC integral $f T$

Here $\lambda_{0}(|T|) \geq \lambda_{1}(|T|) \geq \cdots$ are the eigenvalues of $|T|$.

NC Integral

Setup

- T is an infinitesimal of order 1, i.e., $\lambda_{j}(|T|)=\mathrm{O}\left(j^{-1}\right)$.
- $\left\{\lambda_{j}(T)\right\}$ eigenvalue sequence s.t. $\left|\lambda_{0}(T)\right| \geq\left|\lambda_{1}(T)\right| \geq \cdots$.

NC Integral

Setup

- T is an infinitesimal of order 1, i.e., $\lambda_{j}(|T|)=\mathrm{O}\left(j^{-1}\right)$.
- $\left\{\lambda_{j}(T)\right\}$ eigenvalue sequence s.t. $\left|\lambda_{0}(T)\right| \geq\left|\lambda_{1}(T)\right| \geq \cdots$.

Definition (Connes)

(1) We say that T is measurable if

$$
f T:=\lim _{N \rightarrow \infty} \frac{1}{\log N} \sum_{j<N} \lambda_{j}(T) \text { exists. }
$$

(2) $f T$ is called the NC integral of T.

NC Integral

Setup

- T is an infinitesimal of order 1 , i.e., $\lambda_{j}(|T|)=\mathrm{O}\left(j^{-1}\right)$.
- $\left\{\lambda_{j}(T)\right\}$ eigenvalue sequence s.t. $\left|\lambda_{0}(T)\right| \geq\left|\lambda_{1}(T)\right| \geq \cdots$.

Definition (Connes)

(1) We say that T is measurable if

$$
f T:=\lim _{N \rightarrow \infty} \frac{1}{\log N} \sum_{j<N} \lambda_{j}(T) \text { exists. }
$$

(2) $f T$ is called the NC integral of T.

Proposition (Dixmier, Connes, Lord-Sukochev-Zanin, RP)

(1) The measurable operators form a vector space which is conjugation-invariant.
(2) $T \rightarrow f T$ is a linear trace that vanishes on infinitesimal operators of order >1.

Connes' Integration Formula

Setup

- $\left(M^{n}, g\right)$ closed Riemannian mfld..
- $\Delta_{g}: C^{\infty}(M) \rightarrow C^{\infty}(M)$ Laplacian.
- $\nu_{g}(x)$ Riemannian measure (i.e., $\nu_{g}(x)=\sqrt{g(x)} d x$).

Connes' Integration Formula

Setup

- $\left(M^{n}, g\right)$ closed Riemannian mfld..
- $\Delta_{g}: C^{\infty}(M) \rightarrow C^{\infty}(M)$ Laplacian.
- $\nu_{g}(x)$ Riemannian measure (i.e., $\nu_{g}(x)=\sqrt{g(x)} d x$).

Fact

$\left(C^{\infty}(M), L^{2}(M), \sqrt{\Delta_{g}}\right)$ is a spectral triple.

Connes' Integration Formula

Setup

- $\left(M^{n}, g\right)$ closed Riemannian mfld..
- $\Delta_{g}: C^{\infty}(M) \rightarrow C^{\infty}(M)$ Laplacian.
- $\nu_{g}(x)$ Riemannian measure (i.e., $\nu_{g}(x)=\sqrt{g(x)} d x$).

Fact

$$
\left(C^{\infty}(M), L^{2}(M), \sqrt{\Delta_{g}}\right) \text { is a spectral triple. }
$$

Theorem (Connes' Integration Formula '88)

For every $f \in C^{\infty}(M)$,

$$
\begin{aligned}
f \Delta_{g}^{-\frac{n}{4}} f \Delta_{g}^{-\frac{n}{4}} & =\operatorname{Res}_{z=n} \operatorname{Tr}\left[f \Delta_{g}^{-\frac{z}{2}}\right] \\
& =\lim _{t \rightarrow 0^{+}} t^{\frac{n}{2}} \operatorname{Tr}\left[f e^{-t \Delta_{g}}\right] \\
& =\int_{M} f(x) d \nu_{g}(x)
\end{aligned}
$$

Relationship with Weyl's Laws

Setup

- $A^{*}=A$ with $\lambda_{j}(|A|)=\mathrm{O}\left(j^{-1}\right)$.
- $\lambda_{j}^{ \pm}(A)$ are the positive/negative eigenvalues of A, i.e.,

$$
\lambda_{j}^{ \pm}(A)=\lambda_{j}\left(A_{ \pm}\right), \quad A_{ \pm}=\frac{1}{2}(|A| \pm A)
$$

Relationship with Weyl's Laws

Setup

- $A^{*}=A$ with $\lambda_{j}(|A|)=\mathrm{O}\left(j^{-1}\right)$.
- $\lambda_{j}^{ \pm}(A)$ are the positive/negative eigenvalues of A, i.e.,

$$
\lambda_{j}^{ \pm}(A)=\lambda_{j}\left(A_{ \pm}\right), \quad A_{ \pm}=\frac{1}{2}(|A| \pm A)
$$

Proposition

Assume that

$$
\lim _{j \rightarrow \infty} j \lambda_{j}^{ \pm}(A) \text { both exist. }
$$

Then A is measurable, and

$$
f A=\lim _{j \rightarrow \infty} j \lambda_{j}^{+}(A)-\lim _{j \rightarrow \infty} j \lambda_{j}^{-}(A) .
$$

Connes' Integration Formula. Stronger Form

Theorem (Birman-Solomyak '70s)
If $f \in C^{\infty}(M, \mathbb{R})$, then

$$
\lim _{j \rightarrow \infty} j^{\frac{q}{n}} \lambda_{j}^{ \pm}\left(\Delta_{g}^{-\frac{q}{4}} f \Delta_{g}^{-\frac{q}{4}}\right)=\left(\int_{M} f_{ \pm}(x)^{\frac{n}{q}} d \nu_{g}(x)\right)^{\frac{q}{n}}
$$

