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P = submonoid of a group G (ee P = G)

Left regular representation p > L, of P by isometries on £2(P):

Ly0q = 0pq pe P,

pOq

defined first on {04 : g € P}, then extended by linearity and continuity.

The (reduced) Toeplitz C*-algebra is the C*-algebra generated by L
To(P) := C*(L, : p € P) c B(£*(P)).
Spatial techniques are available to study 7,(P), but estimating norms of

operators is difficult, so it is not easy to decide whether a given collection
{V,}pep produces a representation of 7, (P).



- We must send L, — V), and L} — V5, and for each polynomial F
on 2k noncommuting variables we need to send

F(Lpy, s Lo Lo L) > F(Vy, oo, Vs VI VR
but then we need to prove
“F(va"' ’VPk; V;:_’.” ’V;:T()H HF(LP17"' aLPk;L:1v"' 7[-:,()H

which is not easily done.

- On the other hand, if a C*-algebra A is characterized in terms of
generators and relations, then every collection of elements satisfying
the defining relations automatically gives a representation of A.

- A strategy that is often successful is to come up with a suitable
presentation that characterizes T (P)



three classical theorems

- (Coburn '67) Let S = unilateral shift and V = an isometry.
Then S"+— V" (ne N) extends to a homomorphism
C*(S)—>C*(V), which is an isomorphism iff /' V/* 5 1.

- (Douglas '72) Let I be a subgroup of R and let 't :=T n [0, o).
Suppose L is the l.r.r. of 't and V is another representation of ',
Then L, — V, extends to a homomorphism 7,(I't)—C*(V),
which is an isomorphism iff \/,/* # 1 for some (hence all) p # 0.

- (Cuntz '81) Suppose L is the l.r.r. and V is an isometric
representation of P = I, the free monoid on n generators
{1,2,---n}, and assume 37 ; V;V* < 1. Then L, V, extends
to a homomorphism 7, (F;)—> C*(V), which is an isomorphism
iff [T, =WV*) #0.



presentations for 7,(N), 7,(I'"), and T,(F;)

- Semigroup: Presentation

= IP=INj vy =1l

-P=Tt; vivy =1, vy¥ = vyqs for v, 0%€Tt

S P vivy=1j=12,...,n and Zle‘/j‘/j*<1
In each case:

1. Tx(P) is universal (surprising for ;" because I, is nonamenable)
2. TA(P) is unique for ‘jointly proper’ representations

3. 3 boundary quotient 07, (P) for ‘maximally improper’
representations



more general semigroups
- [Nica '92]: A new class of semigroups: P < G is quasi-lattice
orderedif P~ P! ={e} andforx,yegG,
D A zP when xP n yP = zP
0 when xP n yP = &

Presentation: consider isometric representations of P that satisfy

V,V} when xP nyP = zP

VAR V) =
(VoVa)(VaVa) {O when xP n yP = (&

This led to semigroup crossed products [L-Raeburn] and to

boundary relations that characterize boundary quotient [L-Crisp '07].

- [Li '12] Any P c G with ee P

Presentation: consider isometric representations of P that preserve
the semi-lattice structure of a distinguished collection of subsets of
P (the constructible right ideals).



Xin Li's constructible right ideals: motivation by example
For p,q,r,s € P compute L} L,L}L; acting on L3(P):

if sx € rP(= x € s71rP)

QU 5, — 171816, — Ly Ladrex
iR 2 R 0 otherwise.

Assuming from now on x € s~1rP, we continue

7. Ol if x € s Yrq=ipP
PRERT 0 otherwise.

if xe PnstrPnstrg 1pP,

5 -1 —1
So  L¥L 1%l — (p=qr—1s)x
O e {0 otherwise.

K(p,q,r,s) := Pn s 1rP n s 1rqg 1pP is a constructible right ideal.
If we assume that a = (p, g, r,s) is neutral, i.e. p~1qr—ls =e,

we get a projection
Lo by P T .5



constructible right ideals

In general, for each k € N and each word « = (p1, p2, ..., Ppak) We set
&= pyipy- - Py 1Pk € G,

& := (P2k, Pok—1s- - - P2, P1) and define

K(a) == P (Poit Pak—1)P 0 (Poit Pak—1Pak—2Pak—3)P 0 --- 0 (&) P,

where &:= py'py_1 -+ P2 Py

Let W = { words of even length over P}

The collection of constructible right ideals
J={K(a):aeW} ={K(a):aeW, &= e}

is a semi-lattice under intersection.



