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Notation.

• S∞ := group of all finite permutations σ of N = {1, 2, . . . , n, . . .}
(thus σ : N → N is bijective, and there exists no ∈ N such
that σ(n) = n for n > no).

• Write permutations in cycle notation, e.g. σ = (1, 3, 2)(5, 6)
takes 1 → 3 → 2 → 1, 5 ↔ 6 and fixes 4 and all n ≥ 7.

[Notation “(1)” will refer to the identity permutation.]

• Star-transpositions:
γ1 = (1, 2), γ2 = (1, 3), . . . , γn = (1, n + 1), . . .

It is immediate that the γn’s generate S∞, which is why they are
known as the star-generators of S∞.
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A limit theorem proved by Biane.

Theorem (Biane, 1995). Consider the ∗-probability space
(C[S∞], φ), where φ is the canonical trace, i.e. φ : C[S∞] → C is
linear and has

φ(σ) =

{
1, if σ = (1),
0, otherwise.

}
, σ ∈ S∞.

View the γn’s as centred selfadjoint elements in C[S∞]. Put

sn =
1√
n

n∑
i=1

γi , n ∈ N.

Then the sn’s converge in moments to the semicircle law of Wigner.

Remark. It is relevant to use the star-transpositions γn. If instead
of γn’s we used Coxeter generators (1, 2), (2, 3), . . . , (n, n + 1), . . .
then the limit law would be Gaussian.
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...limit theorem proved by Biane. Recap: if we put

sn =
1√
n

n∑
i=1

γi , n ∈ N,

then the sn’s converge in moments in
(
C[S∞], φ

)
, and limit law is

the semicircle law of Wigner. The latter is best known as d → ∞
limit in results about d × d random Hermitian matrices (e.g. in the
GUE model – to be reviewed below). Its occurrence in Biane’s
theorem suggests some random matrices should be in the picture!

In this talk: I will present a limit theorem that involves a GUE
matrix of size d × d , for fixed d ∈ N. Then d → ∞ will retrieve
the theorem of Biane.

Besides a dimension d ≥ 2, interesting to also fix some weights
w1 ≥ w2 ≥ · · · ≥ wd > 0 with

∑d
i=1 wi = 1. Then we run into a

version of d × d GUE matrix with entries from the CCR algebra.
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OUTLINE OF HOW THE TALK WILL GO:

I. Framework: the character χ, the W ∗-prob space (M, tr),
and the law of large numbers.

II. The exchangeable CLT and how it applies to the operators
U(γn) ∈ M.

III. A digression: CCR analogue for a traceless GUE matrix.

IV. Identification of the limit law in the CLT from Part II.
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Notation (the character χ of S∞).
Fix an integer d ≥ 2 and some weights w1 ≥ w2 ≥ · · · ≥ wd > 0
with w1 + · · ·+ wd = 1.
Classification of Thoma (1964) has an extremal character
χ : S∞ → R associated to these weights. We define it like this:

• Denote pn := wn
1 + wn

2 + · · ·+ wn
d , n ∈ N. Get a sequence of

numbers 1 = p1 > p2 > · · · > pn > · · · > 0.

• For σ ∈ S∞ put χ(σ) :=
∏

V orbit of σ,
|V |≥2

p|V |.

(E.g. σ = (1, 3, 2)(5, 6) ∈ S∞ has χ(σ) = p2 · p3.)

Turns out that χ is indeed a character of S∞ (positive definite,
normalized, constant on conjugacy classes), and it is moreover an
extreme point in the space of characters.
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The special case of the block character.

Suppose we picked our weights to be w1 = · · · = wd = 1/d . Then
pn = (1/d)n−1, n ∈ N. The formula defining χ comes out as

χ(σ) =
∏

V orbit of σ,
|V |≥2

(1/d)|V |−1.

Easy to check: this amounts to

χ(σ) = (1/d)||σ||, σ ∈ S∞, where

||σ|| := min
{
m

σ can be written as a
product of m transpositions

}
.

E.g. σ = (1, 3, 2)(5, 6) has χ(σ) = (1/d)2 · (1/d)1 = (1/d)3,
matching the fact that ||σ|| = 3.