For $q=n$ we obtain:

Connes' Integration Formula. Stronger Form

Theorem (Birman-Solomyak '70s)

If $f \in C^{\infty}(M, \mathbb{R})$, then

$$
\lim _{j \rightarrow \infty} j^{\frac{q}{n}} \lambda_{j}^{ \pm}\left(\Delta_{g}^{-\frac{q}{4}} f \Delta_{g}^{-\frac{q}{4}}\right)=\left(\int_{M} f_{ \pm}(x)^{\frac{n}{q}} d \nu_{g}(x)\right)^{\frac{q}{n}}
$$

For $q=n$ we obtain:
Corollary (Connes' Integration Formula)
(1) If $f \in C^{\infty}(M, \mathbb{R}), f \geq 0$, then

$$
f \Delta_{g}^{-\frac{n}{4}} f \Delta_{g}^{-\frac{n}{4}}=\lim _{j \rightarrow \infty} j \lambda_{j}\left(\Delta_{g}^{-\frac{n}{4}} f \Delta_{g}^{-\frac{n}{4}}\right)=\int_{M} f(x) d \nu_{g}(x) .
$$

Connes' Integration Formula. Stronger Form

Theorem (Birman-Solomyak '70s)

If $f \in C^{\infty}(M, \mathbb{R})$, then

$$
\lim _{j \rightarrow \infty} j^{\frac{q}{n}} \lambda_{j}^{ \pm}\left(\Delta_{g}^{-\frac{q}{4}} f \Delta_{g}^{-\frac{q}{4}}\right)=\left(\int_{M} f_{ \pm}(x)^{\frac{n}{q}} d \nu_{g}(x)\right)^{\frac{q}{n}}
$$

For $q=n$ we obtain:
Corollary (Connes' Integration Formula)
(1) If $f \in C^{\infty}(M, \mathbb{R}), f \geq 0$, then

$$
f \Delta_{g}^{-\frac{n}{4}} f \Delta_{g}^{-\frac{n}{4}}=\lim _{j \rightarrow \infty} j \lambda_{j}\left(\Delta_{g}^{-\frac{n}{4}} f \Delta_{g}^{-\frac{n}{4}}\right)=\int_{M} f(x) d \nu_{g}(x) .
$$

(2) By linearity, for all $f \in C^{\infty}(M, \mathbb{R})$, we get

$$
f \Delta_{g}^{-\frac{n}{4}} f \Delta_{g}^{-\frac{n}{4}}=\int_{M} f(x) d \nu_{g}(x)
$$

Semiclassical Analysis

Notation

If H is bounded from below withs discrete negative spectrum, then $N^{-}(H):=\#\{$ negative eigenvalues $w /$ multiplicity $\}$.

Semiclassical Analysis

Notation

If H is bounded from below withs discrete negative spectrum, then

$$
N^{-}(H):=\#\{\text { negative eigenvalues } \mathrm{w} / \text { multiplicity }\} .
$$

Remark

For Schrödinger operators $H=\Delta+V$ on \mathbb{R}^{n} this corresponds to the number of "bound states".

Semiclassical Analysis

Notation

If H is bounded from below withs discrete negative spectrum, then

$$
N^{-}(H):=\#\{\text { negative eigenvalues } \mathrm{w} / \text { multiplicity }\} .
$$

Remark

For Schrödinger operators $H=\Delta+V$ on \mathbb{R}^{n} this corresponds to the number of "bound states".

Theorem (Semiclassical Weyl's law)

For any $V \in C(M, \mathbb{R})$, we have

$$
\lim _{h \rightarrow 0^{+}} h^{n} N^{-}\left(h^{2} \Delta_{g}+V\right)=\int_{M} V_{-}(x)^{\frac{n}{2}} d \nu_{g}(x)
$$

Semiclassical Analysis

Notation

If H is bounded from below withs discrete negative spectrum, then

$$
N^{-}(H):=\#\{\text { negative eigenvalues } w / \text { multiplicity }\} .
$$

Remark

For Schrödinger operators $H=\Delta+V$ on \mathbb{R}^{n} this corresponds to the number of "bound states".

Theorem (Semiclassical Weyl's law)

For any $V \in C(M, \mathbb{R})$, we have

$$
\lim _{h \rightarrow 0^{+}} h^{n} N^{-}\left(h^{2} \Delta_{g}+V\right)=\int_{M} V_{-}(x)^{\frac{n}{2}} d \nu_{g}(x)
$$

More generally, given any $q>0$,

$$
\lim _{h \rightarrow 0^{+}} h^{n} N^{-}\left(h^{2 q} \Delta_{g}^{q}+V\right)=\int_{M} V_{-}(x)^{\frac{n}{2 q}} d \nu_{g}(x)
$$

Birman-Schwinger Principle

Setup

- Unbounded operator $H_{0} \geq 0$ on \mathscr{H}.
- Operator $V^{*}=V$ s.t. $\lambda_{j}\left(\left|H_{0}^{-1 / 2} V H_{0}^{-1 / 2}\right|\right)=\mathrm{O}\left(j^{-1 / p}\right)$.

Birman-Schwinger Principle

Setup

- Unbounded operator $H_{0} \geq 0$ on \mathscr{H}.
- Operator $V^{*}=V$ s.t. $\lambda_{j}\left(\left|H_{0}^{-1 / 2} V H_{0}^{-1 / 2}\right|\right)=\mathrm{O}\left(j^{-1 / p}\right)$.

Theorem (Birman-Schwinger Principle)

We have

$$
\begin{aligned}
\lim _{h \rightarrow 0^{+}} h^{2 p} N^{-}\left(h^{2} H_{0}+V\right) & =\lim _{j \rightarrow \infty} j \lambda_{j}^{-}\left(H_{0}^{-1 / 2} V H_{0}^{-1 / 2}\right)^{p} \\
& =f\left(H_{0}^{-1 / 2} V H_{0}^{-1 / 2}\right)_{-}^{p}
\end{aligned}
$$

Summary

Summary

Eigenvalue asymptotics for compact operators yield:

- Semiclassical Weyl's laws (Birman-Schwinger principle).
- Stronger form of Connes' integration formula.

