The lattice of C*-covers of an operator algebra

Adam Humeniuk MacEwan University

May 23, 2023

Adam Humeniuk MacEwan University

C*-covers of an operator algebra

≥ ► < ≥ ►</p>
May 23, 2023

Overview

1 Nonselfadjoint operator algebras

C*-covers

- C*-covers and envelopes
- Meanings of "same C*-covers"

3

イロト イボト イヨト イヨト

Non-selfadjoint operator algebras

Reminder.

A C*-algebra is a subspace of B(H) that is

- closed to multiplication,
- *-closed
- and norm-closed.

3

Non-selfadjoint operator algebras

Reminder.

A C*-algebra is a subspace of B(H) that is

- closed to multiplication,
- *-closed
- and norm-closed.

Definition.

A (concrete) operator algebra is a subspace of B(H) that is

- closed to multiplication
- and norm-closed,

but need not be *-closed.

Adam Humeniuk MacEwan University

3

・ 何 ト ・ ヨ ト ・ ヨ ト

Non-selfadjoint operator algebras

Reminder.

A C*-algebra is a subspace of B(H) that is

- closed to multiplication,
- *-closed
- and norm-closed.

Definition.

A (concrete) operator algebra is a subspace of B(H) that is

- closed to multiplication
- and norm-closed,

but need not be *-closed.

("Abstract" operator algebras are characterized by matrix norms (Blecher-Ruan-Sinclair).)

Adam Humeniuk MacEwan University

C*-covers of an operator algebra

May 23, 2023

Example.

 M_n is a C*-algebra. B(H) is, too.

Adam Humeniuk MacEwan University

э

- 4 同下 4 三下 4 三下

Example.

 M_n is a C*-algebra. B(H) is, too.

Example.

If X is a compact space, then C(X) is a C*-algebra.

э

Example.

 M_n is a C*-algebra. B(H) is, too.

Example.

The upper triangular matrices T_n are an operator algebra.

Example.

If X is a compact space, then C(X) is a C*-algebra.

3

Example.

 M_n is a C*-algebra. B(H) is, too.

Example.

The upper triangular matrices T_n are an operator algebra.

Example.

If X is a compact space, then C(X) is a C*-algebra.

Example.

If X is a nice compact domain in \mathbb{C} , the *holomorphic functions* $A(X^{\circ})$ are an operator algebra.

Adam Humeniuk MacEwan University

A B M A B M

Example.

 M_n is a C*-algebra. B(H) is, too.

Example.

The upper triangular matrices T_n are an operator algebra.

Example.

If X is a compact space, then C(X) is a C*-algebra.

Example.

If X is a nice compact domain in \mathbb{C} , the holomorphic functions $A(X^{\circ})$ are an operator algebra.

Every group defines a group C*-algebra(s).

3

Example.

 M_n is a C*-algebra. B(H) is, too.

Example.

The upper triangular matrices T_n are an operator algebra.

Example.

If X is a compact space, then C(X) is a C*-algebra.

Example.

If X is a nice compact domain in \mathbb{C} , the holomorphic functions $A(X^{\circ})$ are an operator algebra.

Every group defines a group C*-algebra(s).

Every semigroup determines a semigroup operator algebra.

(日)

Overview

Nonselfadjoint operator algebras

2 C*-covers

- C*-covers and envelopes
- Meanings of "same C*-covers"

3 Future Directions

э

イロト イポト イヨト イヨト

Fundamental Problem.

Every operator algebra A generates a C*-algebra $C^*(A)$.

Adam Humeniuk MacEwan University

3

Fundamental Problem.

Every operator algebra A generates a C*-algebra $C^*(A)$.

Example.

 $C^*(T_n)=M_n.$

Adam Humeniuk MacEwan University

イロト 不得下 イヨト イヨト 二日

Fundamental Problem.

Every operator algebra A generates a C*-algebra $C^*(A)$.

Example.

 $C^*(T_n)=M_n.$

But (completely isometrically) isomorphic copies of an operator algebra can generate different C*-algebras!

Adam Humeniuk MacEwan University

イロト イポト イヨト イヨト 二日

Examples of C*-covers

Example.

 $C^*(T_n)=M_n.$

Adam Humeniuk MacEwan University

臣

イロト イヨト イヨト イヨト

Example.