This special case of χ is called block character of S∞.
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The W ∗-probability space (M, tr).

→ Let U : S∞ → B(H) be the GNS representation of χ. That is:

• Have map S∞ ∋ σ 7→ σ̂ ∈ H, such that span{σ̂ | σ ∈ S∞} is
dense in H and such that ⟨σ̂, τ̂⟩ = χ(στ−1), ∀σ, τ ∈ S∞.

• For every σ ∈ S∞ have unitary operator U(σ) ∈ B(H) acting
by

[
U(σ)

]
(τ̂) = σ̂τ , ∀ τ ∈ S∞.

→ Let M := spanWOT{U(σ) | σ ∈ S∞} ⊆ B(H)

(von Neumann algebra generated by the operators U(σ)).

→ Let tr : M → C be the vector-state defined by (̂1) ∈ H,
where (1) ∈ S∞ is the identity permutation:

tr(T ) := ⟨T (̂1) , (̂1) ⟩ for T ∈ M.

Standard arguments show that tr is a faithful trace-state on M.
We will work with the W ∗-probability space (M, tr).
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Law of large numbers for the operators U(γn) ∈ M.

Proposition. The sequence
(
U(γn)

)∞
n=1

has a WOT-limit
A0 ∈ M, where A0 = A∗

0 and ∥A0∥ ≤ 1. The operator A0 can be
described via its action on vectors, as follows:{

For every σ, τ ∈ S∞, one has ⟨A0(σ̂), τ̂ ⟩ =
p1+|V |
p|V |

⟨ σ̂, τ̂ ⟩,
where V is the orbit of στ−1 which contains the number 1.

Corollary. (Law of large numbers.) Let A0 ∈ M be as above.
Then

SOT− lim
n→∞

1

n

n∑
i=1

U(γi ) = A0.
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A remark about traces of monomials in U(γn)’s and A0.

There is a nice procedure for computing traces of monomials where
every factor either is A0 or is a U(γn). Show it on an example –
say e.g. we want to compute tr

(
U(γ1)A

2
0U(γ2)A0

)
.

Trick is: trace will not change when we replace the occurrences of
A0 by “new and distinct” unitaries U(γn). Can e.g. go with

tr
(
U(γ1)A

2
0U(γ2)A0

)
= tr

(
U(γ1)A0A0U(γ2)A0

)
= tr

(
U(γ1)U(γ10)U(γ20)U(γ2)U(γ100)

)
= tr

(
U(γ1γ10γ20γ2γ100

)
= χ(γ1γ10γ20γ2γ100)

= χ
(
(1, 101, 3, 21, 11, 2)

)
= p6.
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...remark about traces of monomials in U(γn)’s and A0.

Corollary.
1o For every k ∈ N, one has that tr(Ak

0) = pk+1.

2o The scalar spectral measure of A0 with respect to tr is equal
to

∑d
i=1 wiδwi (convex combination of Dirac measures).

3o The spectrum of A0 is equal to
{t ∈ (0, 1) | ∃ 1 ≤ i ≤ d such that wi = t}.

Remark. A0 is a scalar if and only if we are in the special case of
the block character, with w1 = · · · = wd = 1/d .
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Some basic notation concerning set-partitions.

P(k) denotes the set of all partitions of {1, . . . , k}.
On P(k) have partial order given by reverse refinement: “π ≤ ρ”
means that every block of π is contained in some block of ρ.
An example of π ≤ ρ in P(6):

π =

1 2 3 4 5 6

≤
1 2 3 4 5 6

= ρ

Some special subsets of P(k): we let

P2(k) := {π ∈ P(k) | every block V ∈ π has |V | = 2},

P≤2(k) := {π ∈ P(k) | every block V ∈ π has |V | ≤ 2}.

For instance, the example shown above has π ∈ P≤2(6) and
ρ ∈ P2(6).
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Review of “exchangeable” CLT.