SC Analysis on Spectral Triples

Setup

- $(\mathscr{A}, \mathscr{H}, D)$ is a p-summable spectral triple.
- $\overline{\mathscr{A}} \subset \mathscr{L}(\mathscr{H})$ is the C^{*}-closure of \mathscr{A}.

SC Analysis on Spectral Triples

Setup

- $(\mathscr{A}, \mathscr{H}, D)$ is a p-summable spectral triple.
- $\bar{A} \subset \mathscr{L}(\mathscr{H})$ is the C^{*}-closure of \mathscr{A}.

Theorem (McDonald-Sukochev-Zanin '22)

Assume the following:

- $p>2$.
- Lipschitz regularity: $[|D|, a] \in \mathscr{L}(\mathscr{H})$ for all $a \in \mathscr{A}$.
- Tauberian condition: For all $a \in \overline{\mathscr{A}}, a \geq 0$,

$$
\operatorname{Res}_{z=p} \operatorname{Tr}\left[a^{z}|D|^{-z}\right] \text { exists. }
$$

SC Analysis on Spectral Triples

Setup

- $(\mathscr{A}, \mathscr{H}, D)$ is a p-summable spectral triple.
- $\bar{A} \subset \mathscr{L}(\mathscr{H})$ is the C^{*}-closure of \mathscr{A}.

Theorem (McDonald-Sukochev-Zanin '22)

Assume the following:

- $p>2$.
- Lipschitz regularity: $[|D|, a] \in \mathscr{L}(\mathscr{H})$ for all $a \in \mathscr{A}$.
- Tauberian condition: For all $a \in \overline{\mathscr{A}}, a \geq 0$,

$$
\operatorname{Res}_{z=p} \operatorname{Tr}\left[a^{z}|D|^{-z}\right] \text { exists. }
$$

Then, for every $V^{*}=V \in \overline{\mathscr{A}}$,

$$
\begin{aligned}
\lim _{h \rightarrow 0^{+}} h^{p} N^{-}\left(h^{2} D^{2}+V\right) & =f|D|^{-\frac{p}{2}} V_{-}^{\frac{p}{2}}|D|^{-\frac{p}{2}} \\
& =\operatorname{Res}_{z=p} \operatorname{Tr}\left[V_{-}^{z / 2}|D|^{-z}\right]
\end{aligned}
$$

SC Analysis on Spectral Triples

Question
Can we remove the conditions $p>2$ and Lipschitz-regularity?

SC Analysis on Spectral Triples

Question
Can we remove the conditions $p>2$ and Lipschitz-regularity?

Remark

In their paper MSZ conjecture that their main results continue to hold for $p \leq 2$.

SC Analysis on Spectral Triples

Question

Can we remove the conditions $p>2$ and Lipschitz-regularity?

Remark

In their paper MSZ conjecture that their main results continue to hold for $p \leq 2$.

Question (Connes)

Can we relate the MSZ Tauberian condition to more standard Tauberian conditions?

Main Results

Setup

$(\mathscr{A}, \mathscr{H}, D)$ is a p-summable spectral triple.

Main Results

Setup

$(\mathscr{A}, \mathscr{H}, D)$ is a p-summable spectral triple.

Remark

- p can be any positive number.
- There is no Lipschitz-regularity assumption.

Main Results

Setup

$(\mathscr{A}, \mathscr{H}, D)$ is a p-summable spectral triple.

Remark

- p can be any positive number.
- There is no Lipschitz-regularity assumption.

Notation

If $a \in \overline{\mathscr{A}}, a>0$ (positive + invertible), then

$$
\lambda_{0}\left(a D^{2} a\right) \leq \lambda_{1}\left(a D^{2} a\right) \leq \cdots
$$

are the (positive) eigenvalues of $a D^{2} a$.

Main Results - Spectral Asymptotics

Theorem (RP '23)

Assume that, for all $a \in \mathscr{A}, a>0$,

$$
\lim _{j \rightarrow \infty} j^{-\frac{1}{p}} \lambda_{j}\left(a D^{2} a\right)=\tau\left[a^{-p}\right]^{-\frac{2}{p}}
$$

where $\tau: \overline{\mathscr{A}} \rightarrow \mathbb{C}$ is a given positive linear map. Then:

Main Results - Spectral Asymptotics

Theorem (RP '23)

Assume that, for all $a \in \mathscr{A}, a>0$,

$$
\lim _{j \rightarrow \infty} j^{-\frac{1}{p}} \lambda_{j}\left(a D^{2} a\right)=\tau\left[a^{-p}\right]^{-\frac{2}{p}}
$$

where $\tau: \overline{\mathscr{A}} \rightarrow \mathbb{C}$ is a given positive linear map. Then:
(1) Given any $q>0$, for all $a^{*}=a \in \overline{\mathscr{A}}$,

$$
\lim _{j \rightarrow \infty} j^{\frac{q}{p}} \lambda_{j}^{ \pm}\left(|D|^{-\frac{q}{2}} a|D|^{-\frac{q}{2}}\right)=\tau\left[\left(a_{ \pm}\right)^{\frac{p}{q}}\right]^{\frac{q}{p}}
$$

Main Results - Spectral Asymptotics

Theorem (RP '23)

