C*-algebras generated by isometries and their boundary quotients

M. Laca University of Victoria

COSy 51 Western University 23 May 2023

joint work with C. F. Sehnem

P = submonoid of a group G $(e \in P \subset G)$

Left regular representation $p \mapsto L_p$ of P by isometries on $\ell^2(P)$:

$$L_p\delta_q=\delta_{pq}\qquad p\in P,$$

defined first on $\{\delta_q : q \in P\}$, then extended by linearity and continuity.

The (reduced) Toeplitz C*-algebra is the C*-algebra generated by L $\mathcal{T}_{\lambda}(P) := C^*(L_p : p \in P) \subset \mathcal{B}(\ell^2(P)).$

Spatial techniques are available to study $\mathcal{T}_{\lambda}(P)$, but estimating norms of operators is difficult, so it is not easy to decide whether a given collection $\{V_{\rho}\}_{\rho \in P}$ produces a representation of $\mathcal{T}_{\lambda}(P)$.

- We must send $L_p \mapsto V_p$ and $L_p^* \mapsto V_p^*$, and for each polynomial F on 2k noncommuting variables we need to send

 $F(L_{\rho_1},\cdots,L_{\rho_k};L_{\rho_1}^*,\cdots,L_{\rho_k}^*)\mapsto F(V_{\rho_1},\cdots,V_{\rho_k};V_{\rho_1}^*,\cdots,V_{\rho_k}^*)$

but then we need to prove

 $\|F(V_{p_1},\cdots,V_{p_k};V_{p_1}^*,\cdots,V_{p_k}^*)\| \leq \|F(L_{p_1},\cdots,L_{p_k};L_{p_1}^*,\cdots,L_{p_k}^*)\|$ which is not easily done.

- On the other hand, if a C*-algebra A is characterized in terms of generators and relations, then every collection of elements satisfying the defining relations automatically gives a representation of A.
- A strategy that is often successful is to come up with a suitable presentation that characterizes $\mathcal{T}_{\lambda}(P)$ as well as possible.

three classical theorems

- (Coburn '67) Let S = unilateral shift and V = an isometry. Then $S^n \mapsto V^n$ $(n \in \mathbb{N})$ extends to a homomorphism $C^*(S) \rightarrow C^*(V)$, which is an isomorphism iff $V V^* \neq 1$.

- (Douglas '72) Let Γ be a subgroup of \mathbb{R} and let $\Gamma^+ := \Gamma \cap [0, \infty)$. Suppose *L* is the l.r.r. of Γ^+ and *V* is another representation of Γ^+ . Then $L_p \mapsto V_p$ extends to a homomorphism $\mathcal{T}_{\lambda}(\Gamma^+) \longrightarrow C^*(V)$, which is an isomorphism iff $V_p V_p^* \neq 1$ for some (hence all) $p \neq 0$.

- (Cuntz '81) Suppose *L* is the l.r.r. and *V* is an isometric representation of $P = \mathbb{F}_n^+$, the free monoid on *n* generators $\{1, 2, \dots n\}$, and assume $\sum_{j=1}^n V_j V_j^* \leq 1$. Then $L_p \mapsto V_p$ extends to a homomorphism $\mathcal{T}_{\lambda}(\mathbb{F}_n^+) \longrightarrow C^*(V)$, which is an isomorphism iff $\prod_{j=1}^n (1 - V_j V_j^*) \neq 0$.

presentations for $\mathcal{T}_{\lambda}(\mathbb{N})$, $\mathcal{T}_{\lambda}(\Gamma^{+})$, and $\mathcal{T}_{\lambda}(\mathbb{F}_{n}^{+})$

- Semigroup: Presentation
- $P = \mathbb{N};$ $v^*v = 1,$
- $P = \Gamma^+$; $v_{\gamma}^* v_{\gamma} = 1$, $v_{\gamma} v_{\delta} = v_{\gamma+\delta}$ for $\gamma, \delta \in \Gamma^+$
- $P = \mathbb{F}_n^+$; $v_j^* v_j = 1, j = 1, 2, \dots, n$ and $\sum_{j=1}^n v_j v_j^* \leqslant 1$

