Majorization in C*Algebras

Paul Skoufranis
York University
May 23, 2023

Convex Hulls of Unitary Orbits of Operators

Question

Given a unital C^{*}-algebra \mathfrak{A} and a self-adjoint operator $T \in \mathfrak{A}$, is it possible to describe

$$
\overline{\operatorname{conv}}(\mathcal{U}(T))=\overline{\operatorname{conv}\left(\left\{U^{*} T U \mid U \in \mathcal{U}(\mathfrak{A})\right\}\right)}
$$

using spectral data?

Elements of $\overline{\operatorname{conv}}(\mathcal{U}(T))$ are 'averages' of elements of $\mathcal{U}(T)$. Thus we think of T 'majorizing' elements of $\overline{\operatorname{conv}}(\mathcal{U}(T))$.

Dixmier Property

Definition

A unital C^{*}-algebra \mathfrak{A} is said to have the Dixmier Property if $\overline{\operatorname{conv}}(\mathcal{U}(T)) \cap Z(\mathfrak{A}) \neq \emptyset$ for all $T \in \mathfrak{A}$.

Dixmier Property

Definition

A unital C^{*}-algebra \mathfrak{A} is said to have the Dixmier Property if $\overline{\operatorname{conv}}(\mathcal{U}(T)) \cap Z(\mathfrak{A}) \neq \emptyset$ for all $T \in \mathfrak{A}$.

Theorem (Haagerup, Zsidó; 1984)

A unital simple C^{*}-algebra \mathfrak{A} has the Dixmier property if and only if \mathfrak{A} has at most one tracial state.

Dixmier Property

Definition

A unital C^{*}-algebra \mathfrak{A} is said to have the Dixmier Property if $\overline{\operatorname{conv}}(\mathcal{U}(T)) \cap Z(\mathfrak{A}) \neq \emptyset$ for all $T \in \mathfrak{A}$.

Theorem (Haagerup, Zsidó; 1984)

A unital simple C^{*}-algebra \mathfrak{A} has the Dixmier property if and only if \mathfrak{A} has at most one tracial state.

Theorem (Archbold, Robert, Tikusis; 2017)

A unital C^{*}-algebra \mathfrak{A} has the Dixmier property if and only if \mathfrak{A} has the following properties:

- \mathfrak{A} is weakly central,
- every simple quotient of \mathfrak{A} has at most one tracial state, and
- every extreme tracial state of \mathfrak{A} factors through some simple quotient.

C*-Simplicity

Theorem (Haagerup; 2015), (Kennedy; 2015)

Let G be a discrete group. Then $C_{r}^{*}(G)$ is simple if and only if for all self-adjoint $T \in C_{r}^{*}(G)$ and for all $\epsilon>0$ there exists $g_{1}, \ldots, g_{n} \in G$ such that

$$
\left\|\tau(T)-\frac{1}{n} \sum_{k=1}^{n} \lambda\left(g_{k}\right)^{*} T \lambda\left(g_{k}\right)\right\|<\epsilon .
$$

Quantum Channels

Definition

A map $\Psi: \mathcal{M}_{n} \rightarrow \mathcal{M}_{n}$ is said to be a:

- quantum channel if Ψ is completely positive and trace-preserving.

Quantum Channels

Definition

A map $\Psi: \mathcal{M}_{n} \rightarrow \mathcal{M}_{n}$ is said to be a:

- quantum channel if Ψ is completely positive and trace-preserving.
- unitary channel if $\Psi(T)=U^{*} T U$ for all $T \in \mathcal{M}_{n}$ where U is a unitary.

Quantum Channels

Definition

A map $\psi: \mathcal{M}_{n} \rightarrow \mathcal{M}_{n}$ is said to be a:

- quantum channel if Ψ is completely positive and trace-preserving.
- unitary channel if $\Psi(T)=U^{*} T U$ for all $T \in \mathcal{M}_{n}$ where U is a unitary.
- mixed unitary quantum channel if Ψ is a convex combination of unitary channels.
Hence mixed unitary quantum channels have the form
$T \mapsto \sum_{k=1}^{m} t_{k} U_{k}^{*} T U_{k}$ where $t_{k} \in[0,1]$ are such that $\sum_{k=1}^{m} t_{k}=1$ and U_{1}, \ldots, U_{m} are unitaries.