Assume that, for all $a \in \mathscr{A}, a>0$,

$$
\lim _{j \rightarrow \infty} j^{-\frac{1}{p}} \lambda_{j}\left(a D^{2} a\right)=\tau\left[a^{-p}\right]^{-\frac{2}{p}}
$$

where $\tau: \overline{\mathscr{A}} \rightarrow \mathbb{C}$ is a given positive linear map. Then:
(1) Given any $q>0$, for all $a^{*}=a \in \overline{\mathscr{A}}$,

$$
\lim _{j \rightarrow \infty} j^{\frac{q}{p}} \lambda_{j}^{ \pm}\left(|D|^{-\frac{q}{2}} a|D|^{-\frac{q}{2}}\right)=\tau\left[\left(a_{ \pm}\right)^{\frac{p}{q}}\right]^{\frac{q}{p}}
$$

(2) Semiclassical Weyl's law. Given any $q>0$, for all $V=V^{*} \in \overline{\mathscr{A}}$,

$$
\lim _{h \rightarrow 0^{+}} h^{p} N^{-}\left(h^{2 q}|D|^{2 q}+V\right)=\tau\left[\left(V_{-}\right)^{\frac{p}{2 q}}\right]
$$

Main Results - Spectral Asymptotics

Theorem (RP '23)

Assume that, for all $a \in \mathscr{A}, a>0$,

$$
\lim _{j \rightarrow \infty} j^{-\frac{1}{p}} \lambda_{j}\left(a D^{2} a\right)=\tau\left[a^{-p}\right]^{-\frac{2}{p}}
$$

where $\tau: \overline{\mathscr{A}} \rightarrow \mathbb{C}$ is a given positive linear map. Then:
(1) Given any $q>0$, for all $a^{*}=a \in \overline{\mathscr{A}}$,

$$
\lim _{j \rightarrow \infty} j^{\frac{q}{p}} \lambda_{j}^{ \pm}\left(|D|^{-\frac{q}{2}} a|D|^{-\frac{q}{2}}\right)=\tau\left[\left(a_{ \pm}\right)^{\frac{p}{q}}\right]^{\frac{q}{p}}
$$

(2) Semiclassical Weyl's law. Given any $q>0$, for all $V=V^{*} \in \overline{\mathscr{A}}$,

$$
\lim _{h \rightarrow 0^{+}} h^{p} N^{-}\left(h^{2 q}|D|^{2 q}+V\right)=\tau\left[\left(V_{-}\right)^{\frac{p}{2 q}}\right]
$$

(3) Integration formula. For all $a \in \overline{\mathscr{A}}$,

$$
f|D|^{-\frac{p}{2}} a|D|^{-\frac{p}{2}}=\tau[a] .
$$

Idea of Proof

Lemma (Birman-Solomyak '70s)
If $a_{\ell} \rightarrow a$ in $\overline{\mathscr{A}}$ with $a_{\ell}^{*}=a_{\ell}$, then

$$
\lim _{j \rightarrow \infty} j^{j^{\frac{q}{p}}} \lambda_{j}^{ \pm}\left(|D|^{-\frac{q}{2}} a|D|^{-\frac{q}{2}}\right)=\lim _{\ell \rightarrow \infty} \lim _{j \rightarrow \infty} j^{\frac{q}{p}} \lambda_{j}^{ \pm}\left(|D|^{-\frac{q}{2}} a_{\ell}|D|^{-\frac{q}{2}}\right)
$$

Idea of Proof

Lemma (Birman-Solomyak '70s)

If $a_{\ell} \rightarrow a$ in $\overline{\mathscr{A}}$ with $a_{\ell}^{*}=a_{\ell}$, then

$$
\lim _{j \rightarrow \infty} j^{j^{\frac{q}{p}}} \lambda_{j}^{ \pm}\left(|D|^{-\frac{q}{2}} a|D|^{-\frac{q}{2}}\right)=\lim _{\ell \rightarrow \infty} \lim _{j \rightarrow \infty} j^{\frac{q}{p}} \lambda_{j}^{ \pm}\left(|D|^{-\frac{q}{2}} a_{\ell}|D|^{-\frac{q}{2}}\right)
$$

Lemma (Sukochev-Zanin, RP)
Given any $q>0$ and $a=a^{*} \in \overline{\mathscr{A}}$,

$$
\lim _{j \rightarrow \infty} j^{\frac{q}{p}} \lambda_{j}^{ \pm}\left(|D|^{-\frac{q}{2}} a|D|^{-\frac{q}{2}}\right)=\lim _{j \rightarrow \infty} j^{\frac{q}{p}} \lambda_{j}\left(|D|^{-\frac{q}{2}} a_{ \pm}|D|^{-\frac{q}{2}}\right) .
$$

Idea of Proof

Lemma (Birman-Solomyak '70s)

If $a_{\ell} \rightarrow a$ in $\overline{\mathscr{A}}$ with $a_{\ell}^{*}=a_{\ell}$, then

$$
\lim _{j \rightarrow \infty} j^{\frac{q}{p}} \lambda_{j}^{ \pm}\left(|D|^{-\frac{q}{2}} a|D|^{-\frac{q}{2}}\right)=\lim _{\ell \rightarrow \infty} \lim _{j \rightarrow \infty} j^{\frac{q}{p}} \lambda_{j}^{ \pm}\left(|D|^{-\frac{q}{2}} a_{\ell}|D|^{-\frac{q}{2}}\right)
$$

Lemma (Sukochev-Zanin, RP)
Given any $q>0$ and $a=a^{*} \in \overline{\mathscr{A}}$,

$$
\lim _{j \rightarrow \infty} j^{\frac{q}{p}} \lambda_{j}^{ \pm}\left(|D|^{-\frac{q}{2}} a|D|^{-\frac{q}{2}}\right)=\lim _{j \rightarrow \infty} j^{\frac{q}{p}} \lambda_{j}\left(|D|^{-\frac{q}{2}} a_{ \pm}|D|^{-\frac{q}{2}}\right)
$$

Lemma (RP)