In each case:

- 1. $\mathcal{T}_{\lambda}(P)$ is universal (surprising for \mathbb{F}_{n}^{+} because \mathbb{F}_{n} is nonamenable)
- 2. $\mathcal{T}_{\lambda}(P)$ is unique for 'jointly proper' representations
- 3. \exists boundary quotient $\partial T_{\lambda}(P)$ for 'maximally improper' representations

more general semigroups

- [Nica '92]: A new class of semigroups: $P \subset G$ is quasi-lattice ordered if $P \cap P^{-1} = \{e\}$ and for $x, y \in G$, $xP \cap yP = \begin{cases} zP & \text{when } xP \cap yP = zP \\ 0 & \text{when } xP \cap yP = \emptyset \end{cases}$

Presentation: consider isometric representations of P that satisfy

$$(V_{\rho}V_{\rho}^{*})(V_{q}V_{q}^{*}) = \begin{cases} V_{z}V_{z}^{*} & \text{when } xP \cap yP = zP \\ 0 & \text{when } xP \cap yP = \emptyset \end{cases}$$

This led to semigroup crossed products [L-Raeburn] and to boundary relations that characterize boundary quotient [L-Crisp '07].

- [Li '12] Any $P \subset G$ with $e \in P$

Presentation: consider isometric representations of P that preserve the semi-lattice structure of a distinguished collection of subsets of P (the constructible right ideals). Xin Li's constructible right ideals: motivation by example For $p, q, r, s \in P$ compute $L_p^* L_q L_r^* L_s$ acting on $\ell^2(P)$:

$$(L_p^*L_qL_r^*L_s)\delta_x = L_p^*L_qL_r^*\delta_{sx} = \begin{cases} L_p^*L_q\delta_{r^{-1}sx} & \text{if } sx \in rP(\Leftrightarrow x \in s^{-1}rP)\\ 0 & \text{otherwise.} \end{cases}$$

Assuming from now on $x \in s^{-1}rP$, we continue

$$L_{p}^{*}L_{q}\delta_{r^{-1}sx} = \begin{cases} \delta_{p^{-1}qr^{-1}sx} & \text{if } x \in s^{-1}rq^{-1}pP \\ 0 & \text{otherwise.} \end{cases}$$

So $L_p^*L_qL_r^*L_s\delta_x = \begin{cases} \delta_{(p^{-1}qr^{-1}s)x} & \text{if } x \in P \cap s^{-1}rP \cap s^{-1}rq^{-1}pP, \\ 0 & \text{otherwise.} \end{cases}$

 $K(p,q,r,s) := P \cap s^{-1}rP \cap s^{-1}rq^{-1}pP$ is a constructible right ideal.

If we assume that $\alpha = (p, q, r, s)$ is neutral, i.e. $p^{-1}qr^{-1}s = e$, we get a projection

 $L_p^* L_q L_r^* L_s = \mathbb{1}_{K(p,q,r,s)}$

constructible right ideals

In general, for each $k \in \mathbb{N}$ and each word $\alpha = (p_1, p_2, \dots, p_{2k})$ we set

$$\dot{lpha} := p_1^{-1} p_2 \cdots p_{2k-1}^{-1} p_{2k} \in G,$$

 $\tilde{lpha} := (p_{2k}, p_{2k-1}, \dots p_2, p_1)$ and define

$$\mathsf{K}(\alpha) := \mathsf{P} \cap (\mathsf{p}_{2k}^{-1}\mathsf{p}_{2k-1})\mathsf{P} \cap (\mathsf{p}_{2k}^{-1}\mathsf{p}_{2k-1}\mathsf{p}_{2k-2}^{-1}\mathsf{p}_{2k-3})\mathsf{P} \cap \dots \cap (\ddot{\alpha})\mathsf{P}$$

where $\dot{\tilde{\alpha}} := p_{2k}^{-1} p_{2k-1} \cdots p_2^{-1} p_1$.

