Supercritical equilibrium states of the right ax + b system and their factorizations

Tyler Schulz University of Victoria

Based on joint work with Marcelo Laca

COSy 51, Western University May 23, 2023

3 ×

University of Victoria

1 / 10

Tyler Schulz

Supercritical equilibrium states

Arithmetic information is used to construct a C*-algebra with an \mathbb{R} -action, and various features of this C*-dynamical system are analyzed:

University of Victoria

3 ×

Arithmetic information is used to construct a C*-algebra with an \mathbb{R} -action, and various features of this C*-dynamical system are analyzed:

• equilibrium (KMS_{β}) states at various temperatures $T = \frac{1}{\beta}$;

Tyler Schulz

University of Victoria

A (1) > A (2) > A

Arithmetic information is used to construct a C*-algebra with an \mathbb{R} -action, and various features of this C*-dynamical system are analyzed:

- equilibrium (KMS_{β}) states at various temperatures $T = \frac{1}{\beta}$;
- symmetries of equilibrium states;

Tyler Schulz

University of Victoria

• 同 • • 三 • •

Arithmetic information is used to construct a C*-algebra with an \mathbb{R} -action, and various features of this C*-dynamical system are analyzed:

- equilibrium (KMS_{β}) states at various temperatures $T = \frac{1}{\beta}$;
- symmetries of equilibrium states;
- partition functions, $Z(\beta)$.

Tyler Schulz

University of Victoria

< □ > < □ > < □ > < □ >

[Laca-Raeburn] The *left* ax + b system is the universal C*-algebra $\mathcal{T}(\mathbb{Z} \rtimes \mathbb{N}^{\times})$ generated by a unitary U (addition) and isometries V_a (multiplication), satisfying the relations:

 $1 \ V_a V_b = V_{ab}$

2
$$V_a V_b^* = V_b^* V_a$$
 when $gcd(a, b) = 1$

$$3L V_a U = U^a V_a$$

4L
$$V_a^* U^k V_a = 0$$
 if $1 \le k < a$,

spanned by elements of the form $U^n V_a V_b^* U^m$, $n, m \in \mathbb{Z}$ and $a, b \in \mathbb{N}^{\times}$, with the \mathbb{R} -action defined on spanning elements by

$$\sigma_t(U^n V_a V_b^* U^m) = \left(\frac{a}{b}\right)^{it} U^n V_a V_b^* U^m.$$

Tyler Schulz

University of Victoria

< □ > < □ > < □ > < □ >

[An Huef-Laca-Raeburn] The *right* ax + b system is the universal C*-algebra $\mathcal{T}(\mathbb{N}^{\times} \ltimes \mathbb{Z})$ generated by a unitary U (addition) and isometries V_a (multiplication), satisfying the relations:

$$1 V_a V_b = V_{ab}$$

2
$$V_a V_b^* = V_b^* V_a$$
 when $gcd(a, b) = 1$

$$\frac{\partial R}{\partial V_a} = V_a U^a$$

Spanned by elements of the form $V_a U^n V_b^*$, $n \in \mathbb{Z}$ and $a, b \in \mathbb{N}^{\times}$, with the \mathbb{R} -action defined on spanning elements by

$$\sigma_t(V_aU^nV_b^*) = \left(\frac{a}{b}\right)^{it}V_aU^nV_b^*.$$

University of Victoria

Image: A math a math

Tyler Schulz

Supercritical equilibrium states

Let A be a C*-algebra, σ_t a strongly-continuous \mathbb{R} -action, and $\beta \in \mathbb{R}$.

Definition

A KMS_{β} state on (A, σ_t) is a state ϕ such that

$$\phi(xy) = \phi(y\sigma_{i\beta}(x))$$

for all x, y in a dense subalgebra of A.

 β is the inverse temperature. The set of KMS_β states is a Choquet simplex.

University of Victoria

(Left) The simplex of KMS_β states is affinely isomorphic to:

- [LR] probability measures on the circle \mathbb{T} , when $\beta \in (2, \infty)$;
- [LR] a point, when $\beta \in [1, 2]$;
- [LR] \emptyset , when $\beta < 1$.