 $C^*(T_n)=M_n.$

Example.

$$\begin{array}{cc} T_2 \xrightarrow{\varphi} \mathbb{C} \oplus M_2 \\ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mapsto \left(a, \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \right) \end{array}$$

is an isomorphism onto a copy of T_2 , with $C^*(\varphi(T_2)) = \mathbb{C} \oplus M_2 \ncong M_2$.

Adam Humeniuk MacEwan University

C*-covers of an operator algebra

< □ ▶ < 圕 ▶ < Ξ ▶ < Ξ ▶ Ξ りへぐ May 23, 2023

Definition.

A C*-cover of an operator algebra A is a pair (C, ι) where

$$\iota: A \hookrightarrow C = C^*(\iota(A))$$

is a (completely isometric) embedding.

3

・ 何 ト ・ ヨ ト ・ ヨ ト …

Definition.

A C*-cover of an operator algebra A is a pair (C, ι) where

$$\iota: A \hookrightarrow C = C^*(\iota(A))$$

is a (completely isometric) embedding.

("A C*-algebra generated by an isomorphic copy of A.")

(本間) (本語) (本語) (二語)

Definition.

A C*-cover of an operator algebra A is a pair (C, ι) where

```
\iota: A \hookrightarrow C = C^*(\iota(A))
```

is a (completely isometric) embedding.

("A C*-algebra generated by an isomorphic copy of A.")

Definition-Theorem.

(Arveson, Hamana, Dritschel-McCullough, Arveson (again), Davidson-Kennedy)

The **C*-envelope** is the unique smallest C*-cover of A, usually denoted $C^*_{\min}(A)$. It exists for any A.

Adam Humeniuk MacEwan University

Definition.

A C*-cover of an operator algebra A is a pair (C, ι) where

```
\iota: A \hookrightarrow C = C^*(\iota(A))
```

is a (completely isometric) embedding.

("A C*-algebra generated by an isomorphic copy of A.")

Definition-Theorem.

(Arveson, Hamana, Dritschel-McCullough, Arveson (again), Davidson-Kennedy)

The **C*-envelope** is the unique **smallest** C*-cover of A, usually denoted $C^*_{\min}(A)$. It exists for any A.

(There is also a " $C^*_{max}(A)$ ".)

Adam Humeniuk MacEwan University

$$A(\mathbb{D}) = \{ f : \overline{\mathbb{D}} \to \mathbb{C} \mid f|_{\mathbb{D}} \text{ is holomorphic} \}$$

Adam Humeniuk MacEwan University

3

イロト イヨト イヨト イヨト

$$A(\mathbb{D}) = \{ f : \overline{\mathbb{D}} \to \mathbb{C} \mid f|_{\mathbb{D}} \text{ is holomorphic} \}$$
$$= \overline{\mathbb{C}[z]}$$

Adam Humeniuk MacEwan University

3

$$\begin{split} A(\mathbb{D}) &= \{ f : \overline{\mathbb{D}} \to \mathbb{C} \mid f|_{\mathbb{D}} \text{ is holomorphic} \} \\ &= \overline{\mathbb{C}[z]} \\ &= (\text{universal operator algebra generated by a contraction}) \end{split}$$

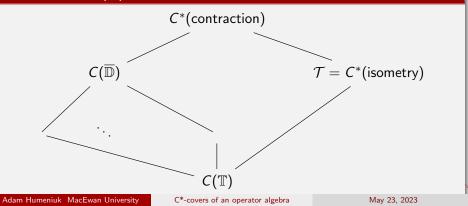
Adam Humeniuk MacEwan University

3

イロト イヨト イヨト イヨト

$$\begin{split} A(\mathbb{D}) &= \{f : \overline{\mathbb{D}} \to \mathbb{C} \mid f|_{\mathbb{D}} \text{ is holomorphic} \} \\ &= \overline{\mathbb{C}[z]} \\ &= (\text{universal operator algebra generated by a contraction}) \end{split}$$

C*-covers of $A(\mathbb{D})$



C*-cover uniqueness

Question.

If two operator algebras have "the same C*-covers", are they isomorphic? If not, how different can they be?

C*-cover uniqueness

Question.

If two operator algebras have "the same C*-covers", are they isomorphic? If not, how different can they be?