Notation. We will treat a tuple i ∈ Nk as a function
i : {1, . . . , k} → N. The kernel of such an i is the partition
Ker(π) ∈ P(k) defined as follows: two numbers p, q ∈ {1, . . . , k}
belong to the same block of Ker(i) if and only if i(p) = i(q).

Definition (Exchangeable sequence). (A, φ) ∗-probability space
and (an)

∞
n=1 selfadjoint elements of A. Quantities

φ(ai(1) · · · ai(k)), with k ∈ N and i : {1, . . . , k} → N

are called joint moments of (an)
∞
n=1. We say that (an)

∞
n=1 is

exchangeable to mean that it satisfies
φ(ai(1) · · · ai(k)) = φ(aj(1) · · · aj(k))

for every k ∈ N and i , j ∈ Nk such that Ker(i) = Ker(j).
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...review of “exchangeable” CLT...

Definition. (A, φ) ∗-probability space and let (an)
∞
n=1 be an

exchangeable sequence of selfadjoint elements of A.

1o Have a function on partitions t : ⊔∞
k=1P(k) → C associated to

(an)
∞
n=1, where for k ∈ N and π ∈ P(k) we put{

t(π) := φ
(
ai(1) · · · ai(k)

)
, where i ∈ Nk is

any k-tuple such that ker(i) = π.

This formula is unambiguous due to exchangeability.

2o (an)
∞
n=1 is said to have the singleton vanishing property when

its function on partitions t satisfies:{
t(π) = 0 whenever the partition π ∈ ⊔∞

k=1P(k)
has at least one block V with |V | = 1.

Remark. Singleton vanishing property guarantees centering (use
the unique partition in P(1) to get φ(an) = 0 for all n).
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...review of “exchangeable” CLT.

Theorem (Bozejko-Speicher 1996). Let (A, φ) be a ∗-probability
space and let (an)

∞
n=1 be a sequence of selfadjoint elements of A

which is exchangeable and has the singleton vanishing property.
Let t : ⊔∞

k=1P(k) → C be the function on partitions associated to
(an)

∞
n=1. Consider the linear functional µ : C[X ] → C defined by

asking that µ(1) = 1 and that

µ(X k) =
∑

ρ∈P2(k)

t(ρ), ∀ k ∈ N

(with right-hand side equal to 0 for k odd). Then:

1o µ is positive (that is, µ(P · P ) ≥ 0 for every P ∈ C[X ]).

2o For every n ∈ N put sn := 1√
n

(
a1 + · · ·+ an

)
∈ A. Then

(sn)
∞
n=1 converges in moments to µ, that is, one has

limn→∞ φ(skn ) = µ(X k) for every k ∈ N.
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Exchangeable CLT for the sequence of U(γn)’s.

Go back to our framework of (M, tr). Recall that:

M := spanWOT{U(σ) | σ ∈ S∞} ⊆ B(H),

tr(T ) := ⟨T (̂1) , (̂1) ⟩ for T ∈ M,

A0 = SOT-limn→∞

(
1
n

∑n
i=1 U(γi )

)
∈ M.

Remark. The operators U(γn) are not centered, they have

tr
(
U(γn)

)
= χ(γn) = p2, ∀ n ∈ N.

In preparation of a CLT result, we now want to center the U(γn)’s.

Important point: the way to do the centering is by subtracting the
limit provided by the law of large numbers! That is, we go like this:

Notation.
⋄
Un := U(γn)− A0 ∈ M, n ∈ N.

CLT for symmetric group, and CCR-GUE



...exchangeable CLT for the sequence of U(γn)’s...

Notation.
⋄
Un := U(γn)− A0 ∈ M, n ∈ N.

Remark. The elements
⋄
Un are indeed centred:

tr(
⋄
Un) = tr

(
U(γn)

)
− tr(A0) = p2 − p2 = 0, n ∈ N.

Remark. Typically, the centering procedure goes by subtracting a

scalar, and would yield elements
◦
Un := U(γn)− p2, n ∈ N. The

notation “
⋄
Un” goes in the same spirit. But, unless we are in the

special case of a block character (with w1 = · · · = wd = 1/d), we

have
⋄
Un ̸=

◦
Un. This distinction is important, as the proposition

shown next (more precisely: verifying the singleton-vanishing

property) would not work in connection to the
◦
Un’s.