Quantum Channels

Definition

A map $\psi: \mathcal{M}_{n} \rightarrow \mathcal{M}_{n}$ is said to be a:

- quantum channel if Ψ is completely positive and trace-preserving.
- unitary channel if $\Psi(T)=U^{*} T U$ for all $T \in \mathcal{M}_{n}$ where U is a unitary.
- mixed unitary quantum channel if Ψ is a convex combination of unitary channels.
Hence mixed unitary quantum channels have the form
$T \mapsto \sum_{k=1}^{m} t_{k} U_{k}^{*} T U_{k}$ where $t_{k} \in[0,1]$ are such that $\sum_{k=1}^{m} t_{k}=1$ and U_{1}, \ldots, U_{m} are unitaries.

Thus describing $\overline{\operatorname{conv}}(\mathcal{U}(T))$ describes the set of outputs of T under all mixed unitary quantum channels.

Characterizations of $\overline{\operatorname{conv}}(\mathcal{U}(B))$ - Matrix Algebras

Theorem (Various)

Let $A, B \in \mathcal{M}_{n}$ be self-adjoint with eigenvalues

$$
a_{1} \geq a_{2} \geq \cdots \geq a_{n} \quad \text { and } \quad b_{1} \geq b_{2} \geq \cdots \geq b_{n}
$$

respectively. The following are equivalent:
(1) $A \in \operatorname{conv}(\mathcal{U}(B))$.
(2) there exists a double stochastic matrix $X \in \mathcal{M}_{n}$ such that $X \vec{b}=\vec{a}$.
(3) $\sum_{k=1}^{m} a_{k} \leq \sum_{k=1}^{m} b_{k}$ for all $m \in\{1, \ldots, n\}$ with equality when $m=n$.
(9) $\operatorname{Tr}(f(A)) \leq \operatorname{Tr}(f(B))$ for all $f: \mathbb{R} \rightarrow \mathbb{R}$ continuous and convex.
(3) there exists a unital, trace-preserving, completely positive map $\Psi: \mathcal{M}_{n} \rightarrow \mathcal{M}_{n}$ such that $\Psi(B)=A$.
(0) There exists unitaries $U, V \in \mathcal{M}_{n}$ such that $U^{*} A U=E_{D}\left(V^{*} B V\right)$ where $E_{D}: \mathcal{M}_{n} \rightarrow \mathcal{M}_{n}$ is the expectation onto the diagonal.

Eigenvalue Functions in II_{1} Factors

Let \mathfrak{M} be a type II_{1} factor with tracial state τ.

Definition

For a self-adjoint operator $T \in \mathfrak{M}$, the eigenvalue function of T is defined for $s \in[0,1)$ by

$$
\lambda_{T}^{\tau}(s)=\inf \left\{t \in \mathbb{R} \mid \mu_{T}((t, \infty)) \leq s\right\}
$$

For example, if P_{1}, \ldots, P_{n} are pairwise orthogonal projections such that $\sum_{k=1}^{n} P_{k}=l_{\mathfrak{M}}$, if $a_{1}>a_{2}>\cdots>a_{n}$, if $T=\sum_{k=1}^{n} a_{k} P_{k}$, and if $s_{k}=\sum_{j=1}^{k} \tau\left(P_{j}\right)$, then

$$
\lambda_{T}^{\tau}(s)=a_{k} \quad \text { for all } s \in\left[s_{k-1}, s_{k}\right)
$$

Schur Horn Theorem - II_{1} Factors

Let \mathfrak{M} be a type II_{1} factor with tracial state τ and let $T, S \in \mathfrak{M}$ be self-adjoint.

