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Stoker’s conjecture on convex Euclidean polyhedra

Stoker’s conjecture (1968)

If P1 and P2 are two convex Euclidean polyhedra of the same
combinatorial type in R3. If the corresponding dihedral angles of P1 and
P2 are equal, then the corresponding face angles of P1 and P2 are equal.
Consequently, P1 and P2 are isometric up to translations of faces.
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Some previously known results

1 Karcher 1968, a polyhedron with 5-vertices and 6 triangular faces.

2 Andreev 1970, an analogue of Stoker’s conjecture for convex
hyperbolic polyhedra when all dihedral angles are less than π/2.

3 Schlenker 2000, counterexamples to an analogue of Stoker’s
conjecture for convex spherical polyhedra

4 Mazzeo and Montcouquiol 2011, an infinitesimal (hence weaker)
version of Stoker’s conjecture

5 Pogorelov 2002, Weiss 2005, 2009, Montcouquiol 2012, . . .
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Positive solution to Stoker’s conjecture

Theorem (Wang-X 2022)

If P1 and P2 are two convex Euclidean polyhedra of the same
combinatorial type in Rn. If the corresponding dihedral angles of P1 and
P2 are equal, then the corresponding face angles of P1 and P2 are equal.
Consequently, P1 and P2 are isometric up to translations of faces.
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Gromov’s dihedral extremality conjecture

Conjecture (Gromov’s dihedral extremality conjecture for convex
polyhedra)

Let P be a convex polyhedron in Rn and g0 the Euclidean metric on P. If
g is a Riemannian metric on P such that

1 (scalar curvature comparison) Sc(g) ≥ Sc(g0) = 0,

2 (mean curvature comparison) Hg (Fi ) ≥ Hg0(Fi ) = 0 for each face Fi
of P, and

3 (dihedral angle comparison) θij(g) ≤ θij(g0) on each Fij = Fi ∩ Fj ,

then we have

Sc(g) = 0,Hg (Fi ) = 0 and θij(g) = θij(g0)

for all i and all j ̸= i .
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Gromov’s dihedral rigidity conjecture

Conjecture (Gromov’s dihedral rigidity conjecture for convex polyhedra)

Let P be a convex polyhedron in Rn and g0 the Euclidean metric on P. If
g is a smooth Riemannian metric on P such that

1 Sc(g) ≥ Sc(g0) = 0,

2 Hg (Fi ) ≥ Hg0(Fi ) = 0 for each face Fi of P,

3 θij(g) ≤ θij(g0) on each Fij = Fi ∩ Fj ,

then g is also a flat metric.

Gromov’s dihedral extremality/rigidity conjectures are strengthenings of
the positive mass theorem, a foundational result in general relativity and
differential geometry by Schoen-Yau (1979) and Witten (1981).
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Some previously known results

1 Gromov 2014, the dihedral extremality conjecture holds for the
standard Euclidean cube.

2 Li 2019, the dihedral rigidity conjecture for some special convex
polyhedra with dimension ≤ 7, under extra assumptions on dihedral
angles and combinatorial types (e.g. dihedral angles have to be
non-obtuse and the cobimatorial type needs to be a prism: a
polyhedron of dimension ≤ 7 that is a direct product P0 × [0, 1]n−2,
where P0 ⊂ R2 is a 2-dimensional polygon with non-obtuse dihedral
angles.)
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Positive solutions to Gromov’s dihedral conjectures

Theorem (Wang-X-Yu 2021)

Let P be a convex polyhedron in Rn and g0 the Euclidean metric on P. If
g is a smooth Riemannian metric on P such that

1 Sc(g) ≥ Sc(g0) = 0,

2 Hg (Fi ) ≥ Hg0(Fi ) = 0 for each face Fi of P, and

3 θij(g) ≤ θij(g0) on each Fij = Fi ∩ Fj ,

then we have

Sc(g) = 0,Hg (Fi ) = 0 and θij(g) = θij(g0)

for all i and all j ̸= i . Moreover, g is Ricci flat.
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Gauss-Bonnet theorem

Theorem (Gauss-Bonnet)

Given an oriented compact surface X without boundary,

2π · χ(X ) =

∫
X
κ(x)dA

where χ(X ) is the Euler characteristic of X and κ(x) is the scalar
curvature of X .
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Gauss-Bonnet Theorem for surfaces with boundary

Theorem (Gauss-Bonnet)

Suppose (X , g) is an oriented surface with piecewise smooth boundary.
Then

2π · χ(X ) =

∫
X
κg (x)dA+

∑∫
Ci

Hg (s)ds −
∑

θi + π ·#vertices

where θi is the dihedral angle between Ci and Ci+1.
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A consequence of the Gauss-Bonnet theorem

Let (P, g0) be a convex polygon in R2. If g is a smooth Riemannian
metric on P such that

1 Sc(g) ≥ 0,

2 Hg (Ci ) ≥ 0 for each edge Ci of P, and

3 θi (g) ≤ θi (g0) at each vertex vi = Ci ∩ Ci+1,

then Sc(g) = 0, Hg (Ci ) = 0, and θi (g) = θi (g0).