Given any $q>0$ and $a \in \mathscr{A}, a>0$,

$$
\lim _{j \rightarrow \infty} j^{\frac{q}{p}} \lambda_{j}\left(|D|^{-\frac{q}{2}} a|D|^{-\frac{q}{2}}\right)=\left[\lim _{j \rightarrow \infty} j^{-\frac{2}{p}} \lambda_{j}\left(a^{-\frac{1}{q}} D^{2} a^{-\frac{1}{q}}\right)\right]^{-\frac{q}{2}},
$$

Main Results - Tauberian Theorem

Theorem (Tauberian Theorem; RP '23)
Given any $a \in \mathscr{A}, a>0$, we have

$$
\begin{aligned}
\lim _{j \rightarrow \infty} j \lambda_{j}\left(a D^{2} a\right)^{-\frac{p}{2}} & =\operatorname{Res}_{z=p} \operatorname{Tr}\left[a^{-z}|D|^{-z}\right] \\
& =\operatorname{Res}_{z=p} \operatorname{Tr}\left[a^{-p}|D|^{-z}\right] \\
& =\lim _{t \rightarrow 0^{+}} t^{\frac{p}{2}} \operatorname{Tr}\left[a^{-p} e^{-t D^{2}}\right]
\end{aligned}
$$

provided any of the functionals on the r.h.s. exist.

Main Results - Tauberian Theorem

Theorem (Tauberian Theorem; RP '23)

Given any $a \in \mathscr{A}, a>0$, we have

$$
\begin{aligned}
\lim _{j \rightarrow \infty} j \lambda_{j}\left(a D^{2} a\right)^{-\frac{p}{2}} & =\operatorname{Res}_{z=p} \operatorname{Tr}\left[a^{-z}|D|^{-z}\right] \\
& =\operatorname{Res}_{z=p} \operatorname{Tr}\left[a^{-p}|D|^{-z}\right] \\
& =\lim _{t \rightarrow 0^{+}} t^{\frac{p}{2}} \operatorname{Tr}\left[a^{-p} e^{-t D^{2}}\right]
\end{aligned}
$$

provided any of the functionals on the r.h.s. exist.

Remark

- The last two Tauberian conditions are very natural conditions for spectral triples (e.g., Connes-Moscovici's local index formula, spectral action).
- They are satisfied in numerous examples.

Main Results

Corollary (RP)

Assume that, for all $a \in \mathscr{A}$,

$$
\operatorname{Res}_{z=p} \operatorname{Tr}\left[a|D|^{-z}\right]=\tau[a] \text {, or } \lim _{t \rightarrow 0^{+}} t^{\frac{p}{2}} \operatorname{Tr}\left[a e^{-t D^{2}}\right]=\tau[a] .
$$

Then, the following holds:

Main Results

Corollary (RP)

Assume that, for all $a \in \mathscr{A}$,

$$
\operatorname{Res}_{z=p} \operatorname{Tr}\left[a|D|^{-z}\right]=\tau[a] \text {, or } \lim _{t \rightarrow 0^{+}} t^{\frac{p}{2}} \operatorname{Tr}\left[a e^{-t D^{2}}\right]=\tau[a] .
$$

Then, the following holds:
(1) Semiclassical Weyl's law. Given any $q>0$, for all $V=V^{*} \in \overline{\mathscr{A}}$,

$$
\lim _{h \rightarrow 0^{+}} h^{p} N^{-}\left(h^{2 q}|D|^{2 q}+V\right)=\tau\left[\left(V_{-}\right)^{\frac{p}{2 q}}\right]
$$

Main Results

Corollary (RP)

Assume that, for all $a \in \mathscr{A}$,

$$
\operatorname{Res}_{z=p} \operatorname{Tr}\left[a|D|^{-z}\right]=\tau[a] \text {, or } \lim _{t \rightarrow 0^{+}} t^{\frac{p}{2}} \operatorname{Tr}\left[a e^{-t D^{2}}\right]=\tau[a] .
$$

Then, the following holds:
(1) Semiclassical Weyl's law. Given any $q>0$, for all

$$
\begin{aligned}
& V=V^{*} \in \overline{\mathscr{A}}, \\
& \\
& \quad \lim _{h \rightarrow 0^{+}} h^{p} N^{-}\left(h^{2 q}|D|^{2 q}+V\right)=\tau\left[\left(V_{-}\right)^{\frac{p}{2 q}}\right] .
\end{aligned}
$$

(2) Integration formula. For all $a \in \overline{\mathscr{A}}$,

$$
f|D|^{-\frac{p}{2}} a|D|^{-\frac{p}{2}}=\tau[a] .
$$

Riemannian Case Revisited

Reminder

If $\left(M^{n}, g\right)$ is a closed Riemannian manifold, then

$$
\left(C^{\infty}(M), L^{2}(M), \sqrt{\Delta_{g}}\right)
$$

is an n-summable spectral triple.

Riemannian Case Revisited

Reminder

If $\left(M^{n}, g\right)$ is a closed Riemannian manifold, then

$$
\left(C^{\infty}(M), L^{2}(M), \sqrt{\Delta_{g}}\right)
$$

is an n-summable spectral triple.

Theorem (Minakshisundaram-Pleijel CJM '49)

(1) Given any $f \in C^{\infty}(M)$, we have

$$
\operatorname{Tr}\left[f e^{-t \Delta_{g}}\right]=t^{\frac{n}{2}} \int_{M} f(x) d \nu_{g}(x)+\mathrm{O}\left(t^{1-\frac{n}{2}}\right) \quad \text { as } t \rightarrow 0^{+}
$$

Riemannian Case Revisited

Reminder

If $\left(M^{n}, g\right)$ is a closed Riemannian manifold, then

$$
\left(C^{\infty}(M), L^{2}(M), \sqrt{\Delta_{g}}\right)
$$

is an n-summable spectral triple.

