Majorization in C*Algebras

Paul Skoufranis

York University

May 23, 2023

Question

Given a unital C*-algebra ${\mathfrak A}$ and a self-adjoint operator ${\cal T}\in {\mathfrak A},$ is it possible to describe

$$\overline{\operatorname{conv}}(\mathcal{U}(T)) = \overline{\operatorname{conv}(\{U^* T U \mid U \in \mathcal{U}(\mathfrak{A})\})}$$

using spectral data?

Elements of $\overline{\operatorname{conv}}(\mathcal{U}(T))$ are 'averages' of elements of $\mathcal{U}(T)$. Thus we think of T 'majorizing' elements of $\overline{\operatorname{conv}}(\mathcal{U}(T))$.

Dixmier Property

Definition

A unital C*-algebra \mathfrak{A} is said to have the *Dixmier Property* if $\overline{\operatorname{conv}}(\mathcal{U}(T)) \cap Z(\mathfrak{A}) \neq \emptyset$ for all $T \in \mathfrak{A}$.

Definition

A unital C*-algebra \mathfrak{A} is said to have the *Dixmier Property* if $\overline{\operatorname{conv}}(\mathcal{U}(T)) \cap Z(\mathfrak{A}) \neq \emptyset$ for all $T \in \mathfrak{A}$.

Theorem (Haagerup, Zsidó; 1984)

A unital simple C*-algebra \mathfrak{A} has the Dixmier property if and only if \mathfrak{A} has at most one tracial state.

Definition

A unital C*-algebra \mathfrak{A} is said to have the *Dixmier Property* if $\overline{\operatorname{conv}}(\mathcal{U}(T)) \cap Z(\mathfrak{A}) \neq \emptyset$ for all $T \in \mathfrak{A}$.

Theorem (Haagerup, Zsidó; 1984)

A unital simple C^* -algebra \mathfrak{A} has the Dixmier property if and only if \mathfrak{A} has at most one tracial state.

Theorem (Archbold, Robert, Tikusis; 2017)

A unital C^* -algebra \mathfrak{A} has the Dixmier property if and only if \mathfrak{A} has the following properties:

- \mathfrak{A} is weakly central,
- every simple quotient of $\mathfrak A$ has at most one tracial state, and
- every extreme tracial state of \mathfrak{A} factors through some simple quotient.

Theorem (Haagerup; 2015), (Kennedy; 2015)

Let G be a discrete group. Then $C_r^*(G)$ is simple if and only if for all self-adjoint $T \in C_r^*(G)$ and for all $\epsilon > 0$ there exists $g_1, \ldots, g_n \in G$ such that

$$\left\|\tau(T)-\frac{1}{n}\sum_{k=1}^n\lambda(g_k)^*T\lambda(g_k)\right\|<\epsilon.$$

Definition

A map $\Psi : \mathcal{M}_n \to \mathcal{M}_n$ is said to be a:

• quantum channel if Ψ is completely positive and trace-preserving.

Definition

A map $\Psi : \mathcal{M}_n \to \mathcal{M}_n$ is said to be a:

- quantum channel if Ψ is completely positive and trace-preserving.
- unitary channel if $\Psi(T) = U^*TU$ for all $T \in \mathcal{M}_n$ where U is a unitary.

Definition

A map $\Psi : \mathcal{M}_n \to \mathcal{M}_n$ is said to be a:

- quantum channel if Ψ is completely positive and trace-preserving.
- unitary channel if $\Psi(T) = U^*TU$ for all $T \in \mathcal{M}_n$ where U is a unitary.
- mixed unitary quantum channel if Ψ is a convex combination of unitary channels.

Hence mixed unitary quantum channels have the form $T \mapsto \sum_{k=1}^{m} t_k U_k^* T U_k$ where $t_k \in [0, 1]$ are such that $\sum_{k=1}^{m} t_k = 1$ and U_1, \ldots, U_m are unitaries.

Definition

A map $\Psi : \mathcal{M}_n \to \mathcal{M}_n$ is said to be a:

- quantum channel if Ψ is completely positive and trace-preserving.
- unitary channel if $\Psi(T) = U^*TU$ for all $T \in \mathcal{M}_n$ where U is a unitary.
- mixed unitary quantum channel if Ψ is a convex combination of unitary channels.

