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Warmup: graph algebras and regularity
Regular inclusions

Bonus material

Graph algebras and ideals
Ideals, regularity
Condition (L)

For E = (E0, E1, r, s) a row-finite directed graph with no sources, a
Cuntz-Krieger system on E is an assignment of finite paths α in E to partial
isometries Sα on a Hilbert space H and satisfying the Cuntz-Krieger
relations.

∀e ∈ E1 S∗eSe = Ss(α) and ∀v ∈ E0 Sv =
∑
r(e)=v

SeS
∗
e .

Denote by E∗ the set of all finite paths and Sγ the partial isometry
Se1Se2 · · ·Sen for a path γ = e1e2 . . . en.

Denote by C∗(E) the C∗-algebra generated by a universal Cuntz-Krieger
system {sα |α ∈ E∗}. Notes:

• C∗(E) = span{sδs∗γ | δ, γ ∈ E∗}
• The diagonal subalgebra D := span{sδs∗δ | δ ∈ E∗}

The gauge action of T on C∗(E) is given by γz(pv) = pv and γz(se) = zse.

Sarah Reznikoff, Kansas State University Notes on regular ideals of C*-algebras



Warmup: graph algebras and regularity
Regular inclusions

Bonus material

Graph algebras and ideals
Ideals, regularity
Condition (L)

For E = (E0, E1, r, s) a row-finite directed graph with no sources, a
Cuntz-Krieger system on E is an assignment of finite paths α in E to partial
isometries Sα on a Hilbert space H and satisfying the Cuntz-Krieger
relations.

∀e ∈ E1 S∗eSe = Ss(α) and ∀v ∈ E0 Sv =
∑
r(e)=v

SeS
∗
e .

Denote by E∗ the set of all finite paths and Sγ the partial isometry
Se1Se2 · · ·Sen for a path γ = e1e2 . . . en.

Denote by C∗(E) the C∗-algebra generated by a universal Cuntz-Krieger
system {sα |α ∈ E∗}. Notes:

• C∗(E) = span{sδs∗γ | δ, γ ∈ E∗}
• The diagonal subalgebra D := span{sδs∗δ | δ ∈ E∗}

The gauge action of T on C∗(E) is given by γz(pv) = pv and γz(se) = zse.

Sarah Reznikoff, Kansas State University Notes on regular ideals of C*-algebras



Warmup: graph algebras and regularity
Regular inclusions

Bonus material

Graph algebras and ideals
Ideals, regularity
Condition (L)

For E = (E0, E1, r, s) a row-finite directed graph with no sources, a
Cuntz-Krieger system on E is an assignment of finite paths α in E to partial
isometries Sα on a Hilbert space H and satisfying the Cuntz-Krieger
relations.

∀e ∈ E1 S∗eSe = Ss(α) and ∀v ∈ E0 Sv =
∑
r(e)=v

SeS
∗
e .

Denote by E∗ the set of all finite paths and Sγ the partial isometry
Se1Se2 · · ·Sen for a path γ = e1e2 . . . en.

Denote by C∗(E) the C∗-algebra generated by a universal Cuntz-Krieger
system {sα |α ∈ E∗}. Notes:

• C∗(E) = span{sδs∗γ | δ, γ ∈ E∗}
• The diagonal subalgebra D := span{sδs∗δ | δ ∈ E∗}

The gauge action of T on C∗(E) is given by γz(pv) = pv and γz(se) = zse.

Sarah Reznikoff, Kansas State University Notes on regular ideals of C*-algebras



Warmup: graph algebras and regularity
Regular inclusions

Bonus material

Graph algebras and ideals
Ideals, regularity
Condition (L)

For E = (E0, E1, r, s) a row-finite directed graph with no sources, a
Cuntz-Krieger system on E is an assignment of finite paths α in E to partial
isometries Sα on a Hilbert space H and satisfying the Cuntz-Krieger
relations.

∀e ∈ E1 S∗eSe = Ss(α) and ∀v ∈ E0 Sv =
∑
r(e)=v

SeS
∗
e .

Denote by E∗ the set of all finite paths and Sγ the partial isometry
Se1Se2 · · ·Sen for a path γ = e1e2 . . . en.

Denote by C∗(E) the C∗-algebra generated by a universal Cuntz-Krieger
system {sα |α ∈ E∗}.