Theorem (Hiai, Nakamura; 1991)
The following are equivalent:
(1) $S \in \overline{\operatorname{conv}}(\mathcal{U}(T))$.
(2) $\int_{0}^{y} \lambda_{S}^{\tau}(x) d x \leq \int_{0}^{y} \lambda_{T}^{\tau}(x) d x$ for all $y \in[0,1]$ with equality at $y=1$.
(3) $\tau\left((S-\alpha)_{+}\right) \leq \tau\left((T-\alpha)_{+}\right)$and $\tau\left((-S-\alpha)_{+}\right) \leq \tau\left((-T-\alpha)_{+}\right)$for all $\alpha \in \mathbb{R}$.

Schur Horn Theorem - I_{1} Factors

Let \mathfrak{M} be a type II_{1} factor with tracial state τ and let $T, S \in \mathfrak{M}$ be self-adjoint.

Theorem (Hiai, Nakamura; 1991)

The following are equivalent:
(1) $S \in \overline{\operatorname{conv}}(\mathcal{U}(T))$.
(2) $\int_{0}^{y} \lambda_{S}^{\tau}(x) d x \leq \int_{0}^{y} \lambda_{T}^{\tau}(x) d x$ for all $y \in[0,1]$ with equality at $y=1$.
(3) $\tau\left((S-\alpha)_{+}\right) \leq \tau\left((T-\alpha)_{+}\right)$and $\tau\left((-S-\alpha)_{+}\right) \leq \tau\left((-T-\alpha)_{+}\right)$for all $\alpha \in \mathbb{R}$.

Theorem (Ravichandran; 2014)

$S \in \overline{\operatorname{conv}}(\mathcal{U}(T))$ if and only if whenever \mathcal{A} is a MASA of \mathfrak{M} containing S and $E_{\mathcal{A}}: \mathfrak{M} \rightarrow \mathcal{A}$ is the conditional expectation onto \mathcal{A} there exists a $R \in \mathcal{U}(T)$ such that $E_{\mathcal{A}}(R)=S$.

Thompson's Theorems - I_{1} Factors

Theorem (Kennedy, Skoufranis; 2017)

Let \mathfrak{M} be a type I_{1} factor with tracial state τ and let $T, S \in \mathfrak{M}$ with S normal. Then the following are equivalent:
(1) $S \in \overline{\operatorname{conv}}(\{U T V \mid U, V \in \mathcal{U}(\mathfrak{M})\})$.
(2) $\int_{0}^{y} \lambda_{|S|}^{\tau}(x) d x \leq \int_{0}^{y} \lambda_{|T|}^{\tau}(x) d x$ for all $y \in[0,1]$.
(3) If \mathcal{A} is a MASA of \mathfrak{M} containing S and $E_{\mathcal{A}}: \mathfrak{M} \rightarrow \mathcal{A}$ is the conditional expectation onto \mathcal{A}, then there exists a

$$
R \in \overline{\{U T V \mid U, V \in \mathcal{U}(\mathfrak{M})\}}
$$

such that $E_{\mathcal{A}}(R)=S$.

A Characterization of $\overline{\operatorname{conv}}(\mathcal{U}(T))$

Let \mathfrak{A} be a unital C^{*}-algebra and let $\mathcal{T}(\mathfrak{A})$ denote all 'unbounded traces'; that is, all maps $\tau: \mathfrak{A}_{+} \rightarrow[0, \infty]$ such that

- $\tau(T+S)=\tau(T)+\tau(S)$ for all $T, S \in \mathfrak{A}_{+}$,
- $\tau(\alpha T)=\alpha \tau(T)$ for all $T \in \mathfrak{A}_{+}$and $\alpha \in \mathbb{R}_{+}(0 \cdot \infty=0)$,
- $\tau\left(X^{*} X\right)=\tau\left(X X^{*}\right)$ for all $X \in \mathfrak{A}$, and
- τ is lower semicontinuous.