Let $\mathcal{W} = \{ \text{ words of even length over } P \}$

The collection of constructible right ideals

 $\mathcal{J} = \{ \mathbf{K}(\alpha) : \alpha \in \mathcal{W} \} = \{ \mathbf{K}(\alpha) : \alpha \in \mathcal{W}, \ \dot{\alpha} = \mathbf{e} \}$

is a semi-lattice under intersection.

universal Toeplitz C*-algebra $\mathcal{T}_u(P)$

Definition [L-Sehnem] Let $\mathcal{T}_u(P)$ be the universal C*-algebra with generators $\{t_p : p \in P\}$ such that (with $\dot{t}_{\alpha} := t_{p_1}^* t_{p_2} \cdots t_{p_{2k-1}}^* t_{p_{2k}})$

 $(T1) \ t_e = 1;$

(T2)
$$\dot{t}_{\alpha} = 0$$
 if $K(\alpha) = \emptyset$ with $\dot{\alpha} = e$;

(T3) $\dot{t}_{\alpha} - \dot{t}_{\beta} = 0$ if $K(\alpha) = K(\beta)$ for α and β such that $\dot{\alpha} = e = \dot{\beta}$;

(T4) $\prod_{\beta \in F} (\dot{t}_{\alpha} - \dot{t}_{\beta}) = 0$ if $K(\alpha) = \bigcup_{\beta \in F} K(\beta)$ for some α and finite set F with $\dot{\alpha} = e = \dot{\beta}$.

 $\overline{\mathcal{T}_{u}(P)} := \overline{C}^{*}(\{t_{p} : p \in P\}) = \overline{\operatorname{span}}\{\dot{t}_{\alpha} : \alpha \in \mathcal{W}\}$

 $D_{u} := \overline{C^{*}(\{\dot{t}_{\alpha}\dot{t}_{\alpha}^{*}: \alpha \in \mathcal{W}\}) = \overline{\operatorname{span}}\{\dot{t}_{\alpha}: \alpha \in \mathcal{W}, \ \dot{\alpha} = e\}}$

some consequences

Relations (T1)–(T3) give a presentation of Li's $C_s^*(P)$: hence $\{t_p: p \in P\}$ is a semigroup of isometries generating $\mathcal{T}_u(P)$ and $\{\dot{t}_\alpha: \dot{\alpha} = e\}$ is a commuting family of projections. Moreover,

 $C^*_{s}(P) \xrightarrow{\pi} \mathcal{T}_{u}(P) \xrightarrow{\pi_{L}} \mathcal{T}_{\lambda}(P)$

 $D_s \xrightarrow{\pi|_D} D_u \xrightarrow{\cong} D_\lambda$

 π_L is an isomorphism iff the cond. expect. $E_u : \mathcal{T}_u(P) \to D_u$ is faithful, e.g. for amenable G, (but also for many nonamenable G).

whether π and $\pi|_D$ are isomorphisms depends on independence.

independence: what it is and how it can fail

P satisfies independence iff any one of the following holds:

- $K(\alpha) = \bigcup_{\beta \in F} K(\beta) \implies K(\beta) = K(\alpha)$ for some $\beta \in F$.
- $\{\mathbb{1}_{\mathcal{K}(\alpha)}: \mathcal{K}(\alpha) \in \mathcal{J}\}$ is linearly independent in $\ell^{\infty}(\mathcal{P})$.
- $D_s \xrightarrow{\pi|_D} D_u (= D_\lambda)$ is an isomorphism
- $C^*_s(P) \xrightarrow{\pi} \mathcal{T}_u(P)$ is an isomorphism

Failures of independence:

