A new index theorem for manifolds with singularities and its geometric applications

Zhizhang Xie based on joint works with Jinmin Wang and Guoliang Yu

Texas A&M University

COSy 2023, Western University

Stoker's conjecture (1968)

If P_1 and P_2 are two convex Euclidean polyhedra of the same combinatorial type in \mathbb{R}^3 . If the corresponding dihedral angles of P_1 and P_2 are equal, then the corresponding face angles of P_1 and P_2 are equal. Consequently, P_1 and P_2 are isometric up to translations of faces.

- **()** Karcher **1968**, a polyhedron with 5-vertices and 6 triangular faces.
- **3** Andreev 1970, an analogue of Stoker's conjecture for convex *hyperbolic* polyhedra when all dihedral angles are less than $\pi/2$.
- Schlenker 2000, counterexamples to an analogue of Stoker's conjecture for convex *spherical* polyhedra
- Mazzeo and Montcouquiol 2011, an infinitesimal (hence weaker) version of Stoker's conjecture
- Operation 2002, Weiss 2005, 2009, Montcouquiol 2012,

Theorem (Wang-X 2022)

If P_1 and P_2 are two convex Euclidean polyhedra of the same combinatorial type in \mathbb{R}^n . If the corresponding dihedral angles of P_1 and P_2 are equal, then the corresponding face angles of P_1 and P_2 are equal. Consequently, P_1 and P_2 are isometric up to translations of faces.

Conjecture (Gromov's dihedral extremality conjecture for convex polyhedra)

Let P be a convex polyhedron in \mathbb{R}^n and g_0 the Euclidean metric on P. If g is a Riemannian metric on P such that

- (scalar curvature comparison) $Sc(g) \ge Sc(g_0) = 0$,
- (mean curvature comparison) $H_g(F_i) \ge H_{g_0}(F_i) = 0$ for each face F_i of P, and

• (dihedral angle comparison) $\theta_{ij}(g) \le \theta_{ij}(g_0)$ on each $F_{ij} = F_i \cap F_j$, then we have

$$\operatorname{Sc}(g) = 0, H_g(F_i) = 0 \text{ and } \theta_{ij}(g) = \theta_{ij}(g_0)$$

for all i and all $j \neq i$.

Conjecture (Gromov's dihedral rigidity conjecture for convex polyhedra)

Let P be a convex polyhedron in \mathbb{R}^n and g_0 the Euclidean metric on P. If g is a smooth Riemannian metric on P such that

3
$$H_g(F_i) \ge H_{g_0}(F_i) = 0$$
 for each face F_i of P ,

3
$$\theta_{ij}(g) \leq \theta_{ij}(g_0)$$
 on each $F_{ij} = F_i \cap F_j$,

then g is also a flat metric.

Gromov's dihedral extremality/rigidity conjectures are strengthenings of the positive mass theorem, a foundational result in general relativity and differential geometry by Schoen-Yau (1979) and Witten (1981).

- Gromov 2014, the dihedral *extremality* conjecture holds for the standard Euclidean cube.
- ② Li 2019, the dihedral rigidity conjecture for some special convex polyhedra with dimension ≤ 7, under extra assumptions on dihedral angles and combinatorial types (e.g. dihedral angles have to be **non-obtuse** and the cobimatorial type needs to be a prism: a polyhedron of dimension ≤ 7 that is a direct product $P_0 \times [0,1]^{n-2}$, where $P_0 \subset \mathbb{R}^2$ is a 2-dimensional polygon with non-obtuse dihedral angles.)

Theorem (Wang-X-Yu 2021)

Let P be a convex polyhedron in \mathbb{R}^n and g_0 the Euclidean metric on P. If g is a smooth Riemannian metric on P such that

3
$$H_g(F_i) \ge H_{g_0}(F_i) = 0$$
 for each face F_i of P , and

3
$$heta_{ij}(g) \leq heta_{ij}(g_0)$$
 on each $F_{ij} = F_i \cap F_j$,

then we have

$$Sc(g) = 0, H_g(F_i) = 0$$
 and $\theta_{ij}(g) = \theta_{ij}(g_0)$

for all i and all $j \neq i$. Moreover, g is Ricci flat.

