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Spectral Triples

Definition (Baaj-Julg, Connes)

A p-summable spectral triple (A ,H ,D) consists of

A Hilbert space H .

A (unital) ∗-subalgebra A ⊂ L (H ).

A selfadjoint (unbounded) operator D on H s.t.

[D, a] ∈ L (H ) ∀a ∈ A ,

λj(|D|−1) = O
(
j−

1
p

)
.

Here λ0(|D|−1) ≥ λj(|D|−1) ≥ · · · are the eigenvalues of |D|−1

Remarks

1 Tr[|D|−q] <∞ for all q > p.

2 Degree of summability ' dimension of (A ,H ,D).
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Spectral Triples

Setup

(Mn, g) closed Riemannian manifold.

Example (
C∞(M), L2(M),

√
∆g

)
,

where ∆g = d∗d is the Laplacian of (M, g)

Example (Dirac Spectral Triple)(
C∞(M), L2(M, /S), /D

)
,

where /D is the Dirac operator acting on the spinor bundle /S .

Remark

These spectral triples are n-summable.
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Quantized Calculus (Connes)

Classical Quantum (Connes)

Complex variable Operator on Hilbert space H

Real variable Selfadjoint operator on H

Infinitesimal variable Compact operator on H

Infinitesimal of order α Compact operator s.t.
λj(|T |) = O(j−α)

Integral
∫
f (x)dx NC integral −

∫
T

Here λ0(|T |) ≥ λ1(|T |) ≥ · · · are the eigenvalues of |T |.
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NC Integral

Setup

T is an infinitesimal of order 1, i.e., λj(|T |) = O(j−1).

{λj(T )} eigenvalue sequence s.t. |λ0(T )| ≥ |λ1(T )| ≥ · · · .

Definition (Connes)

1 We say that T is measurable if

−
∫

T := lim
N→∞

1

logN

∑
j<N

λj(T ) exists.

2 −
∫
T is called the NC integral of T .

Proposition (Dixmier, Connes, Lord-Sukochev-Zanin, RP)

1 The measurable operators form a vector space which is
conjugation-invariant.

2 T → −
∫
T is a linear trace that vanishes on infinitesimal

operators of order > 1.
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Connes’ Integration Formula

Setup

(Mn, g) closed Riemannian mfld..

∆g : C∞(M)→ C∞(M) Laplacian.

νg (x) Riemannian measure (i.e., νg (x) =
√
g(x)dx).

Fact

(C∞(M), L2(M),
√

∆g ) is a spectral triple.

Theorem (Connes’ Integration Formula ’88)

For every f ∈ C∞(M),

−
∫

∆
− n

4
g f ∆

− n
4

g = Resz=n Tr
[
f ∆
− z

2
g

]
= lim

t→0+
t
n
2 Tr

[
fe−t∆g

]
=

∫
M
f (x)dνg (x).
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Relationship with Weyl’s Laws

Setup

A∗ = A with λj(|A|) = O(j−1).

λ±j (A) are the positive/negative eigenvalues of A, i.e.,

λ±j (A) = λj
(
A±), A± =

1

2
(|A| ± A) .

Proposition

Assume that
lim
j→∞

jλ±j (A) both exist.

Then A is measurable, and

−
∫

A = lim
j→∞

jλ+
j (A)− lim

j→∞
jλ−j (A).

7 / 29



Relationship with Weyl’s Laws

Setup

A∗ = A with λj(|A|) = O(j−1).

λ±j (A) are the positive/negative eigenvalues of A, i.e.,

λ±j (A) = λj
(
A±), A± =

1

2
(|A| ± A) .

Proposition

Assume that
lim
j→∞

jλ±j (A) both exist.

Then A is measurable, and

−
∫

A = lim
j→∞

jλ+
j (A)− lim

j→∞
jλ−j (A).

7 / 29



Connes’ Integration Formula. Stronger Form

Theorem (Birman-Solomyak ’70s)

If f ∈ C∞(M,R), then

lim
j→∞

j
q
nλ±j

(
∆
− q

4
g f ∆

− q
4

g

)
=

(∫
M
f±(x)

n
q dνg (x)

) q
n

.