(Two different operator algebras can have the same C*-envelope, or the same C*-max.)

Definition.

For C*-covers, we say that $(C, \iota) \ge (D, \eta)$ if

$$\begin{array}{c} C & \xrightarrow{\exists} & D \\ \downarrow & & & & \\ A \end{array}$$

Adam Humeniuk MacEwan University

C*-covers of an operator algebra

э

イロト イポト イヨト イヨト

Definition.

For C*-covers, we say that $(C, \iota) \ge (D, \eta)$ if

Theorem. (Hamidi, '19) (Thompson, '21)

The order \leq makes the set of C*-covers of A a complete lattice.

Adam Humeniuk MacEwan University

Definition.

For C*-covers, we say that $(C, \iota) \ge (D, \eta)$ if

 $\begin{array}{c} C \xrightarrow{\exists} D \\ \downarrow & & & \\ A \end{array}$

Theorem. (Hamidi, '19) (Thompson, '21)

The order \leq makes the set of C*-covers of A a **complete lattice**.

(A partially ordered set where all subsets have "sups" and "infs".)

Adam Humeniuk MacEwan University

C*-covers of an operator algebra

< □ > < 큔 > < 클 > < 클 > < 클 > 트 → ○ Q (~ May 23, 2023

Definition.

For C*-covers, we say that $(C, \iota) \ge (D, \eta)$ if

 $\begin{array}{c} C \xrightarrow{\exists} D \\ \downarrow & & & \\ A \end{array}$

Theorem. (Hamidi, '19) (Thompson, '21)

The order \leq makes the set of C*-covers of A a **complete lattice**.

(A partially ordered set where all subsets have "sups" and "infs".)

Call it C^* -Lat(A).

Adam Humeniuk MacEwan University

C*-covers of an operator algebra

May 23, 2023

イロト 不得下 イヨト イヨト 二日

Overview

Nonselfadjoint operator algebras

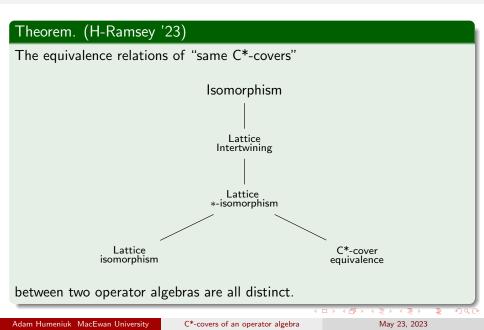
- C*-covers and envelopes
- Meanings of "same C*-covers"

3 Future Directions

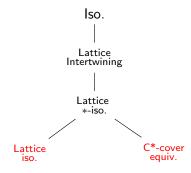
э

イロト イポト イヨト イヨト

C*-cover equivalences



C*-cover equivalences for A and B



Adam Humeniuk MacEwan University

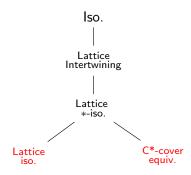
C*-covers of an operator algebra

May 23, 2023

э

イロト イボト イヨト イヨト

C*-cover equivalences for A and B

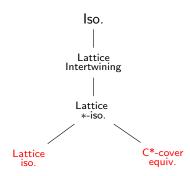


C*-cover equivalence

Every C*-cover of A is *-isomorphic to a C*-cover for B, and vice versa.

э

C*-cover equivalences for A and B



C*-cover equivalence

Every C*-cover of A is *-isomorphic to a C*-cover for B, and vice versa.

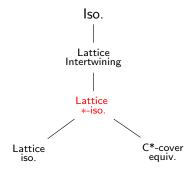
Lattice isomorphism

The lattices C^* -Lat(A) and C^* -Lat(B) are order isomorphic.

Adam Humeniuk MacEwan University

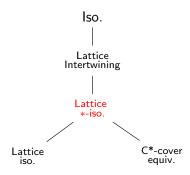
≥ ► < ≥ ►</p>
May 23, 2023

э



Adam Humeniuk MacEwan University

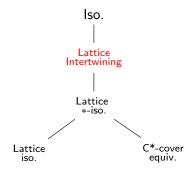
э



Lattice *-isomorphism

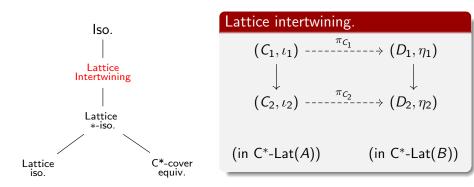
 $C^*-Lat(A)$ and $C^*-Lat(B)$ are order isomorphic via an isomorphism that associates isomorphic C^* -algebras.