Theorem (Gauss-Bonnet)

Given an oriented compact surface X without boundary,

$$2\pi \cdot \chi(X) = \int_X \kappa(x) dA$$

where $\chi(X)$ is the Euler characteristic of X and $\kappa(x)$ is the scalar curvature of X.

Theorem (Gauss-Bonnet)

Suppose (X,g) is an oriented surface with piecewise smooth boundary. Then

$$2\pi \cdot \chi(X) = \int_X \kappa_g(x) dA + \sum \int_{C_i} H_g(s) ds - \sum \theta_i + \pi \cdot \# \text{vertices}$$

where θ_i is the dihedral angle between C_i and C_{i+1} .

A consequence of the Gauss-Bonnet theorem

Let (P, g_0) be a convex polygon in \mathbb{R}^2 . If g is a smooth Riemannian metric on P such that

 $I Sc(g) \ge 0,$

• $H_g(C_i) \ge 0$ for each edge C_i of P, and

then Sc(g) = 0, $H_g(C_i) = 0$, and $\theta_i(g) = \theta_i(g_0)$.

A consequence of the Gauss-Bonnet theorem

Let (P, g_0) be a convex polygon in \mathbb{R}^2 . If g is a smooth Riemannian metric on P such that

•
$$\operatorname{Sc}(g) \geq 0$$

$$H_g(C_i) \ge 0$$
 for each edge C_i of P , and

3
$$\theta_i(g) \le \theta_i(g_0)$$
 at each vertex $v_i = C_i \cap C_{i+1}$,

then Sc(g) = 0, $H_g(C_i) = 0$, and $\theta_i(g) = \theta_i(g_0)$.

$$2\pi \cdot \chi(X) = \int_X \kappa_g(x) dA + \sum \int_{C_i} H_g(s) ds - \sum \theta_i(g) + \pi \cdot \# \text{vertices}$$
$$2\pi \cdot \chi(X) = 0 + 0 - \sum \theta_i(g_0) + \pi \cdot \# \text{vertices}$$

御 と くきと くきと

Dirac operator D is a first order differential operator satisfying

 $D^2 =$ Laplacian.

Dirac operator D is a first order differential operator satisfying

$$D^2 = Laplacian.$$

On \mathbb{R}^1 ,

Laplacian
$$=-rac{d^2}{dx^2}, \qquad D=-irac{d}{dx}$$

Dirac operator on \mathbb{R}^n

W

On
$$\mathbb{R}^2$$
, Laplacian = $-\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)$.
 $D = c_1 \frac{\partial}{\partial x} + c_2 \frac{\partial}{\partial y}$
where
 $c_1 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $c_2 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$.

(日)

Dirac operator on \mathbb{R}^n

0

w

In
$$\mathbb{R}^2$$
, Laplacian $= -(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2})$.
 $D = c_1 \frac{\partial}{\partial x} + c_2 \frac{\partial}{\partial y}$
here
 $c_1 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $c_2 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$.

On \mathbb{R}^n , there is a similar construction.

-

To define the Dirac operator on $\mathbb{R}^2,$ we have used the fact

 $\frac{\partial}{\partial x}\frac{\partial}{\partial y} = \frac{\partial}{\partial y}\frac{\partial}{\partial x}.$

To define the Dirac operator on \mathbb{R}^2 , we have used the fact

$$\frac{\partial}{\partial x}\frac{\partial}{\partial y} = \frac{\partial}{\partial y}\frac{\partial}{\partial x}.$$

On a general manifold,

$$D^2 = {\sf Laplacian} + {{\sf scalar \ curvature}\over 4}$$

because partial derivatives **do not** commute in general, which gives rise to a curvature term.