A Characterization of $\overline{\operatorname{conv}}(\mathcal{U}(T))$

Let \mathfrak{A} be a unital C^{*}-algebra and let $\mathcal{T}(\mathfrak{A})$ denote all 'unbounded traces'; that is, all maps $\tau: \mathfrak{A}_{+} \rightarrow[0, \infty]$ such that

- $\tau(T+S)=\tau(T)+\tau(S)$ for all $T, S \in \mathfrak{A}_{+}$,
- $\tau(\alpha T)=\alpha \tau(T)$ for all $T \in \mathfrak{A}_{+}$and $\alpha \in \mathbb{R}_{+}(0 \cdot \infty=0)$,
- $\tau\left(X^{*} X\right)=\tau\left(X X^{*}\right)$ for all $X \in \mathfrak{A}$, and
- τ is lower semicontinuous.

Theorem (Ng, Robert, Skoufranis; 2018)

Let \mathfrak{A} be a unital C^{*}-algebra and let $T, S \in \mathfrak{A}$ be self-adjoint. The following are equivalent:

- $S \in \overline{\operatorname{conv}}(\mathcal{U}(T))$.
- $\tau\left((S-\alpha)_{+}\right) \leq \tau\left((T-\alpha)_{+}\right)$and $\tau\left((-S-\alpha)_{+}\right) \leq \tau\left((-T-\alpha)_{+}\right)$for all $\tau \in \mathcal{T}(\mathfrak{A})$ and $\alpha \in \mathbb{R}$.

Convex Hulls of Joint Unitary Orbits

What about normal operators? More generally, what about commuting self-adjoint operators?

Convex Hulls of Joint Unitary Orbits

What about normal operators? More generally, what about commuting self-adjoint operators?

Definition

Let \mathfrak{A} be a unital C^{*}-algebra. An m-tuple $\vec{A}=\left(A_{1}, \ldots, A_{m}\right) \in \mathfrak{A}^{m}$ is said to be an abelian family if A_{k} is self-adjoint and $A_{k} A_{j}=A_{j} A_{k}$ for all $1 \leq j, k \leq m$. The (joint) unitary orbit of \vec{A} is

$$
\mathcal{U}(\vec{A})=\left\{\left(U^{*} A_{1} U, \ldots, U^{*} A_{m} U\right) \mid U \in \mathfrak{A} \text { is unitary }\right\} \subseteq \mathfrak{A}^{m}
$$

Thus

$$
\operatorname{conv}(\mathcal{U}(\vec{A}))=\left\{\begin{array}{l|l}
\sum_{i=1}^{k} t_{i} \vec{C}_{i} & \begin{array}{c}
k \in \mathbb{N},\left\{\vec{C}_{i}\right\}_{i=1}^{k} \subseteq \mathcal{U}(\vec{A}), \\
\overrightarrow{\mathbb{R}^{k}} \text { a probability vector }
\end{array}
\end{array}\right\} .
$$

Can $\overline{\operatorname{conv}}(\mathcal{U}(\vec{A}))$ be characterized using spectral data?

Joint Majorization - Tracial Majorization

Definition

Let \mathfrak{A} be a unital C^{*}-algebra and let $\vec{A}=\left(A_{1}, \ldots, A_{m}\right)$ and $\vec{B}=\left(B_{1}, \ldots, B_{m}\right)$ be abelian families in \mathfrak{A}.

It is said that \vec{A} is tracially majorized by \vec{B}, denoted $\vec{A} \prec_{\operatorname{Tr}} \vec{B}$, if for every tracial state $\tau: \mathfrak{A} \rightarrow \mathbb{C}$ and every continuous convex function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ we have that

$$
\tau\left(f\left(A_{1}, \ldots, A_{m}\right)\right) \leq \tau\left(f\left(B_{1}, \ldots, B_{m}\right)\right)
$$

Joint Majorization - Doubly Stochastic Majorization

Definition

Let $\vec{A}=\left(A_{1}, \ldots, A_{m}\right)$ and $\vec{B}=\left(B_{1}, \ldots, B_{m}\right)$ be abelian families in \mathcal{M}_{n}. Using simultaneously diagonalizable, we can write

$$
A_{j}=U^{*} D_{j} U \quad \text { and } \quad B_{j}=V^{*} D_{j}^{\prime} V
$$

for all $1 \leq j \leq m$ for some unitary matrices $U, V \in \mathcal{M}_{n}$ and diagonal matrices D_{j} and D_{j}^{\prime}. Let A and B be the $n \times m$ matrices whose $j^{\text {th }}$ columns are the diagonal entries of D_{j} and D_{j}^{\prime} respectively.