 $\underline{ \text{Example 1}} \ (\text{Li '17}) \ \text{Independence fails on } \Sigma = \{0, 2, 3, \ldots\} \ \subset \ \mathbb{Z} \ \text{ because} \\ \hline \mathcal{K}(3, 2, 2, 3) = 2 + \mathbb{N} \ \text{ can be written as} \ (2 + \Sigma) \cup (3 + \Sigma).$

Example 2 (L-Sehnem) Independence fails for all multiplicative monoids, and all ax + b monoids, of nonmaximal orders \mathcal{O} in number fields. $\mathcal{O} =$ any free full-rank proper subring of the ring $\mathcal{O}_{\mathcal{K}}$ of integers in an algebraic number field \mathcal{K} . a partial action $G \subset D_{\lambda}$

There is a partial action γ of G on D_{λ} such that for $p \in P$,

$$\gamma_{p}(\mathbb{1}_{\mathcal{K}(\alpha)}) = \gamma_{p}(\dot{L}_{\alpha}) = \dot{L}_{(e,p,\alpha,p,e)} = L_{p}\dot{L}_{\alpha}L_{p}^{*} = \mathbb{1}_{p\mathcal{K}(\alpha)}$$

 $[\mathsf{X}. \mathsf{Li}]: \qquad \qquad \mathcal{T}_{\lambda}(P) \cong D_{\lambda} \rtimes_{\gamma, r} G$

[L-Sehnem '21]: $\mathcal{T}_u(P) \cong D_u \rtimes_{\gamma} G.$

This gives

$$D_u \rtimes_u G \cong \mathcal{T}_u(P) \xrightarrow{\pi_L} \mathcal{T}_\lambda(P) \cong D_\lambda \rtimes_r G$$

faithful representations $\pi : \mathcal{T}_{\lambda}(P) \to \mathcal{B}(\mathcal{H})$

Let $P^* := P \cap P^{-1}$, the group of units in P.

Theorem [Li '17]: When $P^* = \{e\}$, π is faithful iff $\pi|_{D_{\lambda}}$ is faithful. When $P^* \neq \{e\}$ we should not expect this to be true (take P = G).

The partial action $G \subset D_{\lambda}$ restricts to an action $P^* \subset D_{\lambda}$ and

 $\overline{\operatorname{span}}\{\dot{t}_{\alpha}:\dot{\alpha}\in P^*\}\cong D_{\lambda}\rtimes_{\gamma,r}P^* \quad \hookrightarrow \quad D_{\lambda}\rtimes_{\gamma,r}G \cong \mathcal{T}_{\lambda}(P)$

Theorem [L-Sehnem '21]: Every nontrivial ideal of $\mathcal{T}_{\lambda}(P)$ has nontrivial intersection with the subalgebra $D_{\lambda} \rtimes_{\gamma,r} P^*$.

 $(\pi \text{ is faithful on } \mathcal{T}_{\lambda}(P) \text{ iff it is faithful on } D_{\lambda} \rtimes_{\gamma,r} P^*)$

Under weak containment we get a general universality/uniqueness.

Theorem [L-Sehnem]: Suppose $E_u : \mathcal{T}_u(P) \to D_u$ is faithful, and let $\{W_p : p \in P\}$ be a collection of elements satisfying (T1)–(T4). Then $L_p \mapsto W_p$ extends to a homomorphism

 $\mathcal{T}_{\lambda}(P) \longrightarrow \mathcal{C}^*(W),$

which is injective iff its restriction to $D_{\lambda} \rtimes_{\gamma,r} P^*$ is injective.

topological freeness and jointly proper isometries

For some monoids it is possible to decide faithfulness/uniqueness based solely on the restriction to D_{λ} . The key is a property (TF) of P that ensures topological freeness of the partial action $P^* \subset D_{\lambda}$.

Definition: *P* satisfies (TF) if for every $u \in P^* \setminus \{e\}$ and every $C \subset \subset \mathcal{J} \setminus \{P\}$, there exists $q \in P \setminus \bigcup_{R \in C} R$ such that $uqP \neq qP$.