Notes:

• C∗(E) = span{sδs∗γ | δ, γ ∈ E∗}
• The diagonal subalgebra D := span{sδs∗δ | δ ∈ E∗}

The gauge action of T on C∗(E) is given by γz(pv) = pv and γz(se) = zse.

Sarah Reznikoff, Kansas State University Notes on regular ideals of C*-algebras



Warmup: graph algebras and regularity
Regular inclusions

Bonus material

Graph algebras and ideals
Ideals, regularity
Condition (L)

For E = (E0, E1, r, s) a row-finite directed graph with no sources, a
Cuntz-Krieger system on E is an assignment of finite paths α in E to partial
isometries Sα on a Hilbert space H and satisfying the Cuntz-Krieger
relations.

∀e ∈ E1 S∗eSe = Ss(α) and ∀v ∈ E0 Sv =
∑
r(e)=v

SeS
∗
e .

Denote by E∗ the set of all finite paths and Sγ the partial isometry
Se1Se2 · · ·Sen for a path γ = e1e2 . . . en.

Denote by C∗(E) the C∗-algebra generated by a universal Cuntz-Krieger
system {sα |α ∈ E∗}. Notes:

• C∗(E) = span{sδs∗γ | δ, γ ∈ E∗}
• The diagonal subalgebra D := span{sδs∗δ | δ ∈ E∗}

The gauge action of T on C∗(E) is given by γz(pv) = pv and γz(se) = zse.

Sarah Reznikoff, Kansas State University Notes on regular ideals of C*-algebras



Warmup: graph algebras and regularity
Regular inclusions

Bonus material

Graph algebras and ideals
Ideals, regularity
Condition (L)

For E = (E0, E1, r, s) a row-finite directed graph with no sources, a
Cuntz-Krieger system on E is an assignment of finite paths α in E to partial
isometries Sα on a Hilbert space H and satisfying the Cuntz-Krieger
relations.

∀e ∈ E1 S∗eSe = Ss(α) and ∀v ∈ E0 Sv =
∑
r(e)=v

SeS
∗
e .

Denote by E∗ the set of all finite paths and Sγ the partial isometry
Se1Se2 · · ·Sen for a path γ = e1e2 . . . en.

Denote by C∗(E) the C∗-algebra generated by a universal Cuntz-Krieger
system {sα |α ∈ E∗}. Notes:

• C∗(E) = span{sδs∗γ | δ, γ ∈ E∗}

• The diagonal subalgebra D := span{sδs∗δ | δ ∈ E∗}

The gauge action of T on C∗(E) is given by γz(pv) = pv and γz(se) = zse.

Sarah Reznikoff, Kansas State University Notes on regular ideals of C*-algebras



Warmup: graph algebras and regularity
Regular inclusions

Bonus material

Graph algebras and ideals
Ideals, regularity
Condition (L)

For E = (E0, E1, r, s) a row-finite directed graph with no sources, a
Cuntz-Krieger system on E is an assignment of finite paths α in E to partial
isometries Sα on a Hilbert space H and satisfying the Cuntz-Krieger
relations.

∀e ∈ E1 S∗eSe = Ss(α) and ∀v ∈ E0 Sv =
∑
r(e)=v

SeS
∗
e .

Denote by E∗ the set of all finite paths and Sγ the partial isometry
Se1Se2 · · ·Sen for a path γ = e1e2 . . . en.

Denote by C∗(E) the C∗-algebra generated by a universal Cuntz-Krieger
system {sα |α ∈ E∗}. Notes:

• C∗(E) = span{sδs∗γ | δ, γ ∈ E∗}
• The diagonal subalgebra D := span{sδs∗δ | δ ∈ E∗}

The gauge action of T on C∗(E) is given by γz(pv) = pv and γz(se) = zse.

Sarah Reznikoff, Kansas State University Notes on regular ideals of C*-algebras



Warmup: graph algebras and regularity
Regular inclusions

Bonus material

Graph algebras and ideals
Ideals, regularity
Condition (L)

For E = (E0, E1, r, s) a row-finite directed graph with no sources, a
Cuntz-Krieger system on E is an assignment of finite paths α in E to partial
isometries Sα on a Hilbert space H and satisfying the Cuntz-Krieger
relations.

∀e ∈ E1 S∗eSe = Ss(α) and ∀v ∈ E0 Sv =
∑
r(e)=v

SeS
∗
e .

Denote by E∗ the set of all finite paths and Sγ the partial isometry
Se1Se2 · · ·Sen for a path γ = e1e2 . . . en.