2π · χ(X ) =

∫
X
κg (x)dA+

∑∫
Ci

Hg (s)ds −
∑

θi (g) + π ·#vertices

2π · χ(X ) = 0 + 0 −
∑

θi (g0) + π ·#vertices

Zhizhang Xie 11 / 28



A consequence of the Gauss-Bonnet theorem

Let (P, g0) be a convex polygon in R2. If g is a smooth Riemannian
metric on P such that

1 Sc(g) ≥ 0,

2 Hg (Ci ) ≥ 0 for each edge Ci of P, and

3 θi (g) ≤ θi (g0) at each vertex vi = Ci ∩ Ci+1,

then Sc(g) = 0, Hg (Ci ) = 0, and θi (g) = θi (g0).

2π · χ(X ) =

∫
X
κg (x)dA+

∑∫
Ci

Hg (s)ds −
∑

θi (g) + π ·#vertices

2π · χ(X ) = 0 + 0 −
∑

θi (g0) + π ·#vertices

Zhizhang Xie 11 / 28



Dirac operator on Rn

Dirac operator D is a first order differential operator satisfying

D2 = Laplacian.

On R1,

Laplacian = − d2

dx2
, D = −i

d

dx
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Dirac operator on Rn

On R2, Laplacian = −( ∂2

∂x2
+ ∂2

∂y2 ).

D = c1
∂

∂x
+ c2

∂

∂y

where

c1 =

(
0 −1
1 0

)
and c2 =

(
0 i
i 0

)
.

On Rn, there is a similar construction.

Zhizhang Xie 13 / 28



Dirac operator on Rn

On R2, Laplacian = −( ∂2

∂x2
+ ∂2

∂y2 ).

D = c1
∂

∂x
+ c2

∂

∂y

where

c1 =

(
0 −1
1 0

)
and c2 =

(
0 i
i 0

)
.

On Rn, there is a similar construction.

Zhizhang Xie 13 / 28



Dirac operators on manifolds

To define the Dirac operator on R2, we have used the fact

∂

∂x

∂

∂y
=

∂

∂y

∂

∂x
.

On a general manifold,

D2 = Laplacian +
scalar curvature

4

because partial derivatives do not commute in general, which gives rise to
a curvature term.

To define the Dirac operator on a general manifold, the manifold needs a
certain orientability condition, called spin.
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Dirac operators twisted by vector bundles

On a general spin manifold X , the Dirac operator D actually is defined on
a spinor bundle SX . Now suppose E is another vector bundle over X .
Then one can define a twisted Dirac operator DE on SX ⊗ E . In this case,

D2
E = Laplacian +

scalar curvature

4
+RE

where RE is some extra term determined by the curvature of E .
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Strategy of the proof

1 Use an appropriate twisted Dirac operator to obtain comparisons of
scalar curvature, mean curvature and dihedral angles

2 develop the index theory for manifolds with polyhedral boundary and
apply it to this twisted Dirac operator
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Gromov’s flat corner domination conjecture

Gromov’s flat corner domination conjecture

Let P be a convex polyhedron in Rn and g0 the Euclidean metric on P. If
g is a smooth Riemannian metric on P such that

1 Sc(g) ≥ Sc(g0) = 0,

2 Hg (Fi ) ≥ Hg0(Fi ) = 0 for each face Fi of P, and

3 θij(g) ≤ θij(g0) on each Fij = Fi ∩ Fj ,

then g is also a flat metric, all codimension one faces of (P, g) are flat,
and (P, g) and (P, g0) are locally isometric.
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Positive solution to Gromov’s flat corner domination
conjecture

Theorem (Wang-X 2022)

Let P be a convex polyhedron in Rn and g0 the Euclidean metric on P. If
g is a smooth Riemannian metric on P such that

1 Sc(g) ≥ Sc(g0) = 0,

2 Hg (Fi ) ≥ Hg0(Fi ) = 0 for each face Fi of P, and

3 θij(g) ≤ θij(g0) on each Fij = Fi ∩ Fj ,

then g is also a flat metric, all codimension one faces of (P, g) are flat,
and (P, g) and (P, g0) are locally isometric.
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An application of Gromov’s flat corner domination
conjecture

Theorem (Wang-X 2022)

If P1 and P2 are two convex Euclidean polyhedra of the same
combinatorial type in Rn. If the corresponding dihedral angles of P1 and
P2 are equal, then the corresponding face angles of P1 and P2 are equal.
Consequently, P1 and P2 are isometric up to translations of faces.