CLT for symmetric group, and CCR-GUE



...exchangeable CLT for the sequence of U(γn)’s.

Proposition. The sequence
( ⋄
Un

)∞
n=1

in (M, tr) is exchangeable
and has the singleton-vanishing property.

Feed this into the exchangeable CLT theorem, to get:

Corollary (CLT for the U(γn)’s). Let t be the function on

partitions associated to (
⋄
Un)

∞
n=1 and let µw : C[X ] → C be the

linear functional defined by asking that µ(1) = 1 and that

µw (X
k) =

∑
ρ∈P2(k)

t(ρ), k ∈ N.

Then µw is positive and the sequence of elements

sn := 1√
n

∑n
i=1

⋄
U i = 1√

n

∑n
i=1(U(γi )− A0) ∈ M, n ≥ 1,

converge to µw in moments.
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A bit of combinatorial detail concerning t(ρ).

We obtained a limit law µw with moments

µw (X
k) =

∑
ρ∈P2(k)

t(ρ), k ∈ N,

where t is the function on partitions associated to the

exchangeable sequence (
⋄
Un)

∞
n=1. In order to understand what is

µw , we need a good handle on t. Useful formula: for k ∈ N even
and ρ ∈ P2(k) one has

t(ρ) =
∑

π∈P≤2(k)
π≤ρ

(−1)|π|1/2 χ(τπ),

where τπ ∈ S∞ is a product of star-transpositions canonically
associated to π, and |π|1 is the number of singleton-blocks of π.
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...a bit of combinatorial detail concerning t(ρ).

...Formula for t(ρ) uses “χ(τπ)” where τπ ∈ S∞ is a product of
star-transpositions canonically associated to π. For instance for

π =
{
{1}, {2, 5}, {3}, {4, 6}

}
we draw

γ4 γ2 γ3 γ1 γ2 γ1

Hence τπ = γ4γ2γ3γ1γ2γ1 = (1, 5)(1, 3)(1, 4)(1, 2)(1, 3)(1, 2)
= (1, 4, 3, 2, 5), with χ(τπ) = p5.

Remark. By starting from the same character χ of S∞, one can
consider a construction of a positive function v on pair-partitions
introduced by Bozejko-Guta in 2002. There they have

v(ρ) := χ
(
θρ

)
, for ρ ∈ P2(k),

where θρ is another permutation canonically associated to ρ.
(Relation between τρ and θρ...(?))
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Recap: d × d GUE matrix – how to build it. Suppose that:

→ For every 1 ≤ i < j ≤ d we have a centred complex Gaussian
random variable gi ,j of variance 1/d .

→ We have an independent family of centred real Gaussian
random variables g1,1, . . . , gd ,d , where every gi ,i has variance 1/d .

→ The d(d−1)
2 + 1 Gaussian families {Re(g1,2), Im(g1,2)}, . . .,

{Re(gd−1,d), Im(gd−1,d)}, {g1,1, . . . , gd ,d} are independent.

Then for every 1 ≤ i < j ≤ d put gj ,i := gi ,j , and form the random
matrix G = [gi ,j ]

d
i ,j=1. This is our desired GUE matrix.

(The entries of G are scaled such that the expected normalized
trace of G 2 is E (trd(G

2)) = 1.)
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Traceless d × d GUE matrix.

Definition. Let G = [gi ,j ]
d
i ,j=1 be a GUE matrix with entries scaled

such that the expected normalized trace of G 2 is E (trd(G
2)) = 1.

The traceless GUE is the random matrix M obtained from this G
by projecting the random vector (g1,1, . . . , gd ,d) ∈ Rd onto the
hyperplane of equation t1 + · · ·+ td = 0. Thus

M := G −
g1,1 + · · ·+ gd ,d

d
Id ,

where Id is the identity d × d matrix.