Theorem (Minakshisundaram-Pleijel CJM '49)

(1) Given any $f \in C^{\infty}(M)$, we have

$$
\operatorname{Tr}\left[f e^{-t \Delta_{g}}\right]=t^{\frac{n}{2}} \int_{M} f(x) d \nu_{g}(x)+\mathrm{O}\left(t^{1-\frac{n}{2}}\right) \quad \text { as } t \rightarrow 0^{+}
$$

(2) For $f=1$ this gives the classical Weyl's law,

$$
\lambda_{j}\left(\Delta_{g}\right) \sim\left(\frac{j}{\operatorname{Vol}_{g}(M)}\right)^{\frac{2}{n}} \quad \text { as } j \rightarrow \infty
$$

Riemannian Case Revisited

Corollary

(1) Birman-Solomyak's asymptotics. Given any $q>0$, for all $f \in C(M, \mathbb{R})$,

$$
\lim _{j \rightarrow \infty} j^{\frac{q}{n}} \lambda_{j}^{ \pm}\left(\Delta_{g}^{-\frac{q}{4}} f \Delta_{g}^{-\frac{q}{4}}\right)=\left(\int_{M} f_{ \pm}(x)^{\frac{n}{q}} d \nu_{g}(x)\right)^{\frac{q}{n}}
$$

(2) Semiclassical Weyl's law. Given any $q>0$, for all $V \in C(M, \mathbb{R})$,

$$
\lim _{h \rightarrow 0^{+}} h^{n} N^{-}\left(h^{2 q} \Delta_{g}^{q}+V\right)=\int_{M} V_{-}(x)^{\frac{n}{2 q}} d \nu_{g}(x)
$$

(3) Connes' integration formula. For all $f \in C(M)$,

$$
f \Delta_{g}^{-\frac{n}{4}} f \Delta_{g}^{-\frac{n}{4}}=\int_{M} f(x) d \nu_{g}(x)
$$

Noncommutative Torus

Setup

- $\theta=\left(\theta_{j k}\right)$ real anti-symmetric $n \times n$-matrix.

Noncommutative Torus

Setup

- $\theta=\left(\theta_{j k}\right)$ real anti-symmetric $n \times n$-matrix.

Definition

The noncommutative torus \mathbb{T}_{θ}^{n} is the $N C$ space whose C^{*}-algebra $C\left(\mathbb{T}_{\theta}^{n}\right)$ is generated by unitaries U_{1}, \ldots, U_{n} such that

$$
U_{k} U_{j}=e^{2 i \pi \theta_{j k}} U_{j} U_{k}
$$

Noncommutative Torus

Setup

$$
\text { - } \theta=\left(\theta_{j k}\right) \text { real anti-symmetric } n \times n \text {-matrix. }
$$

Definition

The noncommutative torus \mathbb{T}_{θ}^{n} is the NC space whose C^{*}-algebra $C\left(\mathbb{T}_{\theta}^{n}\right)$ is generated by unitaries U_{1}, \ldots, U_{n} such that

$$
U_{k} U_{j}=e^{2 i \pi \theta_{j k}} U_{j} U_{k}
$$

Remarks

(1) For $\theta=0$ we get the C^{*}-algebra $C\left(\mathbb{T}^{n}\right)$, where $\mathbb{T}^{n}=\mathbb{R}^{n} / \mathbb{Z}^{n}$ is the ordinary torus.

Noncommutative Torus

Setup

$$
\text { - } \theta=\left(\theta_{j k}\right) \text { real anti-symmetric } n \times n \text {-matrix. }
$$

Definition

The noncommutative torus \mathbb{T}_{θ}^{n} is the NC space whose C^{*}-algebra $C\left(\mathbb{T}_{\theta}^{n}\right)$ is generated by unitaries U_{1}, \ldots, U_{n} such that

$$
U_{k} U_{j}=e^{2 i \pi \theta_{j k}} U_{j} U_{k}
$$

Remarks

(1) For $\theta=0$ we get the C^{*}-algebra $C\left(\mathbb{T}^{n}\right)$, where $\mathbb{T}^{n}=\mathbb{R}^{n} / \mathbb{Z}^{n}$ is the ordinary torus.
(2) A dense basis of $C\left(\mathbb{T}_{\theta}^{n}\right)$ is given by the monomials,

$$
U^{m}:=U_{1}^{m_{1}} \cdots U_{n}^{m_{n}}, \quad m=\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{Z}^{n}
$$

L^{2}-Space

Definition

$\tau: C\left(\mathbb{T}_{\theta}^{n}\right) \rightarrow \mathbb{C}$ is the faithful positive trace defined by

$$
\tau_{0}(1)=1, \quad \tau_{0}\left(U^{m}\right)=0, \quad m \neq 0
$$

L^{2}-Space

Definition

$\tau: C\left(\mathbb{T}_{\theta}^{n}\right) \rightarrow \mathbb{C}$ is the faithful positive trace defined by

$$
\tau_{0}(1)=1, \quad \tau_{0}\left(U^{m}\right)=0, \quad m \neq 0
$$

Definition

$L^{2}\left(\mathbb{T}_{\theta}^{n}\right)$ is the Hilbert space completion with respect to the pre-inner product $\langle u \mid v\rangle:=\tau_{0}\left(v^{*} u\right), u, v \in C\left(\mathbb{T}_{\theta}^{n}\right)$.

L^{2}-Space

Definition

$\tau: C\left(\mathbb{T}_{\theta}^{n}\right) \rightarrow \mathbb{C}$ is the faithful positive trace defined by

$$
\tau_{0}(1)=1, \quad \tau_{0}\left(U^{m}\right)=0, \quad m \neq 0
$$

Definition

$L^{2}\left(\mathbb{T}_{\theta}^{n}\right)$ is the Hilbert space completion with respect to the pre-inner product $\langle u \mid v\rangle:=\tau_{0}\left(v^{*} u\right), u, v \in C\left(\mathbb{T}_{\theta}^{n}\right)$.

Proposition (GNS Representation)

The action of $C\left(\mathbb{T}_{\theta}^{n}\right)$ on itself by left-multiplication extends to a *-representation in $L^{2}\left(\mathbb{T}_{\theta}^{n}\right)$.