This answers positively the Stoker conjecture.
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Comparison of scalar curvature, mean curvature and
dihedral angles on polyhedra

Proposition (Wang-X-Yu 2021)

Let (P, g0) be a convex Euclidean polyhedron. Let g be another
Riemannian metric on P. Suppose D is the twisted Dirac operator on
Sg0 ⊗ Sg . Then we have∫

P
|Dφ|2 ≥

∫
P
|∇φ|2 +

∫
P

Scg − 0

4
|φ|2 +

∑
i

∫
Fi

Hg − 0

2
|φ|2

+
1

2

∑
i ,j

∫
Fi∩Fj

(
θij(g0)− θij(g)

)
|φ|2 +

∑
i

∫
Fi

⟨D∂φ,φ⟩

for all smooth sections φ of Sg0 ⊗ Sg .

Here the bundle Sg0 ⊗ Sg is isomorphic (but generally not isometric) to the
bundle of differential forms Λ•T ∗P.
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Need to find a nontrivial φ such that Dφ = 0. Then

0 =

∫
P
|Dφ|2 ≥

∫
P
|∇φ|2 +

∫
P

Scg − 0

4
|φ|2 +

∑
i

∫
Fi

Hg − 0

2
|φ|2

+
1

2

∑
i ,j

∫
Fi∩Fj

(
θij(g0)− θij(g)

)
|φ|2 +

��������∑
i

∫
Fi

⟨D∂φ,φ⟩ 0
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A new index theorem on manifolds with singularities

Theorem (Wang-X-Yu 2021)

Let (P, g0) be a convex Euclidean polyhedron. Let g be another
Riemannian metric on P. Suppose D is the twisted Dirac operator on
Sg0 ⊗ Sg subject to the boundary condition B induced by
(ω ⊗ ω)(c(en)⊗ c(en)). If the dihedral angles θij(g) and θij(g0) satisfy

0 < θij(g)z ≤ θij(g0)z < π

for all codimension one faces F i ,F j of P and all z ∈ F i ∩ F j , then DB is
an essentially self-adjoint Fredholm operator with Fredholm index

Ind(DB) = χ(P) = 1,

where χ(P) is Euler characteristic of P.
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Essential self-adjointness of DB

L

The de Rham operator (written in cylindrical coordinates) is(
0 − ∂

∂r
∂
∂r 0

)
+

1

r

(
0 P
P 0

)
where

P =

(
−1/2 − ∂

∂θ
∂
∂θ −1/2

)
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Essential self-adjointness of DB

The boundary condition B for P is that

ϕ1(0) = ϕ1(α) = 0 for ϕ = ϕ0(θ) + ϕ1(θ)dθ.

The spectrum of P subject to the boundary condition B is{
− 1

2
+

kπ

α

}
k∈Z

.

Lemma (Cheeger, Chou, Brüning-Seeley, · · · )
Let PB be the operator P on the link subject to the induced boundary B.
Assume that PB is essentially self-adjoint. Then DdR

B is essentially
self-adjoint ⇔ the deficiency indices of DdR

B are zero ⇔ |PB | ≥ 1/2. Here
the deficiency indices of DdR

B are codim Ran(DdR
B ± i).
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Essential self-adjointness of DB

u1=v1

u2

v2

α β

The boundary condition B for P in this case is: ϕ1(0) = 0 and

−ϕ0(α) sin(
β − α

2
) + ϕ1(α) cos(

β − α

2
) = 0

for ϕ = ϕ0(θ) + ϕ1(θ)dθ.

The spectrum of PB is
{
− β

2α + kπ
α

}
k∈Z

.

|PB | ≥ 1/2 if and only if (α+ β ≤ 2π and α ≤ β).
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Essential self-adjointness of DB

The higher dimensional case is proved by induction. For example, near a
singular point of codimension ℓ, the link is a polygon in Sℓ−1.

L

D =

(
0 − ∂

∂r
∂
∂r 0

)
+

1

r

(
0 P
P 0

)
In this case, we show that

|PB |2 ≥
(ℓ− 1)(ℓ− 2)

4
.
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Computing the Fredholm index

The Fredholm index is computed via a cutting-and-pasting argument
together with a delicate deformation argument.
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Thank you!
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