It is said that \vec{A} is (doubly stochastic) majorized by \vec{B}, denoted $\vec{A} \prec \vec{B}$, if there exists a $X \in D S_{n}$ such that $X B=A$.

Joint Majorization - Matrix Algebras

Theorem (Various)

Let $\vec{A}=\left(A_{1}, \ldots, A_{m}\right)$ and $\vec{B}=\left(B_{1}, \ldots, B_{m}\right)$ be abelian families in \mathcal{M}_{n}.
The following are equivalent:
(1) $\vec{A} \in \operatorname{conv}(\mathcal{U}(\vec{B}))$.
(2) $\vec{A} \prec \vec{B}$.
(3) $\vec{A} \prec \operatorname{Tr} \vec{B}$.
(9) There exists a unital, trace-preserving, (completely) positive map

$$
\Phi: C^{*}\left(A_{1}, \ldots, A_{m}\right) \rightarrow C^{*}\left(B_{1}, \ldots, B_{m}\right)
$$

such that $\Phi\left(B_{k}\right)=A_{k}$ for all $1 \leq k \leq m$.

Joint Majorization - II_{1} Factors

Theorem (Argerami, Massey; 2008)

Let $\vec{A}=\left(A_{1}, \ldots, A_{m}\right)$ and $\vec{B}=\left(B_{1}, \ldots, B_{m}\right)$ be abelian families in a I_{1} factor \mathfrak{M} with tracial state τ. The following are equivalent:
(1) $\vec{A} \in \overline{\operatorname{conv}}(\mathcal{U}(\vec{B}))$.
(2) $\vec{A} \prec \operatorname{Tr} \vec{B}$.
(3) There exists a unital, trace-preserving, (completely) positive map

$$
\Phi: \mathfrak{M} \rightarrow \mathfrak{M}
$$

such that $\Phi\left(B_{k}\right)=A_{k}$ for all $1 \leq k \leq m$.

Joint Majorization - Partial C*-Algebra Results

Theorem (Hu, Lin; 2020)

Let \mathfrak{A} be a unital, separable, simple, C^{*}-algebra with tracial rank zero. For any normal operators $A, B \in \mathfrak{A}, A \in \overline{\operatorname{conv}}(\mathcal{U}(B))$ if and only if there exists a sequence of unital completely positive maps $\Psi_{n}: \mathfrak{A} \rightarrow \mathfrak{A}$ such that

- $\lim _{n \rightarrow \infty}\left\|\Psi_{n}(B)-A\right\|=0$, and
- $\tau\left(\Psi_{n}(C)\right)=\tau(C)$ for all $\tau \in T(\mathfrak{A})$ and $C \in \mathfrak{A}$.

Joint Majorization - Partial C*-Algebra Results

Theorem (Hu, Lin; 2020)

Let \mathfrak{A} be a unital, separable, simple, C^{*}-algebra with tracial rank zero. For any normal operators $A, B \in \mathfrak{A}, A \in \overline{\operatorname{conv}}(\mathcal{U}(B))$ if and only if there exists a sequence of unital completely positive maps $\Psi_{n}: \mathfrak{A} \rightarrow \mathfrak{A}$ such that

- $\lim _{n \rightarrow \infty}\left\|\Psi_{n}(B)-A\right\|=0$, and
- $\tau\left(\Psi_{n}(C)\right)=\tau(C)$ for all $\tau \in T(\mathfrak{A})$ and $C \in \mathfrak{A}$.

Theorem (Mootoo, S; 2022)

Let \mathfrak{A} be a unital C^{*}-algebra and let $\vec{A}=\left(A_{1}, \ldots, A_{m}\right)$ and $\vec{B}=\left(B_{1}, \ldots, B_{m}\right)$ be abelian families in \mathfrak{A}. If $\vec{A} \in \overline{\operatorname{conv}}(\mathcal{U}(\vec{B}))$, then $\vec{A} \prec \operatorname{Tr} \vec{B}$.