Smooth Structure of \mathbb{T}_{θ}^{n}

Definition

(1) The canonical derivations $\partial_{1}, \ldots, \partial_{n}$ are given by

$$
\partial_{j}\left(U_{j}\right)=i U_{j}, \quad \partial_{j}\left(U_{k}\right)=0, \quad k \neq j
$$

Smooth Structure of \mathbb{T}_{θ}^{n}

Definition

(1) The canonical derivations $\partial_{1}, \ldots, \partial_{n}$ are given by

$$
\partial_{j}\left(U_{j}\right)=i U_{j}, \quad \partial_{j}\left(U_{k}\right)=0, \quad k \neq j
$$

(2) The smooth noncommutative torus is

$$
C^{\infty}\left(\mathbb{T}_{\theta}^{n}\right):=\left\{u=\sum_{m \in \mathbb{Z}^{n}} u_{m} U^{m},\left(u_{m}\right) \in \mathcal{S}\left(\mathbb{Z}^{n}\right)\right\}
$$

Smooth Structure of \mathbb{T}_{θ}^{n}

Definition

(1) The canonical derivations $\partial_{1}, \ldots, \partial_{n}$ are given by

$$
\partial_{j}\left(U_{j}\right)=i U_{j}, \quad \partial_{j}\left(U_{k}\right)=0, \quad k \neq j
$$

(2) The smooth noncommutative torus is

$$
C^{\infty}\left(\mathbb{T}_{\theta}^{n}\right):=\left\{u=\sum_{m \in \mathbb{Z}^{n}} u_{m} U^{m},\left(u_{m}\right) \in \mathcal{S}\left(\mathbb{Z}^{n}\right)\right\}
$$

Proposition

$C^{\infty}\left(\mathbb{T}_{\theta}^{n}\right)$ is a Fréchet $*$-algebra and is closed under holomorphic functional calculus.

Laplacian on $\mathbb{T}_{\theta}^{\eta}$

Definition

The Laplacian $\Delta: C^{\infty}\left(\mathbb{T}_{\theta}^{n}\right) \rightarrow C^{\infty}\left(\mathbb{T}_{\theta}^{n}\right)$ is given by

$$
\Delta:=\partial_{1}^{2}+\cdots+\partial_{n}^{2} .
$$

Proposition

(1) Δ is an essentially selfadjoint operator such that

$$
\Delta\left(U^{m}\right)=|m|^{2} U^{m} \quad \forall m \in \mathbb{Z}^{n} .
$$

(2) In particular, Δ is isospectral to the Laplacian on the ordinary torus \mathbb{T}^{n}.

Spectral Triple - Integration Formula

Proposition

The triple

$$
\left(C^{\infty}\left(\mathbb{T}_{\theta}^{n}\right), L^{2}\left(\mathbb{T}_{\theta}^{n}\right), \sqrt{\Delta}\right)
$$

is an n-summable spectral triple.

Spectral Triple - Integration Formula

Proposition

The triple

$$
\left(C^{\infty}\left(\mathbb{T}_{\theta}^{n}\right), L^{2}\left(\mathbb{T}_{\theta}^{n}\right), \sqrt{\Delta}\right)
$$

is an n-summable spectral triple.

Theorem (Integration Formula; McDonald-Sukochev-Zanin, RP)
For every $a \in C\left(\mathbb{T}_{\theta}^{n}\right)$, we have

$$
f \Delta^{-\frac{n}{4}} a \Delta^{-\frac{n}{4}}=\tau_{0}[a] .
$$

Semiclassical Weyl's Law on \mathbb{T}_{θ}^{n}

Conjecture (McDonald+RP '21)
Given any $q>0$, for all $V=V^{*} \in C^{\infty}\left(\mathbb{T}_{\theta}^{n}\right)$,

$$
\lim _{h \rightarrow 0^{+}} N^{-}\left(h^{2 q} \Delta^{q}+V\right)=\tau_{0}\left[\left(V_{-}\right)^{\frac{n}{2 q}}\right]
$$

Semiclassical Weyl's Law on \mathbb{T}_{θ}^{n}

Conjecture (McDonald+RP '21)

Given any $q>0$, for all $V=V^{*} \in C^{\infty}\left(\mathbb{T}_{\theta}^{n}\right)$,

$$
\lim _{h \rightarrow 0^{+}} N^{-}\left(h^{2 q} \Delta^{q}+V\right)=\tau_{0}\left[\left(V_{-}\right)^{\frac{n}{2 q}}\right]
$$

Remark

- The conjecture is proved for $q=1$ and $n \geq 3$ by McDonald-Suckochev-Zanin as a consequence of their semiclassical Weyl's laws for spectral triples.

Semiclassical Weyl's Law on \mathbb{T}_{θ}^{n}

Conjecture (McDonald+RP '21)

Given any $q>0$, for all $V=V^{*} \in C^{\infty}\left(\mathbb{T}_{\theta}^{n}\right)$,

$$
\lim _{h \rightarrow 0^{+}} N^{-}\left(h^{2 q} \Delta^{q}+V\right)=\tau_{0}\left[\left(V_{-}\right)^{\frac{n}{2 q}}\right]
$$

Remark

- The conjecture is proved for $q=1$ and $n \geq 3$ by McDonald-Suckochev-Zanin as a consequence of their semiclassical Weyl's laws for spectral triples.
- Their approach does not to allow us to get a semiclassical Weyl's law for NC 2-tori.

Heat-Trace Asymptotics

Lemma

Let $a \in C^{\infty}\left(\mathbb{T}_{\theta}^{n}\right)$. As $t \rightarrow 0^{+}$, we have

$$
\operatorname{Tr}\left[a e^{-t \Delta}\right]=\pi^{\frac{n}{2}} \tau_{0}[a] t^{-\frac{n}{2}}+\mathrm{O}\left(t^{\frac{-(n-1)}{2}} e^{-\frac{\pi^{2}}{t}}\right)
$$

Heat-Trace Asymptotics - Proof

Proof.