Hence mixed unitary quantum channels have the form $T \mapsto \sum_{k=1}^{m} t_k U_k^* T U_k$ where $t_k \in [0,1]$ are such that $\sum_{k=1}^{m} t_k = 1$ and U_1, \ldots, U_m are unitaries.

Thus describing $\overline{\operatorname{conv}}(\mathcal{U}(T))$ describes the set of outputs of T under all mixed unitary quantum channels.

Characterizations of $\overline{\operatorname{conv}}(\mathcal{U}(B))$ - Matrix Algebras

Theorem (Various)

Let $A,B\in \mathcal{M}_n$ be self-adjoint with eigenvalues

 $a_1 \ge a_2 \ge \cdots \ge a_n$ and $b_1 \ge b_2 \ge \cdots \ge b_n$

respectively. The following are equivalent:

- $A \in \operatorname{conv}(\mathcal{U}(B)).$
- **2** there exists a double stochastic matrix $X \in \mathcal{M}_n$ such that $X\vec{b} = \vec{a}$.
- $\sum_{k=1}^{m} a_k \leq \sum_{k=1}^{m} b_k \text{ for all } m \in \{1, \dots, n\} \text{ with equality when } m = n.$
- $\operatorname{Tr}(f(A)) \leq \operatorname{Tr}(f(B))$ for all $f : \mathbb{R} \to \mathbb{R}$ continuous and convex.
- there exists a unital, trace-preserving, completely positive map $\Psi : \mathcal{M}_n \to \mathcal{M}_n$ such that $\Psi(B) = A$.
- There exists unitaries $U, V \in \mathcal{M}_n$ such that $U^*AU = E_D(V^*BV)$ where $E_D : \mathcal{M}_n \to \mathcal{M}_n$ is the expectation onto the diagonal.

Let \mathfrak{M} be a type II₁ factor with tracial state τ .

Definition

For a self-adjoint operator $T \in \mathfrak{M}$, the *eigenvalue function* of T is defined for $s \in [0, 1)$ by

$$\lambda^{\tau}_{\mathcal{T}}(s) = \inf\{t \in \mathbb{R} \mid \mu_{\mathcal{T}}((t,\infty)) \leq s\}.$$

For example, if P_1, \ldots, P_n are pairwise orthogonal projections such that $\sum_{k=1}^{n} P_k = I_{\mathfrak{M}}$, if $a_1 > a_2 > \cdots > a_n$, if $T = \sum_{k=1}^{n} a_k P_k$, and if $s_k = \sum_{j=1}^{k} \tau(P_j)$, then

$$\lambda^{ au}_T(s) = a_k \quad ext{for all } s \in [s_{k-1}, s_k).$$

Schur Horn Theorem - II₁ Factors

Let \mathfrak{M} be a type II₁ factor with tracial state τ and let $T, S \in \mathfrak{M}$ be self-adjoint.

Theorem (Hiai, Nakamura; 1991)

The following are equivalent:

- $S \in \overline{\operatorname{conv}}(\mathcal{U}(T)).$
- $\tau((S \alpha)_+) \leq \tau((T \alpha)_+)$ and $\tau((-S \alpha)_+) \leq \tau((-T \alpha)_+)$ for all $\alpha \in \mathbb{R}$.

Schur Horn Theorem - II₁ Factors

Let \mathfrak{M} be a type II₁ factor with tracial state τ and let $T, S \in \mathfrak{M}$ be self-adjoint.

Theorem (Hiai, Nakamura; 1991)

The following are equivalent:

- $S \in \overline{\operatorname{conv}}(\mathcal{U}(T)).$
- $\tau((S \alpha)_+) \leq \tau((T \alpha)_+)$ and $\tau((-S \alpha)_+) \leq \tau((-T \alpha)_+)$ for all $\alpha \in \mathbb{R}$.

