On sequences of spectral triples associated to triangulations

Damien Tageddine

Department of Mathematics and Statistics, McGill University

Canadian Operator Symposium, May 26th, 2023

Motivations

The principal motivations

 The following diagram in the category of Banach *-algebras commutes

$$\begin{array}{ccc} A_1 & \stackrel{d}{\longrightarrow} & A_2 \\ \downarrow^{\pi} & & \downarrow^{\pi'} \\ A_1^{\hbar} & \stackrel{d_{\hbar}}{\longrightarrow} & A_2^{\hbar} \end{array}$$

- We are interested in the question of convergence in norm $\|\cdot\|_{\hbar}$ when $\hbar \to 0$.
- Discretized operators do not commute in general i.e. $f(d_h g) \neq (d_h g) f$.
- The topology of discrete spaces (lattices, triangulations,...) is ill-behaved.

Spectral triple

Definition (Spectral triple)

A *spectral triple* is the data (A, \mathcal{H}, D) where:

- (i) A is a real or complex *-algebra;
- (ii) $\mathcal H$ is a Hilbert space and a left-representation $(\pi,\mathcal H)$ of A in $\mathcal B(\mathcal H)$;
- (iii) D is a Dirac operator, which is a self-adjoint operator on \mathcal{H} .

We require in addition that the Dirac operator satisfies the following conditions

- a) The resolvent $(D-\lambda)^{-1}$, $\lambda \notin \mathbb{R}$, is a compact operator on H.
- b) $[D, a] \in B(\mathcal{H})$, for any $a \in A$.

The 2-points space

Let $a=(a_1,a_2)\in M_2(\mathbb{C})$ and the Dirac operator:

$$D = \frac{i}{\hbar} \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right), \quad da = \frac{i}{\hbar} \left(\begin{array}{cc} 0 & a_2 - a_1 \\ a_1 - a_2 & 0 \end{array} \right).$$

If we define the following distance:

$$d(x,y) = \sup_{a \in A} \{|a(x) - a(y)| : ||[D,a]|| \le 1\}$$

then one can show that for $X = \{x, y\}$

$$d(x,y)=\hbar.$$

Without prior assumption, we see the emergence of a small parameter \hbar in place of the usual distance Δx .

Preliminary results

The centre of approximately finite C^* -algebras exhaust all possible abelian separable C^* -algebras.

Theorem (Bratteli)

Let \mathfrak{J} be an abelian separable C^* -algebra with unit. Then there exists an approximately finite-dimensional C^* -algebra \mathfrak{A} having \mathfrak{J} as center.

One can associate a C^* -algebra A to a triangulation.

Theorem (Behncke and Leptin)

For any (finite) partially ordered set X, there exists a C^* -algebra A such that the primitive spectrum Prim(A) is homeomorphic to X.

Preliminary results

• Associate a separable Hilbert space H(X) to the space X and attach to every point $x \in X$ a subspace $H(x) \subseteq H(X)$:

$$H(x) = H^{-}(x) \otimes H^{+}(x).$$

• Associate to each point $x \in X$ an operator algebra A(x) acting on H(x), extended by zero to the whole space H(X):

$$A(x) = 1_{H^-(x)} \otimes \mathcal{K}(H^+(x)).$$

• Build the C^* -algebra A(X) associated to X:

$$A(X) = \bigoplus_{x \in X} A(x)$$
 acting on $H(X) = \bigoplus_{x \in X} H(x)$.

Sequences of spectral triples

We can draw the following commuting diagram:

$$\begin{array}{c} A_1 \xrightarrow{\phi_{12}^*} A_2 \xrightarrow{\phi_{23}^*} \cdots \xrightarrow{\phi_{i-1i}^*} A_i \xrightarrow{\phi_{ii+1}^*} \cdots \longrightarrow A_{\infty} \\ \downarrow^{id_1} & \downarrow^{id_2} & \downarrow^{id_i} & \downarrow \\ X_1 \xleftarrow{\phi_{12}} X_2 \xleftarrow{\phi_{23}} \cdots \xleftarrow{\phi_{i-1i}} X_i \xleftarrow{\phi_{ii+1}^*} \cdots \longleftarrow X_{\infty} \end{array}$$

Theorem

The spectrum $Spec(A_{\infty})$ equipped with the hull-kernel topology is homeomorphic to the space X_{∞} and

$$\lim_{\leftarrow} Spec(A_i) \simeq Spec(\lim_{\rightarrow} A_i).$$

Sequences of spectral triples

The algebra of continuous functions on the manifold M can be obtained as the centre of the limit algebra A_{∞} .

Theorem (T.)

The limit C^* -algebra A_{∞} is isometrically *-isomorphic to C^* -algebra of the complex valued continuous sections $\Gamma(M,A_{\infty})$ over the manifold M. The centre $Z(A_{\infty})$ is isomorphic to $C(M,\mathbb{C})$.