To define the Dirac operator on \mathbb{R}^2 , we have used the fact

 $\frac{\partial}{\partial x}\frac{\partial}{\partial y} = \frac{\partial}{\partial y}\frac{\partial}{\partial x}.$

On a general manifold,

$$D^2 = \mathsf{Laplacian} + rac{\mathsf{scalar}\ \mathsf{curvature}}{4}$$

because partial derivatives **do not** commute in general, which gives rise to a curvature term.

To define the Dirac operator on a general manifold, the manifold needs a certain orientability condition, called **spin**.

On a general spin manifold X, the Dirac operator D actually is defined on a spinor bundle S_X . Now suppose E is another vector bundle over X. Then one can define a twisted Dirac operator D_E on $S_X \otimes E$. In this case,

$$D_E^2 = {\sf Laplacian} + rac{{\sf scalar\ curvature}}{4} + {\cal R}^E$$

where \mathcal{R}^{E} is some extra term determined by the curvature of E.

- Use an appropriate twisted Dirac operator to obtain comparisons of scalar curvature, mean curvature and dihedral angles
- evelop the index theory for manifolds with polyhedral boundary and apply it to this twisted Dirac operator

Gromov's flat corner domination conjecture

Let P be a convex polyhedron in \mathbb{R}^n and g_0 the Euclidean metric on P. If g is a smooth Riemannian metric on P such that

•
$$H_g(F_i) \ge H_{g_0}(F_i) = 0$$
 for each face F_i of P , and

then g is also a flat metric, all codimension one faces of (P, g) are flat, and (P, g) and (P, g_0) are locally isometric.

Positive solution to Gromov's flat corner domination conjecture

Theorem (Wang-X 2022)

Let P be a convex polyhedron in \mathbb{R}^n and g_0 the Euclidean metric on P. If g is a smooth Riemannian metric on P such that

2
$$H_g(F_i) \ge H_{g_0}(F_i) = 0$$
 for each face F_i of P , and

3
$$\theta_{ij}(g) \leq \theta_{ij}(g_0)$$
 on each $F_{ij} = F_i \cap F_j$,

then g is also a flat metric, all codimension one faces of (P,g) are flat, and (P,g) and (P,g_0) are locally isometric.

Theorem (Wang-X 2022)

If P_1 and P_2 are two convex Euclidean polyhedra of the same combinatorial type in \mathbb{R}^n . If the corresponding dihedral angles of P_1 and P_2 are equal, then the corresponding face angles of P_1 and P_2 are equal. Consequently, P_1 and P_2 are isometric up to translations of faces.

This answers positively the Stoker conjecture.

Comparison of scalar curvature, mean curvature and dihedral angles on polyhedra

Proposition (Wang-X-Yu 2021)

Let (P, g_0) be a convex Euclidean polyhedron. Let g be another Riemannian metric on P. Suppose D is the twisted Dirac operator on $S_{g_0} \otimes S_g$. Then we have

$$\begin{split} \int_{P} |D\varphi|^{2} &\geq \int_{P} |\nabla\varphi|^{2} + \int_{P} \frac{\operatorname{Sc}_{g} - \mathbf{0}}{4} |\varphi|^{2} + \sum_{i} \int_{F_{i}} \frac{H_{g} - \mathbf{0}}{2} |\varphi|^{2} \\ &+ \frac{1}{2} \sum_{i,j} \int_{F_{i} \cap F_{j}} \left(\theta_{ij}(g_{0}) - \theta_{ij}(g) \right) |\varphi|^{2} + \sum_{i} \int_{F_{i}} \langle D^{\partial}\varphi, \varphi \rangle \end{split}$$

for all smooth sections φ of $S_{g_0} \otimes S_g$.

Here the bundle $S_{g_0} \otimes S_g$ is isomorphic (but generally not isometric) to the bundle of differential forms $\Lambda^{\bullet} T^* P$.