Theorem (Ravichandran; 2014)

 $S \in \overline{\operatorname{conv}}(\mathcal{U}(T))$ if and only if whenever \mathcal{A} is a MASA of \mathfrak{M} containing S and $E_{\mathcal{A}} : \mathfrak{M} \to \mathcal{A}$ is the conditional expectation onto \mathcal{A} there exists a $R \in \mathcal{U}(T)$ such that $E_{\mathcal{A}}(R) = S$.

Theorem (Kennedy, Skoufranis; 2017)

Let \mathfrak{M} be a type II_1 factor with tracial state τ and let $T, S \in \mathfrak{M}$ with S normal. Then the following are equivalent:

- If \mathcal{A} is a MASA of \mathfrak{M} containing S and $E_{\mathcal{A}} : \mathfrak{M} \to \mathcal{A}$ is the conditional expectation onto \mathcal{A} , then there exists a

$$R \in \overline{\{UTV \mid U, V \in \mathcal{U}(\mathfrak{M})\}}$$

such that $E_{\mathcal{A}}(R) = S$.

A Characterization of $\overline{\operatorname{conv}}(\mathcal{U}(T))$

Let \mathfrak{A} be a unital C*-algebra and let $\mathcal{T}(\mathfrak{A})$ denote all 'unbounded traces'; that is, all maps $\tau : \mathfrak{A}_+ \to [0, \infty]$ such that

•
$$\tau(T+S) = \tau(T) + \tau(S)$$
 for all $T, S \in \mathfrak{A}_+$,

•
$$\tau(\alpha T) = \alpha \tau(T)$$
 for all $T \in \mathfrak{A}_+$ and $\alpha \in \mathbb{R}_+$ $(0 \cdot \infty = 0)$,

•
$$au(X^*X) = au(XX^*)$$
 for all $X \in \mathfrak{A}$, and

• τ is lower semicontinuous.

A Characterization of $\overline{\operatorname{conv}}(\mathcal{U}(T))$

Let \mathfrak{A} be a unital C*-algebra and let $\mathcal{T}(\mathfrak{A})$ denote all 'unbounded traces'; that is, all maps $\tau : \mathfrak{A}_+ \to [0, \infty]$ such that

•
$$\tau(T+S) = \tau(T) + \tau(S)$$
 for all $T, S \in \mathfrak{A}_+$,

• $\tau(\alpha T) = \alpha \tau(T)$ for all $T \in \mathfrak{A}_+$ and $\alpha \in \mathbb{R}_+$ $(0 \cdot \infty = 0)$,

•
$$au(X^*X) = au(XX^*)$$
 for all $X \in \mathfrak{A}$, and

• τ is lower semicontinuous.

Theorem (Ng, Robert, Skoufranis; 2018)

Let \mathfrak{A} be a unital C^* -algebra and let $T, S \in \mathfrak{A}$ be self-adjoint. The following are equivalent:

•
$$S \in \overline{\operatorname{conv}}(\mathcal{U}(T)).$$

•
$$\tau((S - \alpha)_+) \leq \tau((T - \alpha)_+)$$
 and $\tau((-S - \alpha)_+) \leq \tau((-T - \alpha)_+)$ for all $\tau \in \mathcal{T}(\mathfrak{A})$ and $\alpha \in \mathbb{R}$.

Convex Hulls of Joint Unitary Orbits

What about normal operators? More generally, what about commuting self-adjoint operators?

What about normal operators? More generally, what about commuting self-adjoint operators?

Definition

Let \mathfrak{A} be a unital C*-algebra. An *m*-tuple $\vec{A} = (A_1, \ldots, A_m) \in \mathfrak{A}^m$ is said to be an *abelian family* if A_k is self-adjoint and $A_kA_j = A_jA_k$ for all $1 \leq j, k \leq m$. The *(joint) unitary orbit of* \vec{A} is

$$\mathcal{U}(ec{\mathcal{A}}) = \{(U^*\mathcal{A}_1U,\ldots,U^*\mathcal{A}_mU) ~|~ U \in \mathfrak{A} ext{ is unitary}\} \subseteq \mathfrak{A}^m.$$

Thus

$$\operatorname{conv}(\mathcal{U}(\vec{A})) = \left\{ \left. \sum_{i=1}^{k} t_i \vec{C_i} \right| \left. egin{smallmatrix} {}_{k \in \mathbb{N}, \{\vec{C_i}\}_{i=1}^k \subseteq \mathcal{U}(\vec{A}),} \ {}_{\vec{t} \in \mathbb{R}^k}
ight. a ext{ probability vector} \end{array}
ight\}$$

Can $\overline{\operatorname{conv}}(\mathcal{U}(\vec{A}))$ be characterized using spectral data?