A similar result is obtained for the representation space $L^2(M)$.

Theorem (T.)

The Hilbert space $L^2(M)$ of square integrable functions over the manifold M is a subspace of H_{∞} :

$$H_{\infty} = L^2(M) \oplus H.$$

Dirac operators associated to a triangulation

Definition

Let $D \in M_{2m}(\mathbb{C})$ be an odd and hermitian matrix and let ω_{ij} be the coefficients of the block D^- . We say that D is an admissible Dirac operator associate to X if it satisfies the additional condition:

- a) vertices i and j do not share an edge $\Leftrightarrow \omega_{ij} = 0, \ \forall i,j \in \mathfrak{M},$
- b) the eigenvalues μ_n satisfy the asymptotic $\mu_n(D) = O(\hbar^{-1})$.

The prototypical example is given by the *combinatorial Dirac* operator, for which:

$$\omega_{ij} := \left\{ egin{array}{ll} 1 & \mbox{if } i \sim j, \\ 0 & \mbox{otherwise}. \end{array}
ight.$$

A first example on the lattice

We define the following algebra A and Dirac operator D:

$$A = M_{2m}(\mathbb{C}), \quad H = \mathbb{C}^{2m}, \quad D = \frac{i}{\hbar} \begin{pmatrix} 0 & D^- \\ D^+ & 0 \end{pmatrix}$$

with $(D^+)^* = -D^-$ and where D^- is given by

$$D^{-} = \left(\begin{array}{ccccc} 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ \vdots & & & \ddots & 1 \\ 0 & \cdots & \cdots & \cdots & 0 \end{array} \right).$$

A first example on the lattice

We consider a sequence of the block matrix block matrices D_i

$$D_i = \frac{i}{\hbar} \left(\begin{array}{cc} 0 & D_i^- \\ D_i^+ & 0 \end{array} \right)$$

Then the limit operator D_{∞} acts on A_{∞} by the commutator:

$$[D_{\infty}, a] = ([D_0, a_0], [D_1, a_1], \cdots, [D_i, a_i], \cdots) \in \prod_{i \in I} M_{2m_i}^{-}(\mathbb{C}).$$

We can compute the spectrum of the commutator $[D_{\infty}, a]$:

i)
$$\sigma_{A_{\infty}}([D_{\infty}, a]) = \overline{\cup_i \sigma_{A_i}([D_i, a_i])}$$

ii)
$$||[D_{\infty}, a]|| = ||d_c a||_{\infty}$$

A first example on the lattice

Proposition (Spectral convergence)

There exists a finite measure μ and a unitary operator

$$U: L^2(\mathbb{R}) \to L^2(\mathbb{R}, d\mu) \tag{1}$$

such that,

$$U[D, a]U^{-1}\phi = \frac{da}{dx}\phi, \quad \forall \phi \in L^2(\mathbb{R}),$$
 (2)

Moreover, the norm of [D, a] is given by $||[D, a]|| = ||d_c a||_{\infty}$.

This result can be generalized to the d-dimensional lattice Λ . The C^* -algebra $A(\Lambda)$ and the Dirac operator D are obtained through tensor products:

$$A(\Lambda) = A(L) \otimes \cdots \otimes A(L), \quad D_n = \sum_{k=1}^d 1 \otimes \cdots \otimes D_n^{(k)} \otimes \cdots \otimes 1.$$

Beyond the lattice case

• It is known that the canonical spectral triple $(C^{\infty}(M), L^2(S), D)$ on a spin manifold M encodes the metric. The geodesic distance between any two points p and q on M is given by

$$\inf_{\gamma} \int_{0}^{1} \sqrt{g_{\gamma}(\dot{\gamma}(t), \dot{\gamma}(t))} dt = \sup_{f \in \mathcal{A}} \{ |f(p) - f(q)| : ||[D, f]|| \le 1 \}$$

- As it defined the combinatorial Dirac operator does not depend on the metric g of the manifold M.
- Beyond the case of the lattice, the eigenvalues of the commutator [D, a] are not immediately accessible.

Dirac operator as stochastic matrix

If we consider the more general definition of D given by

$$(D)_{ij} := \left\{ egin{array}{ll} \omega_{ij}
eq 0 & ext{if } i \sim j, \\ 0 & ext{otherwise.} \end{array}
ight.$$

where the coefficients ω_{ij} are obtained from a density distribution, a first approach would be to study the convergence in average:

$$S_n^{\hbar_n}(a) := rac{1}{n} \sum_{k=1}^n e_k \left[D_X^k, a_k
ight] e_k^*$$

with (e_k) a family of projectors.