Denote by C∗(E) the C∗-algebra generated by a universal Cuntz-Krieger
system {sα |α ∈ E∗}. Notes:

• C∗(E) = span{sδs∗γ | δ, γ ∈ E∗}
• The diagonal subalgebra D := span{sδs∗δ | δ ∈ E∗}

The gauge action of T on C∗(E) is given by γz(pv) = pv and γz(se) = zse.

Sarah Reznikoff, Kansas State University Notes on regular ideals of C*-algebras



Warmup: graph algebras and regularity
Regular inclusions

Bonus material

Graph algebras and ideals
Ideals, regularity
Condition (L)

Notes and notation:

• If J is an ideal in C∗(E) then H(J) := {v ∈ E0 | pv ∈ J}.
• If H is a set of vertices in E, then I(H) is the ideal generated by H.

• H(I) is always saturated: {s(e) | r(e) = v} ⊆ H(I) implies v ∈ H(I) and
hereditary: r(e) ∈ H(I) implies s(e) ∈ H(I).

The quotient graph: If J ⊆ C∗(E) is a closed ideal then denote by E/J the
largest subgraph of E with no vertex in H(J) := {v ∈ E0 | pv ∈ J}, i.e.,

(E/J)0 := E0 \H(J); (E/J)1 := E1 \ s−1(H(J)),

and range and source maps inherited from E.

Theorem (Bates-Pask-Raeburn-Szymański, 2000)
Let E be a directed graph. If J is a gauge-invariant ideal of C∗(E), then
J = I(H(J)) and C∗(E)/J ∼= C∗(E/J). Moreover, if E satisfies Condition
(K) then so does E/J .
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Warmup: graph algebras and regularity
Regular inclusions

Bonus material

Graph algebras and ideals
Ideals, regularity
Condition (L)

Condition (K): no vertex has a solitary return path

Condition (L): every cycle has an entrance

Graphs satisfying (L):

• qualify for the Cuntz-Krieger uniqueness theorem;

• have a Cartan diagonal subalgebra span{sαs∗α |α ∈ E∗};
• have a topologically principal path groupoid.

• do not necessarily pass this property to quotients.

Theorem (Brown-Fuller-Pitts-R, 2022)

Let E be a row-finite graph satisfying Condition (L). Let J be a regular,
gauge-invariant ideal in C∗(E). Then E/J satisfies Condition (L).
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Warmup: graph algebras and regularity
Regular inclusions

Bonus material

Graph algebras and ideals
Ideals, regularity
Condition (L)

Let A be a C∗-algebra. For a subset X ⊆ A, let

X⊥ = {a ∈ A | for all x ∈ X, xa = ax = 0}.

We call an ideal J ⊆ A regular if J = J⊥⊥.

Recall that in a topological space X an open set U is regular if U = (U)◦.
Equivalently, an open set U is regular if U = U⊥⊥, where U⊥ = (X\U)◦.
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ideals of A and the regular open sets (in the hull-kernel topology) of Prim(A).
Proof: The one-to-one correspondence between the ideals of A and open
sets in Prim(A) given by

I 7→ Prim(I) \ hull(I),

where hull(I) = {P ∈ Prim(A) | I ⊆ P}, restricts appropriately.

Example: If X is compact and Hausdorff then J ⊆ C(X) is regular iff
{x ∈ X | ∀f ∈ J f(x) = 0} is the closure of its interior.
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Warmup: graph algebras and regularity
Regular inclusions

Bonus material

Graph algebras and ideals
Ideals, regularity
Condition (L)

Theorem (Brown-Fuller-Pitts-R, 2022)

Let E be a row-finite graph satisfying Condition (L). Let J be a regular,
gauge-invariant ideal in C∗(E). Then E/J satisfies Condition (L).

Lemma: For a vertex w, let T (w) = {s(α) |α ∈ E∗, r(α) = w}, the sources
of paths in E ending at w. Then a gauge-invariant ideal J is regular iff

pw ∈ J ⇔ ∀v ∈ T (w) ∃u ∈ T (v) s.t. pu ∈ H(J).