For q = n we obtain:

Corollary (Connes’ Integration Formula)

1 If f ∈ C∞(M,R), f ≥ 0, then

−
∫

∆
− n

4
g f ∆

− n
4

g = lim
j→∞

jλj
(
∆
− n

4
g f ∆

− n
4

g

)
=

∫
M
f (x)dνg (x).

2 By linearity, for all f ∈ C∞(M,R), we get

−
∫

∆
− n

4
g f ∆

− n
4

g =

∫
M
f (x)dνg (x).
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Semiclassical Analysis

Notation

If H is bounded from below withs discrete negative spectrum, then

N−(H) := #{negative eigenvalues w/ multiplicity}.

Remark

For Schrödinger operators H = ∆ + V on Rn this corresponds to
the number of “bound states”.

Theorem (Semiclassical Weyl’s law)

For any V ∈ C (M,R), we have

lim
h→0+

hnN−(h2∆g + V ) =

∫
M
V−(x)

n
2 dνg (x).

More generally, given any q > 0,

lim
h→0+

hnN−
(
h2q∆q

g + V
)

=

∫
M
V−(x)

n
2q dνg (x).
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Birman-Schwinger Principle

Setup

Unbounded operator H0 ≥ 0 on H .

Operator V ∗ = V s.t. λj(|H
−1/2
0 VH

−1/2
0 |) = O(j−1/p).

Theorem (Birman-Schwinger Principle)

We have

lim
h→0+

h2pN−
(
h2H0 + V ) = lim

j→∞
jλ−j

(
H
−1/2
0 VH

−1/2
0

)p
= −
∫ (

H
−1/2
0 VH

−1/2
0

)p
−.
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Summary

Summary

Eigenvalue asymptotics for compact operators yield:

Semiclassical Weyl’s laws (Birman-Schwinger principle).

Stronger form of Connes’ integration formula.
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SC Analysis on Spectral Triples

Setup

(A ,H ,D) is a p-summable spectral triple.

A ⊂ L (H ) is the C ∗-closure of A .

Theorem (McDonald-Sukochev-Zanin ’22)

Assume the following:

p > 2.

Lipschitz regularity: [|D|, a] ∈ L (H ) for all a ∈ A .

Tauberian condition: For all a ∈ A , a ≥ 0,

Resz=p Tr
[
az |D|−z

]
exists.

Then, for every V ∗ = V ∈ A ,

lim
h→0+

hpN−
(
h2D2 + V

)
= −
∫
|D|−

p
2 V

p
2
− |D|−

p
2

= Resz=p Tr
[
V

z/2
− |D|−z

]
.
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SC Analysis on Spectral Triples

Question

Can we remove the conditions p > 2 and Lipschitz-regularity?

Remark

In their paper MSZ conjecture that their main results continue to
hold for p ≤ 2.

Question (Connes)

Can we relate the MSZ Tauberian condition to more standard
Tauberian conditions?
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Main Results

Setup

(A ,H ,D) is a p-summable spectral triple.

Remark

p can be any positive number.

There is no Lipschitz-regularity assumption.

Notation

If a ∈ A , a > 0 (positive + invertible), then

λ0(aD2a) ≤ λ1(aD2a) ≤ · · ·

are the (positive) eigenvalues of aD2a.
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Main Results – Spectral Asymptotics

Theorem (RP ’23)

Assume that, for all a ∈ A , a > 0,

lim
j→∞

j−
1
p λj
(
aD2a

)
= τ

[
a−p
]− 2

p ,

where τ : A → C is a given positive linear map. Then:

1 Given any q > 0, for all a∗ = a ∈ A ,

lim
j→∞

j
q
p λ±j

(
|D|−

q
2 a|D|−

q
2
)

= τ
[(
a±
) p

q

] q
p
.

2 Semiclassical Weyl’s law. Given any q > 0, for all
V = V ∗ ∈ A ,

lim
h→0+

hpN−
(
h2q|D|2q + V

)
= τ

[
(V−)

p
2q
]
.