universal Toeplitz C*-algebra 7,(P)

Definition [L-Sehnem] Let 7,(P) be the universal C*-algebra with

generators {t,: p € P} such that (with t, := t¥ tp, --- t* ;)

(mEEE=—"1:

(T2) t, =0 if K(a) = & with & = e;

(T3) in— i3 =0 if K(a) = (5) for o and B such that & = e = 3
(T4) [1ser(ta —t5) = 0 if K(a) = Uger K(B) for some a and finite set

F with & = e = b’
T.(P) =Gt 2 peP}) = Spanit, : c.cRil

D, = C*({tot¥ :a e W}) =span{ty : e W, a = e}



some consequences

Relations (T1)—(T3) give a presentation of Li's C(P): hence
{t, : pe P} is a semigroup of isometries generating 7,(P) and
{t,: & = e} is a commuting family of projections.

Moreover,

CH(P) == TulP) = Ta(P)

7|p

D@5 D= Sl

7, is an isomorphism iff the cond. expect. E, : T,(P) — D, is faithful,
e.g. for amenable G, (but also for many nonamenable G).

whether 7 and 7|p are isomorphisms depends on independence.



independence: what it is and how it can fail

P satisfies independence iff any one of the following holds:
- K(a) = Uger K(B) = K(B) = K(a) for some S € F.
- {Ik(a) : K(a) € J} is linearly independent in £%°(P).

Lipal .(= Dy) is an isomorphism
C*(P) — T.(P) is an isomorphism

Failures of independence:
Example 1 (Li '17) Independence fails on X = {0,2,3,...} © Z because

K(3,2,2,3) =2+ N can be written as (2 + X) u (3 + X).

Example 2 (L-Sehnem) Independence fails for all multiplicative monoids,
and all ax + b monoids, of nonmaximal orders @ in number fields.

O = any free full-rank proper subring of the ring Ok of integers in an
algebraic number field K.



a partial action G C D,

There is a partial action v of G on D), such that for p € P,
Ye(Lk(a)) = Tp(La) = Lie,paipe) = Lolaly = Lpk(a),

[X. Li]: T (P) = B S {8eG

[L-Sehnem "21]:  T,(P)

lle

D, xy G.

This gives

Dy xy G=Ty(P) = Ta(P) =Dy x, G



faithful representations 7 : 75(P) — B(H)

Let P* := P~ P71, the group of units in P.

Theorem [Li '17 |: When P* = {e}, 7 is faithful iff =|p, is faithful.
When P* + {e} we should not expect this to be true (take P = G).

The partial action G C D, restricts to an action P* & D, and

Spaniiy, i€ P*} = Dy %, P* — Dy x.,,G = Tn(P)

Theorem [L-Sehnem '21]: Every nontrivial ideal of 7,(P) has nontrivial
intersection with the subalgebra Dy x. . P*.

(7 is faithful on 75(P) iff it is faithful on Dy %, , P*)



universality/uniqueness for T, (P)

Under weak containment we get a general universality/uniqueness.

Theorem [L-Sehnem]: Suppose E, : 7,(P) — D, is faithful, and let
{W, : pe P} be a collection of elements satisfying (T1)—(T4).
Then L, — W, extends to a homomorphism

Th(P)—C*(W),

which is injective iff its restriction to Dy x. , P* is injective.



topological freeness and jointly proper isometries

For some monoids it is possible to decide faithfulness/uniqueness based
solely on the restriction to Dy. The key is a property (TF) of P that
ensures topological freeness of the partial action P* & D).

Definition: P satisfies (TF) if for every u e P*\{e} and
every C cc J\{P}, there exists q € P\|Jgec R such that ugP # gP.

Definition: {W, : p € P} is jointly properif [[ _-(/ — W,) # 0 for
every finite collection F of neutral words with K(«) # P.

Corollary [L-Sehnem '21]: Suppose E, : T,(P) — D, is faithful, P
satisfies (TF), and {W, : p € P} satisfies (T1)—(T4). Then L, — W,
extends to homomorphism

TA(P)—C* (W),

which is an isomorphism if and only if W is jointly proper.



boundary quotient from covariance algebras

Theorem [Li '17] (cf. L- Crisp '07) The spectrum Qp := Spec Dy has a
smallest nonempty closed G-invariant subset 0Q2p, and the reduced

boundary is
OTA(P) = C(0Qp) %, G.