Joint Majorization - Partial C*-Algebra Results

Theorem (Hu, Lin; 2020)

Let \mathfrak{A} be a unital, separable, simple, C^{*}-algebra with tracial rank zero. For any normal operators $A, B \in \mathfrak{A}, A \in \overline{\operatorname{conv}}(\mathcal{U}(B))$ if and only if there exists a sequence of unital completely positive maps $\Psi_{n}: \mathfrak{A} \rightarrow \mathfrak{A}$ such that

- $\lim _{n \rightarrow \infty}\left\|\Psi_{n}(B)-A\right\|=0$, and
- $\tau\left(\Psi_{n}(C)\right)=\tau(C)$ for all $\tau \in T(\mathfrak{A})$ and $C \in \mathfrak{A}$.

Theorem (Mootoo, S; 2022)

Let \mathfrak{A} be a unital C^{*}-algebra and let $\vec{A}=\left(A_{1}, \ldots, A_{m}\right)$ and $\vec{B}=\left(B_{1}, \ldots, B_{m}\right)$ be abelian families in \mathfrak{A}. If $\vec{A} \in \overline{\operatorname{conv}}(\mathcal{U}(\vec{B}))$, then $\vec{A} \prec_{\operatorname{Tr}} \vec{B}$.

To what extent does the converse of the above theorem hold in an arbitrary C*-algebra?

Joint Majorization - Partial C*-Algebra Resultsn

Theorem (Mootoo, S; 2022)

Let \mathcal{X} be a compact Hausdorff space and let $\vec{A}=\left(A_{1}, \ldots, A_{m}\right)$ and $\vec{B}=\left(B_{1}, \ldots, B_{m}\right)$ be abelian families in $C\left(\mathcal{X}, M_{n}\right)$. The following are equivalent:
(1) $\vec{A} \prec_{p t} \vec{B}$.
(2) $\vec{A} \prec_{\operatorname{Tr}} \vec{B}$.
(3) $\vec{A} \in \overline{\operatorname{conv}}(\mathcal{U}(\vec{B}))$.

Joint Majorization - Partial C*-Algebra Resultsn

Theorem (Mootoo, S; 2022)

Let \mathcal{X} be a compact Hausdorff space and let $\vec{A}=\left(A_{1}, \ldots, A_{m}\right)$ and $\vec{B}=\left(B_{1}, \ldots, B_{m}\right)$ be abelian families in $C\left(\mathcal{X}, M_{n}\right)$. The following are equivalent:
(1) $\vec{A} \prec_{\mathrm{pt}} \vec{B}$.
(2) $\vec{A} \prec \operatorname{Tr} \vec{B}$.
(3) $\vec{A} \in \overline{\operatorname{conv}}(\mathcal{U}(\vec{B}))$.

Theorem (Mootoo, S; 2022)

Let \mathfrak{A} be a unital, separable, subhomogeneous C^{*}-subalgebra. Suppose $\vec{A}=\left(A_{1}, \ldots, A_{m}\right)$ and $\vec{B}=\left(B_{1}, \ldots, B_{m}\right)$ are abelian families in \mathfrak{A}. Then the following are equivalent:
(1) $\vec{A} \prec \operatorname{Tr} \vec{B}$.
(2) $\vec{A} \in \overline{\operatorname{conv}}(\mathcal{U}(\vec{B}))$.

Convex Hulls of Joint Unitary Orbits - Non-Commutative

What about non-abelian m-tuples?

Convex Hulls of Joint Unitary Orbits - Non-Commutative

What about non-abelian m-tuples?

Theorem (Helton, Klep, McCullough; 2017)

Given $\vec{A}=\left(A_{1}, \ldots, A_{m}\right)$ and $\vec{B}=\left(B_{1}, \ldots, B_{m}\right)$ in \mathcal{M}_{n}, there exists a unital, completely positive, trace-preserving map $\Psi: \mathcal{M}_{n} \rightarrow \mathcal{M}_{n}$ such that $\Psi\left(B_{k}\right)=A_{k}$ for all k if and only if a specific semidefinite programming problem has a solution.