3 Integration formula. For all a ∈ A ,

−
∫
|D|−

p
2 a|D|−

p
2 = τ [a].
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Idea of Proof

Lemma (Birman-Solomyak ’70s)

If a` → a in A with a∗` = a`, then

lim
j→∞

j
q
p λ±j

(
|D|−

q
2 a|D|−

q
2

)
= lim

`→∞
lim
j→∞

j
q
p λ±j

(
|D|−

q
2 a`|D|−

q
2

)
.

Lemma (Sukochev-Zanin, RP)

Given any q > 0 and a = a∗ ∈ A ,

lim
j→∞

j
q
p λ±j

(
|D|−

q
2 a|D|−

q
2

)
= lim

j→∞
j
q
p λj

(
|D|−

q
2 a±|D|−

q
2

)
.

Lemma (RP)

Given any q > 0 and a ∈ A , a > 0,

lim
j→∞

j
q
p λj
(
|D|−

q
2 a|D|−

q
2
)

=

[
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Main Results – Tauberian Theorem

Theorem (Tauberian Theorem; RP ’23)

Given any a ∈ A , a > 0, we have

lim
j→∞

jλj
(
aD2a

)− p
2 = Resz=p Tr

[
a−z |D|−z

]
= Resz=p Tr

[
a−p|D|−z

]
= lim

t→0+
t
p
2 Tr

[
a−pe−tD

2]
,

provided any of the functionals on the r.h.s. exist.

Remark

The last two Tauberian conditions are very natural conditions
for spectral triples (e.g., Connes-Moscovici’s local index
formula, spectral action).

They are satisfied in numerous examples.
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Main Results

Corollary (RP)

Assume that, for all a ∈ A ,

Resz=p Tr
[
a|D|−z

]
= τ [a], or lim

t→0+
t
p
2 Tr

[
ae−tD

2]
= τ [a].

Then, the following holds:

1 Semiclassical Weyl’s law. Given any q > 0, for all
V = V ∗ ∈ A ,

lim
h→0+

hpN−
(
h2q|D|2q + V

)
= τ

[
(V−)

p
2q
]
.

2 Integration formula. For all a ∈ A ,

−
∫
|D|−

p
2 a|D|−

p
2 = τ [a].
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Riemannian Case Revisited

Reminder

If (Mn, g) is a closed Riemannian manifold, then(
C∞(M), L2(M),

√
∆g

)
is an n-summable spectral triple.

Theorem (Minakshisundaram-Pleijel CJM ’49)

1 Given any f ∈ C∞(M), we have

Tr
[
fe−t∆g

]
= t

n
2

∫
M
f (x)dνg (x) + O

(
t1− n

2
)

as t → 0+.

2 For f = 1 this gives the classical Weyl’s law,

λj(∆g ) ∼
(

j

Volg (M)

) 2
n

as j →∞.
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Riemannian Case Revisited

Corollary

1 Birman-Solomyak’s asymptotics. Given any q > 0, for all
f ∈ C (M,R),

lim
j→∞

j
q
nλ±j

(
∆
− q

4
g f ∆

− q
4

g

)
=

(∫
M
f±(x)

n
q dνg (x)

) q
n

.

2 Semiclassical Weyl’s law. Given any q > 0, for all
V ∈ C (M,R),

lim
h→0+

hnN−
(
h2q∆q

g + V
)

=

∫
M
V−(x)

n
2q dνg (x).

3 Connes’ integration formula. For all f ∈ C (M),

−
∫

∆
− n

4
g f ∆

− n
4

g =

∫
M
f (x)dνg (x).
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Noncommutative Torus

Setup

θ = (θjk) real anti-symmetric n × n-matrix.

Definition

The noncommutative torus Tn
θ is the NC space whose C ∗-algebra

C (Tn
θ) is generated by unitaries U1, . . . ,Un such that

UkUj = e2iπθjkUjUk .