Definition: $\{W_p : p \in P\}$ is *jointly proper* if $\prod_{\alpha \in F} (I - \dot{W}_{\alpha}) \neq 0$ for every finite collection F of neutral words with $K(\alpha) \neq P$.

Corollary [L-Sehnem '21]: Suppose $E_u : \mathcal{T}_u(P) \to D_u$ is faithful, P satisfies (TF), and $\{W_p : p \in P\}$ satisfies (T1)–(T4). Then $L_p \mapsto W_p$ extends to homomorphism

$$\mathcal{T}_{\lambda}(P) \longrightarrow \mathcal{C}^*(W),$$

which is an isomorphism if and only if W is jointly proper.

boundary quotient from covariance algebras

Theorem [Li '17] (cf. L- Crisp '07) The spectrum $\Omega_P := \operatorname{Spec} D_\lambda$ has a smallest nonempty closed *G*-invariant subset $\partial \Omega_P$, and the reduced boundary is

 $\partial \mathcal{T}_{\lambda}(P) \cong C(\partial \Omega_P) \rtimes_r G.$

By analogy, there is a full boundary,

 $\partial \mathcal{T}_u(P) \cong C(\partial \Omega_P) \rtimes_u G$

We would like to have a presentation for $\partial T_u(P)$.

The extra relations are derived from Sehnem's covariance algebra for product systems, in the particular case of the canonical product system with one-dimensional fibres associated to P.

foundation sets from Sehnem's strong covariance ideal Definition: A foundation set for the constructible right ideal $K(\alpha)$ is a finite collection $\{K(\beta) : \beta \in F\} \subset \mathcal{J}$ such that $K(\alpha) \supset \bigcup_{\beta \in F} K(\beta)$ and $pP \cap \bigcup_F K(\beta) \neq \emptyset$ for all $p \in K(\alpha)$. ((the $K(\beta)$ s cover the shadow cones from $K(\alpha)$ 'at infinity'))

The foundation set $\{K(\beta) : \beta \in F\}$ is proper if $K(\alpha) \supseteq_{\neq} \bigcup_{\beta \in F} K(\beta)$.

this leads to the boundary relations

(T5) $\prod_{\beta \in F} (\dot{w}_{\alpha} - \dot{w}_{\beta}) = 0 \qquad \text{whenever } K(\alpha) \supset \bigcup_{\beta \in F} K(\beta) \text{ and}$ $pP \cap \bigcup_{F} K(\beta) \neq \emptyset \text{ for all } p \in K(\alpha).$

We may assume proper inclusion, otherwise included in: (T4) $\prod_{\beta \in F} (\dot{t}_{\alpha} - \dot{t}_{\beta}) = 0$ if $K(\alpha) = \bigcup_{\beta \in F} K(\beta)$ for α and $F \subset P$. We may assume not indep., i.e. $K(\alpha) \neq K(\beta) \ \forall \beta \in F$, otherwise: (T3) $\dot{t}_{\alpha} - \dot{t}_{\beta} = 0$ if $K(\alpha) = K(\beta)$ for α and β .

the full boundary quotient: "there is no (T6)"

Lemma [L-Sehnem] (T1)–(T5) is a maximal set of relations, i.e. the quotient of $\mathcal{T}_u(P)$ by any extra relation 'of the same kind' is trivial. Proof: If $K(\alpha) \supset \bigcup_{\beta \in F} K(\beta)$ is not a foundation set, then $pP \cap \bigcup_{\beta \in F} K(\beta) = \emptyset$ for some $p \in K(\alpha)$, so $t_p t_p^* \leq \prod_{\beta \in F} (\dot{t}_\alpha - \dot{t}_\beta)$. If the product vanishes, then so does the isometry t_p .

Theorem [L-Sehnem] The following are canonically isomorphic:

- 1. the covar. alg. $\mathbb{C} \rtimes_{\mathbb{C}^{P}} P$ of the 1-dim'l product system over P;
- 2. the universal C*-algebra with presentation (T1)-(T5);
- 3. the full partial crossed product $C(\partial \Omega_P) \rtimes_u G$.