Convex Hulls of Joint Unitary Orbits - Non-Commutative

What about non-abelian m-tuples?

Theorem (Helton, Klep, McCullough; 2017)

Given $\vec{A}=\left(A_{1}, \ldots, A_{m}\right)$ and $\vec{B}=\left(B_{1}, \ldots, B_{m}\right)$ in \mathcal{M}_{n}, there exists a unital, completely positive, trace-preserving map $\Psi: \mathcal{M}_{n} \rightarrow \mathcal{M}_{n}$ such that $\Psi\left(B_{k}\right)=A_{k}$ for all k if and only if a specific semidefinite programming problem has a solution.

Theorem (Gour, Jennings, Buscemi, Duan, Marvian; 2018)

Given $\vec{A}=\left(A_{1}, \ldots, A_{m}\right)$ and $\vec{B}=\left(B_{1}, \ldots, B_{m}\right)$ in \mathcal{M}_{n}, \vec{B} quantum majorizes \vec{A} (i.e. there exists a completely positive, trace-preserving map $\Psi: \mathcal{M}_{n} \rightarrow \mathcal{M}_{n}$ such that $\Psi\left(B_{k}\right)=A_{k}$ for all k) if and only if specific entropy conditions hold.

Upcoming Results

Theorem (Kennedy, Marcoux, S; 2023)

Let \mathfrak{A} be a C^{*}-algebra, let τ be a tracial state on \mathfrak{A}, and let $\vec{A}=\left(A_{1}, \ldots, A_{m}\right)$ and $\vec{B}=\left(B_{1}, \ldots, B_{m}\right)$ be m-tuples in \mathfrak{A}. There exists a [unital] trace-preserving, completely positive map

$$
\Psi: C^{*}\left(B_{1}, \ldots, B_{m}\right) \rightarrow C^{*}\left(A_{1}, \ldots, A_{m}\right)
$$

such that $\Psi\left(B_{k}\right)=A_{k}$ for all k if and only if $\vec{A} \prec_{n c} \vec{B}$.

Upcoming Results

Theorem (Kennedy, Marcoux, S; 2023)

Let \mathfrak{A} be a C^{*}-algebra, let τ be a tracial state on \mathfrak{A}, and let $\vec{A}=\left(A_{1}, \ldots, A_{m}\right)$ and $\vec{B}=\left(B_{1}, \ldots, B_{m}\right)$ be m-tuples in \mathfrak{A}. There exists a [unital] trace-preserving, completely positive map

$$
\Psi: C^{*}\left(B_{1}, \ldots, B_{m}\right) \rightarrow C^{*}\left(A_{1}, \ldots, A_{m}\right)
$$

such that $\Psi\left(B_{k}\right)=A_{k}$ for all k if and only if $\vec{A} \prec_{n c} \vec{B}$.

- $\vec{A} \prec_{n c} \vec{B}$ is a direct generalization of tracial majorization to the non-commutative context.

Upcoming Results

Theorem (Kennedy, Marcoux, S; 2023)

Let \mathfrak{A} be a C^{*}-algebra, let τ be a tracial state on \mathfrak{A}, and let $\vec{A}=\left(A_{1}, \ldots, A_{m}\right)$ and $\vec{B}=\left(B_{1}, \ldots, B_{m}\right)$ be m-tuples in \mathfrak{A}. There exists a [unital] trace-preserving, completely positive map

$$
\Psi: C^{*}\left(B_{1}, \ldots, B_{m}\right) \rightarrow C^{*}\left(A_{1}, \ldots, A_{m}\right)
$$

such that $\Psi\left(B_{k}\right)=A_{k}$ for all k if and only if $\vec{A} \prec_{n c} \vec{B}$.

- $\vec{A} \prec_{n c} \vec{B}$ is a direct generalization of tracial majorization to the non-commutative context.
- In the non-abelian setting, majorization is about quantum channels; not mixed unitary quantum channels.

Thanks for Listening!