Remarks

1 For θ = 0 we get the C ∗-algebra C (Tn), where Tn = Rn/Zn is
the ordinary torus.

2 A dense basis of C (Tn
θ) is given by the monomials,

Um := Um1
1 · · ·U

mn
n , m = (m1, . . . ,mn) ∈ Zn.
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L2-Space

Definition

τ : C (Tn
θ)→ C is the faithful positive trace defined by

τ0(1) = 1, τ0

(
Um
)

= 0, m 6= 0.

Definition

L2(Tn
θ) is the Hilbert space completion with respect to the

pre-inner product 〈u|v〉 := τ0(v∗u), u, v ∈ C (Tn
θ).

Proposition (GNS Representation)

The action of C (Tn
θ) on itself by left-multiplication extends to a

∗-representation in L2(Tn
θ).
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Smooth Structure of Tn
θ

Definition

1 The canonical derivations ∂1, . . . , ∂n are given by

∂j(Uj) = iUj , ∂j(Uk) = 0, k 6= j .

2 The smooth noncommutative torus is

C∞(Tn
θ) :=

{
u =

∑
m∈Zn

umU
m, (um) ∈ S(Zn)

}
.

Proposition

C∞(Tn
θ) is a Fréchet ∗-algebra and is closed under holomorphic

functional calculus.
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Laplacian on Tn
θ

Definition

The Laplacian ∆ : C∞(Tn
θ)→ C∞(Tn

θ) is given by

∆ := ∂2
1 + · · ·+ ∂2

n .

Proposition

1 ∆ is an essentially selfadjoint operator such that

∆
(
Um
)

= |m|2Um ∀m ∈ Zn.

2 In particular, ∆ is isospectral to the Laplacian on the ordinary
torus Tn.

24 / 29



Spectral Triple – Integration Formula

Proposition

The triple (
C∞(Tn

θ), L2(Tn
θ),
√

∆
)

is an n-summable spectral triple.

Theorem (Integration Formula; McDonald-Sukochev-Zanin, RP)

For every a ∈ C (Tn
θ), we have

−
∫

∆−
n
4 a∆−

n
4 = τ0[a].
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Semiclassical Weyl’s Law on Tn
θ

Conjecture (McDonald+RP ’21)

Given any q > 0, for all V = V ∗ ∈ C∞(Tn
θ),

lim
h→0+

N−
(
h2q∆q + V

)
= τ0

[
(V−)

n
2q
]
.

Remark

The conjecture is proved for q = 1 and n ≥ 3 by
McDonald-Suckochev-Zanin as a consequence of their
semiclassical Weyl’s laws for spectral triples.

Their approach does not to allow us to get a semiclassical
Weyl’s law for NC 2-tori.
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Heat-Trace Asymptotics

Lemma

Let a ∈ C∞(Tn
θ). As t → 0+, we have

Tr
[
ae−t∆

]
= π

n
2 τ0[a]t−

n
2 + O

(
t
−(n−1)

2 e−
π2

t
)
.
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Heat-Trace Asymptotics – Proof

Proof.

We have

Tr
[
ae−t∆] =

∑
m∈Zn

〈ae−t∆Um|Um〉 =
∑
m∈Zn

e−t|m|
2〈aUm|Um〉.

Note that

〈aUm|Um〉 = τ0[(Um)∗aUm] = τ0[aUm(Um)∗] = τ0[a]

.Thus,

Tr
[
ae−t∆] =

∑
m∈Zn

e−t|m|
2
τ0[a] =

(∑
k∈Z

e−tk
2)n
τ0[a].

By Poisson’s summation formula,∑
k∈Z

e−tk
2

=

√
π

t
+
∑
|k|≥1

e−
π2k2

t =

√
π

t
+ O

(
e−

π2

t
)
.

This gives the result.
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Semiclassical Weyl’s Law on Tn
θ

As a consequence the conjecture with Ed McDonald is true:

Corollary (RP ’23)

Given any q > 0, for all V = V ∗ ∈ C (Tn
θ),

lim
h→0+

N−
(
h2q∆q + V

)
= τ0

[
(V−)

n
2q
]
.
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