Remark. The diagonal entries of M are linearly dependent. They
form a Gaussian family of centred random variables with
covariance matrix C = [ci ,j ]

d
i ,j=1, where:

ci ,i = 1/d − 1/d2, ∀ 1 ≤ i ≤ d ,

ci ,j = cj ,i = −1/d2, ∀ 1 ≤ i < j ≤ d .
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Traceless d × d GUE matrix – how to build it. Suppose that:

→ For every 1 ≤ i < j ≤ d we have a centred complex Gaussian
random variable fi ,j of variance 1/d .

→ We have a Gaussian family of centred real random variables
f1,1, . . . , fd ,d , with covariance matrix C = [ci ,j ]

d
i ,j=1 as shown

above (ci ,i = 1/d − 1/d2 and ci ,j = cj ,i = −1/d2 for i ̸= j).

→ The d(d−1)
2 + 1 Gaussian families {Re(f1,2), Im(f1,2)}, . . .,

{Re(fd−1,d), Im(fd−1,d)}, {f1,1, . . . , fd ,d} are independent.

Then for every 1 ≤ i < j ≤ d put fj ,i := fi ,j , and form the random
matrix M = [fi ,j ]

d
i ,j=1. This is our desired traceless GUE matrix.

In order to get a CCR-analogue of this, we will use a CCR analogue
for the notion of centred complex Gaussian random variable.
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CCR analogue for a centred complex Gaussian r.v.

Definition. Let (A, φ) and ω(1,∗), ω(∗,1) ∈ (0,∞) be given. Say
that an a ∈ A is a centred CCR-complex-Gaussian element with
variances ω(1,∗) and ω(∗,1) to mean that we have the relation

(*) a∗a− ω(∗, 1) 1A = aa∗ − ω(1,∗) 1A ,

and that for p, q ∈ N ∪ {0} we have expectations

(**) φ
(
ap (a∗)p

)
= p! ωp

(1,∗) and φ
(
ap (a∗)q

)
= 0 for p ̸= q.

Remark. Usual “complex Gaussian” is retrieved when we set
ω(1,∗) = ω(∗,1) =: ω. Then (*) says that a commutes with a∗

(hence can be treated like a usual complex r.v.) while (**)
becomes the formula giving the joint moments of f and f for a
centred complex Gaussian variable f of variance ω.
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Wick’s Lemma for a centred CCR-complex-Gaussian.

Recall the two relations used in the definition:

(*) a∗a = aa∗ +
(
ω(∗,1) − ω(1,∗)

)
1A , and

(**) φ
(
ap(a∗)q

)
= δp,q · p!ωp

(1,∗).

These relations determine all the joint moments of a and a∗. One
has a CCR version of Wick’s Lemma which computes such joint
moments. Namely, for k ∈ N and ε(1), . . . , ε(k) ∈ {1, ∗}, one has

φ
(
aε(1) · · · aε(k)

)
=

∑
ρ∈P2(k)

[ ∏
{p,q}∈ρ
with p<q

ω(ε(p),ε(q))

]
,

where we make the convention to put ω(1,1) = ω(∗,∗) := 0.
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...Wick’s Lemma for a centred CCR-complex-Gaussian.

...CCR version of Wick’s Lemma:

φ
(
aε(1) · · · aε(k)

)
=

∑
ρ∈P2(k)

[ ∏
{p,q}∈ρ,
with p<q

ω(ε(p),ε(q))

]

(where ω(1,∗), ω(∗,1) are variances and ω(1,1) = ω(∗,∗) := 0).

For example φ
(
a a a∗ a∗ a a∗

)
= 2ω3

(1,∗) + 4ω2
(1,∗) ω(∗,1). Have 6

terms, e.g. two of the terms ω2
(1,∗) · ω(∗,1) come from

ρ1 =

a a a∗ a∗ a a∗

and ρ2 =

a a a∗ a∗ a a∗

Note: Wick’s Lemma confirms that, symmetric to (**), one has

(***) φ
(
(a∗)q ap

)
= δp,q · q!ωq

(∗,1), for p, q ∈ N ∪ {0}.
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CCR analogue for a traceless d × d GUE matrix.