Definition

Let \mathfrak{A} be a unital C*-algebra and let $\vec{A} = (A_1, \ldots, A_m)$ and $\vec{B} = (B_1, \ldots, B_m)$ be abelian families in \mathfrak{A} .

It is said that \vec{A} is *tracially majorized* by \vec{B} , denoted $\vec{A} \prec_{\mathrm{Tr}} \vec{B}$, if for every tracial state $\tau : \mathfrak{A} \to \mathbb{C}$ and every continuous convex function $f : \mathbb{R}^m \to \mathbb{R}$ we have that

$$\tau(f(A_1,\ldots,A_m)) \leq \tau(f(B_1,\ldots,B_m)).$$

Definition

Let $\vec{A} = (A_1, \dots, A_m)$ and $\vec{B} = (B_1, \dots, B_m)$ be abelian families in \mathcal{M}_n . Using simultaneously diagonalizable, we can write

 $A_j = U^* D_j U$ and $B_j = V^* D'_j V$

for all $1 \leq j \leq m$ for some unitary matrices $U, V \in \mathcal{M}_n$ and diagonal matrices D_j and D'_j . Let A and B be the $n \times m$ matrices whose j^{th} columns are the diagonal entries of D_j and D'_j respectively.

It is said that \vec{A} is (doubly stochastic) majorized by \vec{B} , denoted $\vec{A} \prec \vec{B}$, if there exists a $X \in DS_n$ such that XB = A.

Theorem (Various)

Let $\vec{A} = (A_1, \dots, A_m)$ and $\vec{B} = (B_1, \dots, B_m)$ be abelian families in \mathcal{M}_n . The following are equivalent:

- $\vec{A} \in \operatorname{conv}(\mathcal{U}(\vec{B})).$
- $\ 2 \ \vec{A} \prec \vec{B}.$
- $\ \, \vec{A} \prec_{\mathrm{Tr}} \vec{B}.$
- There exists a unital, trace-preserving, (completely) positive map

$$\Phi: C^*(A_1,\ldots,A_m) \to C^*(B_1,\ldots,B_m)$$

such that $\Phi(B_k) = A_k$ for all $1 \le k \le m$.

Theorem (Argerami, Massey; 2008)

Let $\vec{A} = (A_1, ..., A_m)$ and $\vec{B} = (B_1, ..., B_m)$ be abelian families in a II_1 factor \mathfrak{M} with tracial state τ . The following are equivalent:

$$\ \, \vec{A} \in \overline{\operatorname{conv}}(\mathcal{U}(\vec{B})).$$

 $\ 2 \ \vec{A} \prec_{\mathrm{Tr}} \vec{B}.$

There exists a unital, trace-preserving, (completely) positive map

 $\Phi:\mathfrak{M}\to\mathfrak{M}$

such that $\Phi(B_k) = A_k$ for all $1 \le k \le m$.

Theorem (Hu, Lin; 2020)

Let \mathfrak{A} be a unital, separable, simple, C^* -algebra with tracial rank zero. For any normal operators $A, B \in \mathfrak{A}, A \in \overline{\operatorname{conv}}(\mathcal{U}(B))$ if and only if there exists a sequence of unital completely positive maps $\Psi_n : \mathfrak{A} \to \mathfrak{A}$ such that

•
$$\lim_{n\to\infty} \|\Psi_n(B) - A\| = 0$$
, and

•
$$au(\Psi_n(\mathcal{C})) = au(\mathcal{C})$$
 for all $au \in T(\mathfrak{A})$ and $\mathcal{C} \in \mathfrak{A}$.