By analogy, there is a full boundary,

FII(P) = C(\(AQP) Ay G

We would like to have a presentation for ¢7,(P).

The extra relations are derived from Sehnem’s covariance algebra for
product systems, in the particular case of the canonical product system
with one-dimensional fibres associated to P.



foundation sets from Sehnem’s strong covariance ideal

Definition: A foundation set for the constructible right ideal K () is a
finite collection {K(B) : 8 € F} c J such that

S Uper K(B) and  pPn |Jr K(B) # & for all pe K(a).
((the K(B)s cover the shadow cones from K(«) ‘at infmity )
The foundation set {K () : B € F} is proper if K(« UﬁeF

this leads to the boundary relations

(T5) H(v’v“ —wg) =0 whenever K(a) o (s K(B) and
BeF
pP n Up K(B) # & for all pe K(a).
We may assume proper inclusion, otherwise included in:

(T4) Tlser(ta —tg) =0 if K(a) = Uger K(B) for aand F e P.

We may assume not indep., i.e. K(a) # K(B) Y3 € F, otherwise:
(T3) to —tg =0 if K(a) = K(B) for a and B.



the full boundary quotient: “there is no (T6)"

Lemma [L-Sehnem] (T1)—(T5) is a maximal set of relations, i.e. the
quotient of 7],(P) by any extra relation ‘of the same kind' is trivial.
Proof: If K(a) = (Jser K(B) is not a foundation set, then

PP 0 Uper ( ) = & for some p € K(a), so tpty < HﬁeF( tg).
If the product vanishes, then so does the isometry t,.

Theorem [L-Sehnem] The following are canonically isomorphic:
1. the covar. alg. C xcr P of the 1-dim’l product system over P;
2. the universal C*-algebra with presentation (T1)—(T5);
3. the full partial crossed product C(0Q2p) %, G.

In view of this we view the C*-algebra characterized in the theorem as
the full boundary quotient of 7;(P).



purely infinite simple reduced boundary quotients

Theorem [L-Sehnem]: TFAE

1. Every proper ideal of 07,(P) is contained in the kernel of the
canonical map

0T (P) — 0Tx(P) = C(8Qp) x, G.

2. The partial action G C 0Qp is topologically free.

3.(0TF) Forall p+# gin P 3s e P such that psP n qsP = &.

Corollary [L-Sehnem]: Assume P # {e}.
1) If condition (0TF) above holds, then ¢75(P) is purely infinite simple.

2) The converse holds if the boundary action satisfies weak containment
(i.e. 0Tu(P) = @Tx(P) via the canonical map).



Application: purely infinite C*-algebras from integral domains

Let R be an integral domain that is not a field and let R x R* be the
associated b + ax monoid. So the multiplication is

(b,a)(d,c) = (b+ ad, ac), b,de R, a,ce R*.

Theorem [Cuntz '08, Li '10]: d7x(R x R*) is purely infinite simple.

We can recover this by verifying directly that P = R x R* satisfies
(0TF): Vp# g in P 3s e P such that psP n gsP =

Let p = (b,a) and g = (d, ¢) with p # g. We may assume b # d.
Case 1: b—d ¢ acR. Set s := (0,ac). Then psP n qsP = &J because,

otherwise, b — d € acR, contradicting the assumption.

Case 2: b—dec acR*. Let xe R* with b— d = acx. Let re R*
non-invertible and set s := (0, acxr). Then psP n qsP = & because,
otherwise, r would be invertible, contradicting the assumption.



Application: uniqueness for C*-algebras of orders

Definition: Let K be a number field of degree d and let Ok be the ring
of integers of K (it is a Z-module of rank d). An order in K is a subring
O < Ok that is free of full rank as a Z-module.

Example [Li-Norling '16]: Let O = Z[+/—3] (this is a proper subring of
Ok for K = Q[+/—3]) Then the monoids O* and O x O* do not satisfy
independence.

Proposition [L-Sehnem]: For every nonmaximal order O in a number
field, the monoids O* and O x O* do not satisfy independence.

Theorem [L-Sehnem]: For every order in a number field, 75(O x O*) is
universal and unique for jointly proper isometric representations satisfying
(T1)-(T4).

Proof: The monoid O x O* satisfies (TF).



Thank youl!
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