э



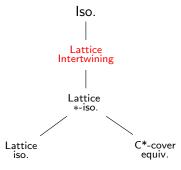
Adam Humeniuk MacEwan University

э



э

・ 何 ト ・ ヨ ト ・ ヨ ト



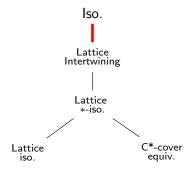
(Natural isomorphism.)

Adam Humeniuk MacEwan University

C*-covers of an operator algebra

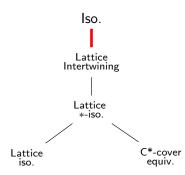
May 23, 2023

э



Adam Humeniuk MacEwan University

3



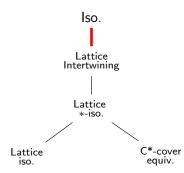
Fact.

If (C, ι) is a C*-cover for A, then (C, ι^*) is a C*-cover for A^{*},

Adam Humeniuk MacEwan University

May 23, 2023

э



Fact.

If (C, ι) is a C*-cover for A, then (C, ι^*) is a C*-cover for A^{*},

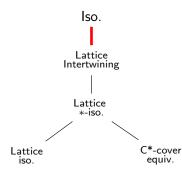
so A and A^* are intertwined.

Adam Humeniuk MacEwan University

C*-covers of an operator algebra

May 23, 2023

3



Fact.

If (C, ι) is a C*-cover for A, then (C, ι^*) is a C*-cover for A^* ,

so A and A^* are intertwined.

But maybe
$$A \not\cong A^*$$
!
 $\begin{pmatrix} * & * & * \\ 0 & * & 0 \\ 0 & 0 & * \end{pmatrix} \not\cong \begin{pmatrix} * & 0 & 0 \\ * & * & 0 \\ * & 0 & * \end{pmatrix}$.

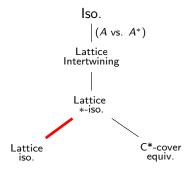
イロト イボト イヨト イヨト

Adam Humeniuk MacEwan University

C*-covers of an operator algebra

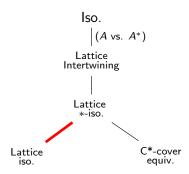
May 23, 2023

3



Adam Humeniuk MacEwan University

3

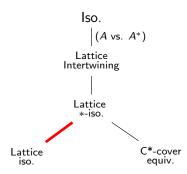


Fact.

If C is a C*-algebra, then

$$C^*-Lat(C) = \{(C, id)\}.$$

3



Fact.

If C is a C*-algebra, then

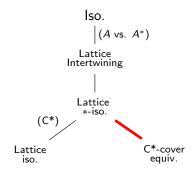
$$\mathsf{C}^*\operatorname{-Lat}(C) = \{(C, \operatorname{id})\}.$$

So all C*-algebras are lattice iso.

Adam Humeniuk MacEwan University

May 23, 2023

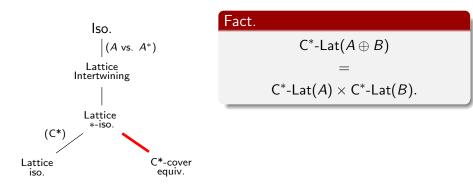
э



Adam Humeniuk MacEwan University

May 23, 2023

3

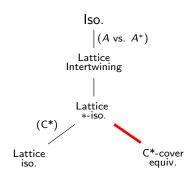


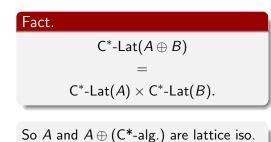
Adam Humeniuk MacEwan University

C*-covers of an operator algebra

May 23, 2023

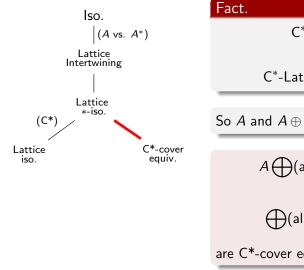
3





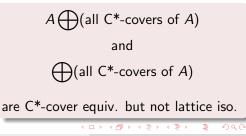
3

イロト 不得 トイヨト イヨト



ct. $C^*-Lat(A \oplus B)$ = $C^*-Lat(A) \times C^*-Lat(B).$

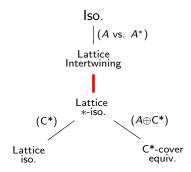
So A and $A \oplus (C^*\text{-}alg.)$ are lattice iso.