Theorem (Hu, Lin; 2020)

Let \mathfrak{A} be a unital, separable, simple, C^* -algebra with tracial rank zero. For any normal operators $A, B \in \mathfrak{A}, A \in \overline{\operatorname{conv}}(\mathcal{U}(B))$ if and only if there exists a sequence of unital completely positive maps $\Psi_n : \mathfrak{A} \to \mathfrak{A}$ such that

•
$$\lim_{n\to\infty} \|\Psi_n(B) - A\| = 0$$
, and

•
$$au(\Psi_n(\mathcal{C})) = au(\mathcal{C})$$
 for all $au \in T(\mathfrak{A})$ and $\mathcal{C} \in \mathfrak{A}$.

Theorem (Mootoo, S; 2022)

Let \mathfrak{A} be a unital C^* -algebra and let $\vec{A} = (A_1, \ldots, A_m)$ and $\vec{B} = (B_1, \ldots, B_m)$ be abelian families in \mathfrak{A} . If $\vec{A} \in \overline{\operatorname{conv}}(\mathcal{U}(\vec{B}))$, then $\vec{A} \prec_{\operatorname{Tr}} \vec{B}$.

Theorem (Hu, Lin; 2020)

Let \mathfrak{A} be a unital, separable, simple, C^* -algebra with tracial rank zero. For any normal operators $A, B \in \mathfrak{A}, A \in \overline{\operatorname{conv}}(\mathcal{U}(B))$ if and only if there exists a sequence of unital completely positive maps $\Psi_n : \mathfrak{A} \to \mathfrak{A}$ such that

•
$$\lim_{n\to\infty} \|\Psi_n(B) - A\| = 0$$
, and

•
$$au(\Psi_n(\mathcal{C})) = au(\mathcal{C})$$
 for all $au \in T(\mathfrak{A})$ and $\mathcal{C} \in \mathfrak{A}$.

Theorem (Mootoo, S; 2022)

Let \mathfrak{A} be a unital C^* -algebra and let $\vec{A} = (A_1, \ldots, A_m)$ and $\vec{B} = (B_1, \ldots, B_m)$ be abelian families in \mathfrak{A} . If $\vec{A} \in \overline{\operatorname{conv}}(\mathcal{U}(\vec{B}))$, then $\vec{A} \prec_{\operatorname{Tr}} \vec{B}$.

To what extent does the converse of the above theorem hold in an arbitrary C*-algebra?

Paul Skoufranis (YorkU)

Joint Majorization - Partial C*-Algebra Resultsn

Theorem (Mootoo, S; 2022)

Let \mathcal{X} be a compact Hausdorff space and let $\vec{A} = (A_1, \ldots, A_m)$ and $\vec{B} = (B_1, \ldots, B_m)$ be abelian families in $C(\mathcal{X}, M_n)$. The following are equivalent:

- $\ \, \vec{A} \prec_{\rm pt} \vec{B}.$
- $\ 2 \ \vec{A} \prec_{\mathrm{Tr}} \vec{B}.$
- $\ \, \bullet \ \, \vec{A} \in \overline{\mathrm{conv}}(\mathcal{U}(\vec{B})).$

Joint Majorization - Partial C*-Algebra Resultsn

Theorem (Mootoo, S; 2022)

Let \mathcal{X} be a compact Hausdorff space and let $\vec{A} = (A_1, \ldots, A_m)$ and $\vec{B} = (B_1, \ldots, B_m)$ be abelian families in $C(\mathcal{X}, M_n)$. The following are equivalent:

- $\ \, {\vec A} \prec_{\rm pt} {\vec B}.$
- $\bigcirc \vec{A} \prec_{\mathrm{Tr}} \vec{B}.$
- $\vec{A} \in \overline{\operatorname{conv}}(\mathcal{U}(\vec{B})).$

Theorem (Mootoo, S; 2022)

Let \mathfrak{A} be a unital, separable, subhomogeneous C^* -subalgebra. Suppose $\vec{A} = (A_1, \ldots, A_m)$ and $\vec{B} = (B_1, \ldots, B_m)$ are abelian families in \mathfrak{A} . Then the following are equivalent:

$$\vec{A} \prec_{\mathrm{Tr}} \vec{B}.$$

$$\vec{A} \in \overline{\mathrm{conv}}(\mathcal{U}(\vec{B})).$$

Convex Hulls of Joint Unitary Orbits - Non-Commutative

What about non-abelian *m*-tuples?