We also input our weights w1 ≥ · · · ≥ wd > 0 with
∑d

i=1 wi = 1.
Suppose we have a ∗-probability space (A, φ) and a family
{Ao} ∪ {Ai ,j | 1 ≤ i < j ≤ d} of unital ∗-subalgebras of A which
are commuting independent. Suppose moreover that:

(i) For every 1 ≤ i < j ≤ d , we have an element ai ,j ∈ Ai ,j which
is centred CCR-complex-Gaussian with parameters wj and wi . Put
aj ,i := a∗i ,j ∈ Ai ,j (thus have aj ,iai ,j = ai ,jaj ,i + (wi − wj) 1A).

(ii) Ao is commutative and we have selfadjoint a1,1, . . . , ad ,d ∈ Ao

which form a centred Gaussian family with covariance matrix
C = [ci ,j ]

d
i ,j=1, where: ci ,i = wi − w2

i for 1 ≤ i ≤ d ;
ci ,j = cj ,i = −wiwj for 1 ≤ i < j ≤ d .

Then the selfadjoint matrix M = [ai ,j ]1≤i ,j≤d in Md(A) is said to
be a traceless CCR-GUE matrix with parameters w1, . . . ,wd .
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Main result of arXiv:2203.01763 (Campbell-Köstler-Nica).

Theorem. Let (A, φ) be a ∗-probability space, and let
M = [ai ,j ]

d
i ,j=1 ∈ Md(A) be a traceless CCR-GUE matrix with

parameters w1, . . . ,wd (as in discussion from Part III). Consider
the linear functional φw : Md(A) → C defined by

φw (X ) =
d∑

i=1

wi φ(xi ,i ), for X = [xi ,j ]
d
i ,j=1 ∈ Md(A).

Then the law of M in the ∗-probability space (Md(A), φw ) is equal
to the limit law µw from the theorem of CLT type discussed in
Part II of the talk.
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Line of proof of the main result.

The result is that the law of the traceless CCR-GUE matrix M, in
the ∗-probability space (Md(A), φw ), is equal to the limit law µw

from Part II of the talk.
For the proof, it suffices to establish equalities of even moments,

(♢) φw (M
k) =

∫
R
tk dµw (t), for all even k ∈ N.

This is because the odd moments vanish, while for even moments
it is easy to give estimates showing that they give a uniquely
determined probability distribution.

In order to establish (♢), we prove that both its sides are described
by the same Wick-style formula.
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...line of proof of the main result.

...suffices to prove:

(♢) φw (M
k) =

∫
R
tk dµw (t), for all even k ∈ N.

In order to establish (♢), we prove that both its sides are described
by the same Wick-style formula.

On LHS, the Wick-style formula is obtained by putting together
the Wick formulas which we know to hold for the entries of
M = [ai ,j ]

d
i ,j=1. (Usual Wick for {a1,1, . . . , ad ,d} and CCR-Wick for

every {ai ,j , aj ,i} with 1 ≤ i < j ≤ d .)

On RHS, start from the formula offered by the exchangeable CLT:∫
R
tk dµw (t) =

∑
ρ∈P2(k)

t(ρ) = · · ·

Use combinatorics of partitions to process this, until a Wick-style
formula emerges.
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Case of the block-character, and the d → ∞ limit.

Assume w1 = · · · = wd = 1/d , and write “µd” instead of µw .
Above theorem gives µd as law of a usual traceless GUE matrix M:

(□ ) M = G −
g1,1 + · · ·+ gd ,d

d
Id , where G is GUE.

From (□ ) it is easy to infer that µd ∗ N(0, 1/d2) = νd , where:

N(0, 1/d2) = centred normal distribution of variance 1/d2, and

νd = law (a.k.a. “average empirical eigenvalue distribution”) of G .

Finally, make d → ∞. Have fundamental fact that νd converges to
the semicircle law – hence so does µd . On the other hand, the
block-characters converge to the canonical trace of S∞, since
limd→∞(1/d)||σ|| = 0 for every σ ̸= (1) in S∞.

In this way, the d → ∞ limit can be invoked to retrieve the
theorem of Biane reviewed at the beginning of the talk.
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Thank you for your attention!
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