Adam Humeniuk MacEwan University

C*-covers of an operator algebra

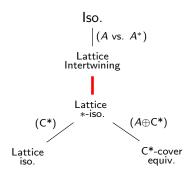
May 23, 2023



Adam Humeniuk MacEwan University

May 23, 2023

3



Theorems. (H-Ramsey '23) What does

$$C^*$$
-Lat $(A \otimes_{\alpha} B)$

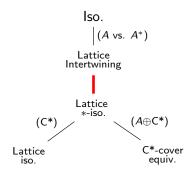
look like?

Adam Humeniuk MacEwan University

C*-covers of an operator algebra

May 23, 2023

3



Theorems. (H-Ramsey '23)

What does

$$C^*$$
-Lat $(A \otimes_{\alpha} B)$

look like?

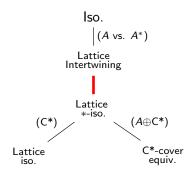
If B is a nuclear simple C*-algebra, then

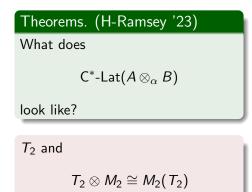
$$\mathsf{C}^*\operatorname{-Lat}(A \otimes B)$$
 " = " $\mathsf{C}^*\operatorname{-Lat}(A) \otimes B$.

Adam Humeniuk MacEwan University

э

- 4 目 ト 4 日 ト





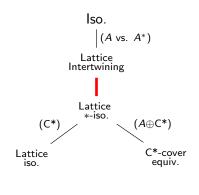
are lattice iso. but not intertwined,

Adam Humeniuk MacEwan University

C*-covers of an operator algebra

May 23, 2023

3



Theorems. (H-Ramsey '23)

What does

$$C^*$$
-Lat $(A \otimes_{\alpha} B)$

look like?

 T_2 and

$$T_2 \otimes M_2 \cong M_2(T_2)$$

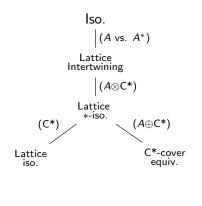
are lattice iso. but not intertwined,

 \oplus with all C*-covers of both to get lattice *-iso.

Adam Humeniuk MacEwan University

C*-covers of an operator algebra

May 23, 2023



Theorems. (H-Ramsey '23)

What does

$$C^*$$
-Lat $(A \otimes_{\alpha} B)$

look like?

 T_2 and

$$T_2 \otimes M_2 \cong M_2(T_2)$$

are lattice iso. but not intertwined,

 \oplus with all C*-covers of both to get lattice *-iso.

Adam Humeniuk MacEwan University

C*-covers of an operator algebra

May 23, 2023

Open Question.

If A has a one-point C*-lattice $(C^*_{\max}(A) = C^*_{\min}(A))$, is A a C*-algebra?

Adam Humeniuk MacEwan University

イロト イポト イヨト イヨト 二日

Open Question.

If A has a one-point C*-lattice $(C^*_{\max}(A) = C^*_{\min}(A))$, is A a C*-algebra?

(Can A be lattice iso. to a C*-algebra?)

イロト 不得 トイヨト イヨト 二日

Open Question.

If A has a one-point C*-lattice $(C^*_{\max}(A) = C^*_{\min}(A))$, is A a C*-algebra?

(Can A be lattice iso. to a C*-algebra?)

(Kirchberg-Wassermann '99). The analogous question for operator *systems* is false.

Adam Humeniuk MacEwan University

くぼう くほう くほう しほ

Open Question.

If A has a one-point C*-lattice $(C^*_{\max}(A) = C^*_{\min}(A))$, is A a C*-algebra?

(Can A be lattice iso. to a C*-algebra?)