What about non-abelian *m*-tuples?

Theorem (Helton, Klep, McCullough; 2017)

Given $\vec{A} = (A_1, \ldots, A_m)$ and $\vec{B} = (B_1, \ldots, B_m)$ in \mathcal{M}_n , there exists a unital, completely positive, trace-preserving map $\Psi : \mathcal{M}_n \to \mathcal{M}_n$ such that $\Psi(B_k) = A_k$ for all k if and only if a specific semidefinite programming problem has a solution.

What about non-abelian *m*-tuples?

Theorem (Helton, Klep, McCullough; 2017)

Given $\vec{A} = (A_1, \ldots, A_m)$ and $\vec{B} = (B_1, \ldots, B_m)$ in \mathcal{M}_n , there exists a unital, completely positive, trace-preserving map $\Psi : \mathcal{M}_n \to \mathcal{M}_n$ such that $\Psi(B_k) = A_k$ for all k if and only if a specific semidefinite programming problem has a solution.

Theorem (Gour, Jennings, Buscemi, Duan, Marvian; 2018)

Given $\vec{A} = (A_1, \ldots, A_m)$ and $\vec{B} = (B_1, \ldots, B_m)$ in \mathcal{M}_n , \vec{B} quantum majorizes \vec{A} (i.e. there exists a completely positive, trace-preserving map $\Psi : \mathcal{M}_n \to \mathcal{M}_n$ such that $\Psi(B_k) = A_k$ for all k) if and only if specific entropy conditions hold.

Theorem (Kennedy, Marcoux, S; 2023)

Let \mathfrak{A} be a C^* -algebra, let τ be a tracial state on \mathfrak{A} , and let $\vec{A} = (A_1, \ldots, A_m)$ and $\vec{B} = (B_1, \ldots, B_m)$ be m-tuples in \mathfrak{A} . There exists a [unital] trace-preserving, completely positive map

$$\Psi: C^*(B_1,\ldots,B_m) \to C^*(A_1,\ldots,A_m)$$

such that $\Psi(B_k) = A_k$ for all k if and only if $\vec{A} \prec_{nc} \vec{B}$.

Theorem (Kennedy, Marcoux, S; 2023)

Let \mathfrak{A} be a C^* -algebra, let τ be a tracial state on \mathfrak{A} , and let $\vec{A} = (A_1, \ldots, A_m)$ and $\vec{B} = (B_1, \ldots, B_m)$ be m-tuples in \mathfrak{A} . There exists a [unital] trace-preserving, completely positive map

$$\Psi: C^*(B_1,\ldots,B_m) \to C^*(A_1,\ldots,A_m)$$

such that $\Psi(B_k) = A_k$ for all k if and only if $\vec{A} \prec_{nc} \vec{B}$.

• $\vec{A} \prec_{nc} \vec{B}$ is a direct generalization of tracial majorization to the non-commutative context.

Theorem (Kennedy, Marcoux, S; 2023)

Let \mathfrak{A} be a C^* -algebra, let τ be a tracial state on \mathfrak{A} , and let $\vec{A} = (A_1, \ldots, A_m)$ and $\vec{B} = (B_1, \ldots, B_m)$ be m-tuples in \mathfrak{A} . There exists a [unital] trace-preserving, completely positive map

$$\Psi: C^*(B_1,\ldots,B_m) \to C^*(A_1,\ldots,A_m)$$

such that $\Psi(B_k) = A_k$ for all k if and only if $\vec{A} \prec_{nc} \vec{B}$.

- $\vec{A} \prec_{nc} \vec{B}$ is a direct generalization of tracial majorization to the non-commutative context.
- In the non-abelian setting, majorization is about quantum channels; not mixed unitary quantum channels.

Thanks for Listening!