Proof of Theorem
Let λ = e1e2 · · · en be a cycle in F . Since E has Condition (L),
E := {e ∈ E1 : e is an entrance for λ} 6= ∅. If λ has no entry in E/J then
∀v ∈ s(E), pv ∈ H(J). Since J is regular, it follows from the lemma that for
any vertex w of λ, pw ∈ J , contradicting that λ is a cycle in E/J . Hence E/J
has Condition (L).
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Warmup: graph algebras and regularity
Regular inclusions

Bonus material

Cartan pairs
The Ideal Intersection Property (IIP)
Quotients

If A is a C∗-algebra, a maximal abelian ∗-subalgebra B ⊆ A is a Cartan
subalgebra of A if

(i) there exists a faithful conditional expectation E : A→ B;

(ii) the set of normalizers of B, N(B) := {v ∈ A | vBv∗, v∗Bv ⊆ B},
generates A as a C∗-algebra; and

(iii) B contains an approximate identity for A.

When B is a Cartan subalgebra of A, we call (A,B) a Cartan pair.

Renault (2008): A C∗-algebra with a Cartan subalgebra has a dynamical
description via a topologically principal étale groupoid twist. Also, the
converse holds; i.e., if Σ→ G is an étale, topologically principal groupoid
twist, then C0(G(0)) is Cartan in C∗r (Σ;G).

Barlak-Li (2017, 2019): Any separable and nuclear C∗-algebra containing a
Cartan subalgebra satisfies the UCT. K-theory classifies C∗-algebras with
finite nuclear dimension that satisfy the UCT.
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Warmup: graph algebras and regularity
Regular inclusions

Bonus material

Cartan pairs
The Ideal Intersection Property (IIP)
Quotients

An inclusion B ⊆ A of C∗-algebras has the ideal intersection property if
whenever I ⊂ A is a nontrivial ideal then I ∩B ⊂ B is a nontrivial ideal.

Uniqueness theorems: When is a C∗-algebra A defined from a
graph/k-graph/groupoid G isomorphic to C∗(G)?

• IfM⊆ A has the ideal intersection property then Φ : C∗(G)→ A is
faithful iff Φ|M is.

• Recent uniqueness theorems show that the cycline subalgebra
C∗(Iso(G)◦) has the IIP. (Brown-Nagy-R-Sims-Williams)

Gauge Invariant Uniqueness Theorems: (Graph algebras, Cuntz-Pimsner
algebras) If there is a gauge action of T on A, then the fixed point algebra
has the IIP. (an Huef-Raeburn; Katsura)

C∗-dynamical systems: The IIP used to characterize when the action of a
discrete abelian group on a C∗-algebra is topologically free.
(Archbold-Spielberg; extended by Sierakowski and Kennedy-Schafhauser)
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Warmup: graph algebras and regularity
Regular inclusions

Bonus material

Cartan pairs
The Ideal Intersection Property (IIP)
Quotients

We say that B ⊆ A has the regular ideal intersection property if whenever
J ⊆ A is regular and nontrivial then so is J ∩B ⊆ B

Theorem (Brown-Fuller-Pitts-R)

Let B ⊆ A be a regular inclusion of C∗-algebras with a faithful invariant
conditional expectation E : A→ B. That is,

(i) B contains an approximate unit for A,

(ii) the set of normalizers, N(B), generates A.

(iii) nE(a)n∗ = E(nan∗) for all normalizers n of B, all a ∈ A.

If B ⊆ A has the regular IIP then the invariant regular ideals of B form a
complete Boolean algebra.

Moreover, there is a Boolean algebra isomorphism between the regular
ideals of A and the invariant regular ideals of B given by inverse maps
J 7→ J ∩B and K 7→ JK := {a ∈ A : E(a∗a) ∈ ι(K)}.

Corollary The same result for Cartan pairs.
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Warmup: graph algebras and regularity
Regular inclusions

Bonus material

Cartan pairs
The Ideal Intersection Property (IIP)
Quotients

Theorem (Exel, 2023)

If B is a closed ∗-subalgebra of a C∗-algebra A
satisfying the ideal intersection property plus a mild axiom (INV), then the
map J 7→ J ∩B establishes an isomorphism from the Boolean algebra of all
regular ideals of A to the Boolean algebra of all regular, invariant ideals of B.

Question: Do Cartan pairs pass to quotients?

• Any Cartan embedding has the ideal intersection property.

• The ideal intersection property does not pass to quotients.

Ex: C(D) ⊆ (C(D) o Z) is Cartan, but C(D)/C(P) ⊆ (C(D) o Z)/(C0(P) o Z) is not.