(Kirchberg-Wassermann '99). The analogous question for operator *systems* is false.

Partial Results (H-Ramsey '23)

If A is Dirichlet, hyperrigid, or embeds in finite dimensions, then A cannot have a one-point lattice unless it is a C*-algebra.

Adam Humeniuk MacEwan University

イロト 不得 トイヨト イヨト 二日

Open Question.

If A has a one-point C*-lattice $(C^*_{\max}(A) = C^*_{\min}(A))$, is A a C*-algebra?

Related Questions.

Can C^* -Lat(A) be

Adam Humeniuk MacEwan University

(日)

Open Question.

If A has a one-point C*-lattice $(C^*_{\max}(A) = C^*_{\min}(A))$, is A a C*-algebra?

Related Questions.

Can C^* -Lat(A) be

finite?

Adam Humeniuk MacEwan University

(日)

Open Question.

If A has a one-point C*-lattice $(C^*_{\max}(A) = C^*_{\min}(A))$, is A a C*-algebra?

Related Questions.

- Can C^* -Lat(A) be
 - finite?
 - of any cardinality?

Adam Humeniuk MacEwan University

イロト 不得 トイヨト イヨト 二日

Open Question.

If A has a one-point C*-lattice $(C^*_{\max}(A) = C^*_{\min}(A))$, is A a C*-algebra?

Related Questions.

Can C^* -Lat(A) be

- finite?
- of any cardinality?
- any complete lattice you want?

3

Open Question.

If A has a one-point C*-lattice $(C^*_{\max}(A) = C^*_{\min}(A))$, is A a C*-algebra?

Related Questions.

Can C^* -Lat(A) be

- finite?
- of any cardinality?

• any complete lattice you want?

Another result. (H-Ramsey '23)

Construction of a simple operator algebra which is not similar to a C^* -algebra.

Adam Humeniuk MacEwan University

イロト 不得 トイヨト イヨト 二日

Overview

Nonselfadjoint operator algebras

C*-covers

- C*-covers and envelopes
- Meanings of "same C*-covers"

8 Future Directions

3

Undergraduate Project (J. Rumball, MacEwan, Riipen Level UP)

Theoretical or computer classification of finite-dimensional operator algebras which satisfy the "**semi-Dirichlet property**".

Undergraduate Project (J. Rumball, MacEwan, Riipen Level UP)

Theoretical or computer classification of finite-dimensional operator algebras which satisfy the "**semi-Dirichlet property**".

This ties into

Undergraduate Project (J. Rumball, MacEwan, Riipen Level UP)

Theoretical or computer classification of finite-dimensional operator algebras which satisfy the "**semi-Dirichlet property**".

This ties into

Theorem. (H-Ramsey, Forthcoming)

The semi-Dirichlet C*-covers of an operator algebra form a complete lattice, and there is a maximal semi-Dirichlet C*-cover.

(人間) トイヨト イヨト ニヨ

Undergraduate Project (J. Rumball, MacEwan, Riipen Level UP)

Theoretical or computer classification of finite-dimensional operator algebras which satisfy the "**semi-Dirichlet property**".

This ties into

Theorem. (H-Ramsey, Forthcoming)

The semi-Dirichlet C*-covers of an operator algebra form a complete lattice, and there is a maximal semi-Dirichlet C*-cover.

More forthcoming work. (H-Ramsey)

The **RFD** C*-covers do not form a complete lattice. Are they even a lattice?

Adam Humeniuk MacEwan University

C*-covers of an operator algebra

May 23, 2023

イロト イポト イモト 小田 トーヨ

Undergraduate Project (J. Rumball, MacEwan, Riipen Level UP)

Theoretical or computer classification of finite-dimensional operator algebras which satisfy the "**semi-Dirichlet property**".

This ties into

Theorem. (H-Ramsey, Forthcoming)

The semi-Dirichlet C*-covers of an operator algebra form a complete lattice, and there is a maximal semi-Dirichlet C*-cover.

More forthcoming work. (H-Ramsey)

The **RFD** C*-covers do not form a complete lattice. Are they even a lattice?

Thank you!

Adam Humeniuk MacEwan University

C*-covers of an operator algebra

May 23, 2023

イロト 不得 トイヨト イヨト 二日