University of Victoria

(Left) The simplex of KMS_β states is affinely isomorphic to:

- [LR] probability measures on the circle \mathbb{T} , when $\beta \in (2,\infty)$;
- [LR] a point, when $\beta \in [1, 2]$;
- [LR] \emptyset , when $\beta < 1$.

(Right) The simplex of KMS_{β} states is affinely isomorphic to:

- [aHLR] probability measures on the circle \mathbb{T} , when $\beta \in (1,\infty)$.
- Open for $\beta \leq 1$.

We provide a partial answer for $\beta \leq 1$.

University of Victoria

< □ > < □ > < □ > < □ >

Theorem (Laca-S.)

For $\beta \in (0, 1]$, there is a simplex of KMS_{β} states affinely isomorphic to the simplex of probability measures on the compact space $\mathbb{N}^{\times} \cup \{\infty\}$.

The extremal KMS_{β} states $\psi_{n,\beta}$ corresponding to δ_n , $n \in \mathbb{N}^{\times}$ are also extreme in the simplex of all KMS_{β} states, and the GNS representation is a Type III₁ factor.

University of Victoria

Theorem (Laca-S.)

For $\beta \in (0, 1]$, there is a simplex of KMS_{β} states affinely isomorphic to the simplex of probability measures on the compact space $\mathbb{N}^{\times} \cup \{\infty\}$.

The extremal KMS_{β} states $\psi_{n,\beta}$ corresponding to δ_n , $n \in \mathbb{N}^{\times}$ are also extreme in the simplex of all KMS_{β} states, and the GNS representation is a Type III₁ factor.

Tentatively, this simplex contains every KMS_{β} state if the periodic zeta function

$$\zeta(\beta,z)=\sum_{n=1}^{\infty}\frac{z^n}{n^{\beta}},$$

converges conditionally at $\beta = 1$ for all $z \in \mathbb{T} \setminus \{1\}$ (awaiting some details).

University of Victoria

イロト イロト イヨト イ

Tyler Schulz

Supercritical equilibrium states

University of Victoria

- \mathbb{T} is the circle, $\Delta_a = \{ d \in \mathbb{N}^{\times} : d | a \}$, and $X_a = \mathbb{T} \times \Delta_a$.
- When $a|b, f_{a,b} : X_b \to X_a, f_{a,b}(z,d) = (z^{d/\gcd(a,d)}, \gcd(a,d)).$ These satisfy $f_{a,b} \circ f_{b,c} = f_{a,c}$.

Tyler Schulz

University of Victoria

Image: A mathematical states and a mathem

- \mathbb{T} is the circle, $\Delta_a = \{ d \in \mathbb{N}^{\times} : d | a \}$, and $X_a = \mathbb{T} \times \Delta_a$.
- When $a|b, f_{a,b} : X_b \to X_a, f_{a,b}(z,d) = (z^{d/\gcd(a,d)}, \gcd(a,d)).$ These satisfy $f_{a,b} \circ f_{b,c} = f_{a,c}$.

Proposition (LS)

 $X \cong \varprojlim X_a$ along \mathbb{N}^{\times} ordered by division. We write $f_a : X \to X_a$ for the structure maps.

University of Victoria

Image: A math a math

- \mathbb{T} is the circle, $\Delta_a = \{ d \in \mathbb{N}^{\times} : d | a \}$, and $X_a = \mathbb{T} \times \Delta_a$.
- When $a|b, f_{a,b} : X_b \to X_a, f_{a,b}(z,d) = (z^{d/\gcd(a,d)}, \gcd(a,d)).$ These satisfy $f_{a,b} \circ f_{b,c} = f_{a,c}$.

Proposition (LS)

 $X \cong \varprojlim X_a$ along \mathbb{N}^{\times} ordered by division. We write $f_a : X \to X_a$ for the structure maps.