In view of this we view the C*-algebra characterized in the theorem as the full boundary quotient of $\mathcal{T}_u(P)$.

purely infinite simple reduced boundary quotients

Theorem [L-Sehnem]: TFAE

1. Every proper ideal of $\partial \mathcal{T}_u(P)$ is contained in the kernel of the canonical map

$$\partial \mathcal{T}_{u}(P) \to \partial \mathcal{T}_{\lambda}(P) = C(\partial \Omega_{P}) \rtimes_{r} G.$$

- 2. The partial action $G \subset \partial \Omega_P$ is topologically free.
- 3. $(\partial \mathsf{TF})$ For all $p \neq q$ in $P \exists s \in P$ such that $psP \cap qsP = \emptyset$.

Corollary [L-Sehnem]: Assume $P \neq \{e\}$.

1) If condition (∂TF) above holds, then $\partial T_{\lambda}(P)$ is purely infinite simple.

2) The converse holds if the boundary action satisfies weak containment (i.e. $\partial T_u(P) \cong \partial T_\lambda(P)$ via the canonical map).

Application: purely infinite C*-algebras from integral domains

Let *R* be an integral domain that is *not* a field and let $R \rtimes R^{\times}$ be the associated b + ax monoid. So the multiplication is

 $(b,a)(d,c) = (b + ad, ac), \qquad b, d \in R, a, c \in R^{\times}.$

Theorem [Cuntz '08, Li '10]: $\partial T_{\lambda}(R \rtimes R^{\times})$ is purely infinite simple.

We can recover this by verifying directly that $P = R \times R^{\times}$ satisfies (∂TF): $\forall p \neq q$ in $P \exists s \in P$ such that $psP \cap qsP = \emptyset$

Let p = (b, a) and q = (d, c) with $p \neq q$. We may assume $b \neq d$.

Case 1: $b - d \notin acR$. Set s := (0, ac). Then $psP \cap qsP = \emptyset$ because, otherwise, $b - d \in acR$, contradicting the assumption.

Case 2: $b - d \in acR^{\times}$. Let $\bar{x} \in R^{\times}$ with $b - d = ac\bar{x}$. Let $r \in R^{\times}$ non-invertible and set $s := (0, ac\bar{x}r)$. Then $psP \cap qsP = \emptyset$ because, otherwise, r would be invertible, contradicting the assumption.

Application: uniqueness for C*-algebras of orders

Definition: Let K be a number field of degree d and let \mathcal{O}_K be the ring of integers of K (it is a \mathbb{Z} -module of rank d). An *order* in K is a subring $\mathcal{O} \subset \mathcal{O}_K$ that is free of full rank as a \mathbb{Z} -module.

Example [Li-Norling '16]: Let $\mathcal{O} = \mathbb{Z}[\sqrt{-3}]$ (this is a proper subring of $\mathcal{O}_{\mathcal{K}}$ for $\mathcal{K} = \mathbb{Q}[\sqrt{-3}]$) Then the monoids \mathcal{O}^{\times} and $\mathcal{O} \rtimes \mathcal{O}^{\times}$ do not satisfy independence.

Proposition [L-Sehnem]: For every nonmaximal order \mathcal{O} in a number field, the monoids \mathcal{O}^{\times} and $\mathcal{O} \rtimes \mathcal{O}^{\times}$ do not satisfy independence.

Theorem [L-Sehnem]: For every order in a number field, $\mathcal{T}_{\lambda}(\mathcal{O} \rtimes \mathcal{O}^{\times})$ is universal and unique for jointly proper isometric representations satisfying (T1)-(T4).

Proof: The monoid $\mathcal{O} \rtimes \mathcal{O}^{\times}$ satisfies (TF).

Thank you!

Reference:

M. Laca and C. F. Sehnem, *Toeplitz algebras of semigroups*, Trans. Amer. Math Soc. **375** No. 10 (2022), 7443–7507.