Theorem (BFPR, 2022) Suppose B ⊆ A is a regular inclusion, B has the
ideal intersection property in A, and E : A→ B is an invariant faithful
conditional expectation. Let J �A be a regular ideal. Then B/(J ∩B) has
the ideal intersection property in A/J .

Key Lemma: If J and K are ideals with J⊥ ⊆ K then J⊥ = K or K ∩ J 6= {0}.
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Warmup: graph algebras and regularity
Regular inclusions

Bonus material

Cartan pairs
The Ideal Intersection Property (IIP)
Quotients

Theorem (BFPR) If D is a Cartan subalgebra of a C∗-algebra A and J �A is
a regular ideal, then D/(J ∩D) is a Cartan subalgebra of A/J .

Notes on proof: Regularity follows easily as the approximate unit and
normalizers behave under quotients. Because D ⊂ A is Cartan, it has the
IIP; thus the natural quotient of the conditional expectation is faithful
conditional expectation.

Remark: A converse is false. In particular, it is possible to find an inclusion
D ⊆ A that is Cartan and a non-regular ideal J such that D/(J ∩D) is
Cartan. In particular, one can

(i) find a directed graph E satisfying (L) – every cycle has an entry, and

(ii) find a non-regular ideal J such that E/J also satisfies (L), where E/J is
defined so that C∗(E/J) = C∗(E)/J , and

(iii) recall that (L) guarantees that the diagonal subalgebra generated by the
path projections D := C∗({sαs∗α |α a path in E}) is Cartan.
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a regular ideal, then D/(J ∩D) is a Cartan subalgebra of A/J .

Notes on proof: Regularity follows easily as the approximate unit and
normalizers behave under quotients. Because D ⊂ A is Cartan, it has the
IIP; thus the natural quotient of the conditional expectation is faithful
conditional expectation.
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(ii) find a non-regular ideal J such that E/J also satisfies (L), where E/J is
defined so that C∗(E/J) = C∗(E)/J , and

(iii) recall that (L) guarantees that the diagonal subalgebra generated by the
path projections D := C∗({sαs∗α |α a path in E}) is Cartan.
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Warmup: graph algebras and regularity
Regular inclusions

Bonus material

The graph counterexample
Bonus theorems

Consider the following directed graph E:

v∅
��

v088

66

v1 ff

hh

v0077

==

v01 hh

aa

v1077

==

v11 hh

aa

...
...

...

Let H = T (v0) t

(⊔
i∈N+ T (v11 · · · 1︸ ︷︷ ︸

i

0)

)
, where T (v) := s(r−1(v)). H is a

saturated hereditary set.
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Warmup: graph algebras and regularity
Regular inclusions

Bonus material

The graph counterexample
Bonus theorems

In our example above, E/I(H) = (E0\H, s−1(E0\H), r, s) is the graph

v∅
��

v1
��oo v11

��oo · · ·

which has Condition (L).

However, I(H) is not regular because for example w = v0 /∈ H = H(I(H))
though ∀v ∈ T (w) ∃u ∈ T (v) ∩H violates the technical lemma.
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Warmup: graph algebras and regularity
Regular inclusions

Bonus material

The graph counterexample
Bonus theorems

Theorem (BFPR)

Let (A,D) be a regular inclusion with D abelian and assume that Dc, the
relative commutant of D in A, is abelian. If (A,Dc) is a Cartan inclusion, then
(A,D) has the ideal intersection property if and only if (A,D) has the regular
ideal intersection property.

Corollary If a graph does not satisfy (L) then the diagonal subalgebra does
not have the regular ideal intersection property.

Theorem (BFPR)

Let Σ→ G be a groupoid twist and U ⊆ G(0) a regular invariant open set.
Then C∗r (ΣU , GU )⊥⊥ is a regular ideal in C∗r (Σ, G). (If G is exact, this is
C∗r (ΣU , GU ).) Moreover, if C0(G(0)) ⊆ C∗r (Σ, G) has the ideal intersection
property then every regular ideal is of this form..

Corollary If a graph E satisfies (L) then any regular ideal is gauge invariant.
(Use the path groupoid with trivial twist.)
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Warmup: graph algebras and regularity
Regular inclusions

Bonus material

The graph counterexample
Bonus theorems

Final comments:

• The results on graph algebras have been adapted to the k-graph setting
by Tim Schenkel.

• Results stated above requiring conditional expectations are also adapted
in [BFPR] to the setting where only a pseudo-expectation is available.

• Thank you for attending today!
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