- We have

$$
\operatorname{Tr}\left[a e^{-t \Delta}\right]=\sum_{m \in \mathbb{Z}^{n}}\left\langle a e^{-t \Delta} U^{m} \mid U^{m}\right\rangle=\sum_{m \in \mathbb{Z}^{n}} e^{-t|m|^{2}}\left\langle a U^{m} \mid U^{m}\right\rangle .
$$

Heat-Trace Asymptotics - Proof

Proof.

- We have

$$
\operatorname{Tr}\left[a e^{-t \Delta}\right]=\sum_{m \in \mathbb{Z}^{n}}\left\langle a e^{-t \Delta} U^{m} \mid U^{m}\right\rangle=\sum_{m \in \mathbb{Z}^{n}} e^{-t|m|^{2}}\left\langle a U^{m} \mid U^{m}\right\rangle .
$$

- Note that

$$
\left\langle a U^{m} \mid U^{m}\right\rangle=\tau_{0}\left[\left(U^{m}\right)^{*} a U^{m}\right]=\tau_{0}\left[a U^{m}\left(U^{m}\right)^{*}\right]=\tau_{0}[a]
$$

Heat-Trace Asymptotics - Proof

Proof.

- We have

$$
\operatorname{Tr}\left[a e^{-t \Delta}\right]=\sum_{m \in \mathbb{Z}^{n}}\left\langle a e^{-t \Delta} U^{m} \mid U^{m}\right\rangle=\sum_{m \in \mathbb{Z}^{n}} e^{-t|m|^{2}}\left\langle a U^{m} \mid U^{m}\right\rangle .
$$

- Note that

$$
\left\langle a U^{m} \mid U^{m}\right\rangle=\tau_{0}\left[\left(U^{m}\right)^{*} a U^{m}\right]=\tau_{0}\left[a U^{m}\left(U^{m}\right)^{*}\right]=\tau_{0}[a]
$$

- Thus,

$$
\operatorname{Tr}\left[a e^{-t \Delta}\right]=\sum_{m \in \mathbb{Z}^{n}} e^{-t|m|^{2}} \tau_{0}[a]=\left(\sum_{k \in \mathbb{Z}} e^{-t k^{2}}\right)^{n} \tau_{0}[a] .
$$

Heat-Trace Asymptotics - Proof

Proof.

- We have

$$
\operatorname{Tr}\left[a e^{-t \Delta}\right]=\sum_{m \in \mathbb{Z}^{n}}\left\langle a e^{-t \Delta} U^{m} \mid U^{m}\right\rangle=\sum_{m \in \mathbb{Z}^{n}} e^{-t|m|^{2}}\left\langle a U^{m} \mid U^{m}\right\rangle .
$$

- Note that

$$
\left\langle a U^{m} \mid U^{m}\right\rangle=\tau_{0}\left[\left(U^{m}\right)^{*} a U^{m}\right]=\tau_{0}\left[a U^{m}\left(U^{m}\right)^{*}\right]=\tau_{0}[a]
$$

- Thus,

$$
\operatorname{Tr}\left[a e^{-t \Delta}\right]=\sum_{m \in \mathbb{Z}^{n}} e^{-t|m|^{2}} \tau_{0}[a]=\left(\sum_{k \in \mathbb{Z}} e^{-t k^{2}}\right)^{n} \tau_{0}[a] .
$$

- By Poisson's summation formula,

$$
\sum_{k \in \mathbb{Z}} e^{-t k^{2}}=\sqrt{\frac{\pi}{t}}+\sum_{|k| \geq 1} e^{-\frac{\pi^{2} k^{2}}{t}}=\sqrt{\frac{\pi}{t}}+\mathrm{O}\left(e^{-\frac{\pi^{2}}{t}}\right)
$$

Heat-Trace Asymptotics - Proof

Proof.

- We have

$$
\operatorname{Tr}\left[a e^{-t \Delta}\right]=\sum_{m \in \mathbb{Z}^{n}}\left\langle a e^{-t \Delta} U^{m} \mid U^{m}\right\rangle=\sum_{m \in \mathbb{Z}^{n}} e^{-t|m|^{2}}\left\langle a U^{m} \mid U^{m}\right\rangle .
$$

- Note that

$$
\left\langle a U^{m} \mid U^{m}\right\rangle=\tau_{0}\left[\left(U^{m}\right)^{*} a U^{m}\right]=\tau_{0}\left[a U^{m}\left(U^{m}\right)^{*}\right]=\tau_{0}[a]
$$

- Thus,

$$
\operatorname{Tr}\left[a e^{-t \Delta}\right]=\sum_{m \in \mathbb{Z}^{n}} e^{-t|m|^{2}} \tau_{0}[a]=\left(\sum_{k \in \mathbb{Z}} e^{-t k^{2}}\right)^{n} \tau_{0}[a] .
$$

- By Poisson's summation formula,

$$
\sum_{k \in \mathbb{Z}} e^{-t k^{2}}=\sqrt{\frac{\pi}{t}}+\sum_{|k| \geq 1} e^{-\frac{\pi^{2} k^{2}}{t}}=\sqrt{\frac{\pi}{t}}+\mathrm{O}\left(e^{-\frac{\pi^{2}}{t}}\right)
$$

- This gives the result.

Semiclassical Weyl's Law on \mathbb{T}_{θ}^{n}

As a consequence the conjecture with Ed McDonald is true:

Corollary (RP '23)

Given any $q>0$, for all $V=V^{*} \in C\left(\mathbb{T}_{\theta}^{n}\right)$,

$$
\lim _{h \rightarrow 0^{+}} N^{-}\left(h^{2 q} \Delta^{q}+V\right)=\tau_{0}\left[\left(V_{-}\right)^{\frac{n}{2 q}}\right]
$$