Need to find a nontrivial φ such that $D\varphi=0.$ Then

$$0 = \int_{P} |D\varphi|^{2} \ge \int_{P} |\nabla\varphi|^{2} + \int_{P} \frac{\operatorname{Sc}_{g} - 0}{4} |\varphi|^{2} + \sum_{i} \int_{F_{i}} \frac{H_{g} - 0}{2} |\varphi|^{2} + \frac{1}{2} \sum_{i,j} \int_{F_{i} \cap F_{j}} \left(\theta_{ij}(g_{0}) - \theta_{ij}(g)\right) |\varphi|^{2} + \sum_{i} \int_{F_{i}} \langle D^{\partial} \varphi, \varphi \rangle^{0}$$

æ

Theorem (Wang-X-Yu 2021)

Let (P, g_0) be a convex Euclidean polyhedron. Let g be another Riemannian metric on P. Suppose D is the twisted Dirac operator on $S_{g_0} \otimes S_g$ subject to the boundary condition **B** induced by $(\overline{\omega} \otimes \omega)(\overline{c}(\overline{e}_n) \otimes c(e_n))$. If the dihedral angles $\theta_{ij}(g)$ and $\theta_{ij}(g_0)$ satisfy

 $0 < heta_{ij}(g)_z \leq heta_{ij}(g_0)_z < \pi$

for all codimension one faces $\overline{F}_i, \overline{F}_j$ of P and all $z \in \overline{F}_i \cap \overline{F}_j$, then D_B is an essentially self-adjoint Fredholm operator with Fredholm index

$$\mathrm{Ind}(D_{\mathsf{B}}) = \chi(P) = 1,$$

where $\chi(P)$ is Euler characteristic of P.

The de Rham operator (written in cylindrical coordinates) is

$$\begin{pmatrix} 0 & -\frac{\partial}{\partial r} \\ \frac{\partial}{\partial r} & 0 \end{pmatrix} + \frac{1}{r} \begin{pmatrix} 0 & P \\ P & 0 \end{pmatrix}$$

where

$$P = \begin{pmatrix} -1/2 & -rac{\partial}{\partial heta} \\ rac{\partial}{\partial heta} & -1/2 \end{pmatrix}$$

The boundary condition B for P is that

$$\phi_1(0) = \phi_1(\alpha) = 0$$
 for $\phi = \phi_0(\theta) + \phi_1(\theta)d\theta$.

The spectrum of P subject to the boundary condition B is

$$\left\{-\frac{1}{2}+\frac{k\pi}{\alpha}\right\}_{k\in\mathbb{Z}}$$

Lemma (Cheeger, Chou, Brüning-Seeley, ···)

Let P_B be the operator P on the link subject to the induced boundary B. Assume that P_B is essentially self-adjoint. Then D_B^{dR} is essentially self-adjoint \Leftrightarrow the deficiency indices of D_B^{dR} are zero $\Leftrightarrow |P_B| \ge 1/2$. Here the deficiency indices of D_B^{dR} are codim $\operatorname{Ran}(D_B^{dR} \pm i)$.

The boundary condition B for P in this case is: $\phi_1(0) = 0$ and

$$-\phi_0(\alpha)\sin(\frac{\beta-\alpha}{2})+\phi_1(\alpha)\cos(\frac{\beta-\alpha}{2})=0$$

for $\phi = \phi_0(\theta) + \phi_1(\theta) d\theta$.

The spectrum of
$$P_B$$
 is $\left\{-\frac{\beta}{2\alpha}+\frac{k\pi}{\alpha}\right\}_{k\in\mathbb{Z}}$.

 $|P_B| \ge 1/2$ if and only if $(\alpha + \beta \le 2\pi \text{ and } \alpha \le \beta)$.

The higher dimensional case is proved by induction. For example, near a singular point of codimension ℓ , the link is a polygon in $\mathbb{S}^{\ell-1}$.

In this case, we show that

$$|P_B|^2 \geq rac{(\ell-1)(\ell-2)}{4}.$$

The Fredholm index is computed via a cutting-and-pasting argument together with a delicate deformation argument.

Thank you!

æ

-> -< ≣ >