F-P Equation and the Von-Mises Fisher distribution

Consider the one-parameter family of meausres $(\mu_{x,t})_t$ satisfy the parabolic equation:

$$\left. \frac{\partial \mu_{x,t}}{\partial t} \right|_{t=0} = L_{A,b}(\mu_{x,t}) \tag{3}$$

in the weak sense, with the operator $L_{A,b}$

$$L_{A,b}f = tr(AD^2f) + \langle b, \nabla f \rangle, \quad f \in C_c^{\infty}(M)$$
 (4)

We consider the von Mises-Fisher distribution on the unit sphere \mathbb{S}^d given by:

$$\rho_d(x; s, \beta) = C_d(\beta) \exp(-\beta \langle s, x \rangle)$$
 (5)

where $\beta \geq 0$, $\|s\| = 1$ and $C_d(\beta)$ is a normalization constant.

The Von-Mises Fisher distribution

We show that the von Mises-Fisher distribution satisfies the Fokker-Planck equation:

$$\left. \frac{\partial \rho_{s,t}}{\partial t} \right|_{t=0} = \partial_s(\rho_{s,t}).$$

The distribution can be defined on a normal neighbourhood U_p of the manifold M and satisfies a Fokker-Planck equation.

Proposition

The following limit holds at a point $p \in M$

$$\left. \frac{\partial}{\partial t} \left(C_d(\beta_t) \int_{U_p} e^{\widehat{\Phi}_{\beta}(s_i,x)} f(x) \mu(x) \right) \right|_{t=0} = \partial_i(f)(p).$$

A first convergence result

We defined the family of projectors e_k such that:

and the coefficients ω_{ij} are defined $\omega_{ij}^k(\hbar) = C_d(\beta_\hbar) \exp\left(-\frac{\left\langle x_i^k, s_j \right\rangle}{\hbar}\right)$.

A first convergence result

Theorem (T.)

Let $\left\{x_{i_0}^k\right\}_{k=1}^n$ be a sequence of i.i.d. sampled points from a uniform distribution on an open normal neighbourhood U_p of a point p in a compact Riemannian manifold M of dimension d. Let $\widehat{S}_n^{\hbar_n}$ be the associated operator given by:

$$\widehat{S}_n^{\hbar_n}(a) := \frac{1}{n} \sum_{k=1}^n e_k \left[D_X^k, a_k \right] e_k^*.$$

Put $\hbar_n = n^{-\alpha}$, where $\alpha > 0$, then in probability:

$$\lim_{n\to\infty}\sup_{a\in F}\;\left|\Psi\circ\widehat{S}_n^{\hbar_n}(a)(p)-[\mathcal{D},a](p)\right|=0.$$

Laplace operator

Theorem (T.)

Let $\{x_i\}_{i=1}^n$ be a sequence of i.i.d. sampled points from a uniform distribution on an open normal neighbourhood U_p of a point p in a compact Riemannian manifold M of dimension d. $\Omega_n^{\hbar_n}$ be the associated operator given by:

$$\Omega_n^{\hbar_n}(a)(p) = \frac{C_d(\beta_{\hbar})}{n\hbar^2} \sum_{k=1}^n \sum_{j=1}^{d+1} \lambda_j^2 \exp\left(-\frac{\left\langle x_i^k, s_j \right\rangle}{\hbar}\right) \alpha_{ij}(a_k).$$

Put $\hbar_n = n^{-\alpha}$, where $\alpha > 0$, then in probability:

$$\lim_{n\to\infty} \sup_{a\in F} \left|\Omega_n^{\hbar_n}(a)(p) - \Delta_M(a)(p)\right| = 0 \tag{6}$$

Conclusion

Given a compact spin manifold (M, g), we have the following:

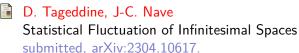
- associate to each K_i a C^* -algebra A_i with limit C(M),
- define a differential structure $da = [D_i, a]$ on each A_i ,
- for the lattice, (D_i) converges to the usual Dirac operator ∂_M .
- Using the same tools than the continuous case $(C^{\infty}, L^2(M), \partial_M)$.

Future works:

- convergence results of the (D_i) to the classical Dirac operator,
- provide a unifying framework in the langage of spectral triples.

References

Noncommutative geometry on Infinitesimal Spaces submitted, arXiv:2209.12929.



Balachandran, A. P. and Bimonte, G. and Ercolessi, E. and Landi, G. and Lizzi, F. and Sparano, G. and Teotonio-Sobrinho, P.

Noncommutative Lattices as Finite Approximations and Their Noncommutative Geometries

Journal of Geometry and Physics (1996), pp. 163-194.

References

A. Connes

Noncommutative geometry *Academic Press* (1994).

O. Bratteli

The center of approximately finite-dimensional C^* -algebras Journal of Functional Analysis (1975), pp. 195-202.

H. Behncke and H. Leptin
C*-algebras with finite duals
Journal of Functional Analysis (1973), pp. 253-262