The isometries $V_a U^n V_a^*$ are functions supported on $f_a^{-1}(\mathbb{T} \times \{a\})$ and the co/isometries V_a and V_a^* act by partial homeomorphisms of X.

Tyler Schulz

University of Victoria

ψ_n explained

This bears a striking resemblance to the Bost-Connes System $(C_{\mathbb{Q}}, \sigma_t)$, wherein KMS_{β} states factor through a conditional expectation to $C(\hat{\mathbb{Z}})$, $\hat{\mathbb{Z}} = \varprojlim \mathbb{Z}/a\mathbb{Z}$.

Tyler Schulz

Supercritical equilibrium states

University of Victoria

ψ_n explained

This bears a striking resemblance to the Bost-Connes System $(C_{\mathbb{Q}}, \sigma_t)$, wherein KMS_{β} states factor through a conditional expectation to $C(\hat{\mathbb{Z}}), \hat{\mathbb{Z}} = \varprojlim \mathbb{Z}/a\mathbb{Z}.$

Proposition (LS)

The extremal KMS_{β} state $\psi_{n,\beta}$ factors through a composition of \mathbb{R} -equivariant *-homomorphisms

$$\mathcal{T}(\mathbb{N}^{\times}\ltimes\mathbb{Z})\to\mathcal{T}(\mathbb{N}^{\times}\ltimes(\mathbb{Z}/n\mathbb{Z}))\to C_{\mathbb{Q}},$$

where $\mathcal{T}(\mathbb{N}^{\times} \ltimes (\mathbb{Z}/m\mathbb{Z}))$ is the universal C*-algebra gen. by U and V_a with the extra relation 4R $U^n = 1$.

Tyler Schulz

University of Victoria

イロト イヨト イヨト イヨ

Modular Quotients

Theorem (LS)

For every $m \in \mathbb{N}^{\times}$, the simplex of KMS_{β} states of $(\mathcal{T}(\mathbb{N}^{\times} \ltimes (\mathbb{Z}/m\mathbb{Z})), \sigma_t)$ is affinely isomorphic to

- probability measures on $\mathbb{Z}/m\mathbb{Z}$ for $\beta \in (1,\infty)$;
- probability measures on Δ_m for $\beta \in (0, 1]$.

The group of the units $(\mathbb{Z}/m\mathbb{Z})^*$ acts on $\mathcal{T}(\mathbb{N}^{\times} \ltimes (\mathbb{Z}/m\mathbb{Z}))$ by \mathbb{R} -equivariant isomorphisms. The induced action on the KMS_{β} states leaves states invariant when $\beta \in (0,1]$ and acts transitively on extremal KMS_{β} with the same $gcd(m, \cdot)$ when $\beta \in (1, \infty)$.

(Spontaneous symmetry-breaking, the Galois action on $C_{\mathbb{Q}}$ lifts).

University of Victoria

Theorem (LS)

For every $m \in \mathbb{N}^{\times}$, the simplex of KMS_{β} states of $(\mathcal{T}(\mathbb{N}^{\times} \ltimes (\mathbb{Z}/m\mathbb{Z})), \sigma_t)$ is affinely isomorphic to

- probability measures on $\mathbb{Z}/m\mathbb{Z}$ for $\beta \in (1,\infty)$;
- probability measures on Δ_m for $\beta \in (0, 1]$.

The group of the units $(\mathbb{Z}/m\mathbb{Z})^*$ acts on $\mathcal{T}(\mathbb{N}^{\times} \ltimes (\mathbb{Z}/m\mathbb{Z}))$ by \mathbb{R} -equivariant isomorphisms. The induced action on the KMS_{β} states leaves states invariant when $\beta \in (0,1]$ and acts transitively on extremal KMS_{β} with the same $gcd(m, \cdot)$ when $\beta \in (1, \infty)$.

(Spontaneous symmetry-breaking, the Galois action on $C_{\mathbb{Q}}$ lifts).

Thank you!

University of Victoria

・ロト ・ 日 ト ・ ヨ ト ・