Higman-Thompson groups from self-similar groupoid actions

Valentin Deaconu

University of Nevada, Reno

COSy-Western University-London, ON, May 22, 2023

Outline

- We recall the concept of a self-similar groupoid action (G, E) on the path space of a finite graph.
- We describe when the corresponding ample groupoid of germs $\mathcal{G}(G, E)$ is Hausdorff, minimal, effective and purely infinite.
- Inspired by the work of Nekrashevych, we define the Higman-Thompson group V_E(G) associated to (G, E) using G-tables and relate it to the topological full group [[G(G, E)]].
- After recalling some concepts in groupoid homology, we discuss the Matui's AH-conjecture for $\mathcal{G}(G, E)$.
- We give a particular example of an element that is not in the kernel of the index map $I : [\mathcal{G}(G, E)] \to H_1(\mathcal{G}(G, E)).$

• Let $E = (E^0, E^1, r, s)$ be a finite directed graph with no sources.

• The set of paths of length k is

$$E^k = \{e_1 e_2 \cdots e_k : e_i \in E^1, r(e_{i+1}) = s(e_i)\}.$$

- The space of finite paths is E^{*} := ⋃_{k≥0} E^k and E[∞] is the infinite path space with the topology given by Z(α) = {αξ : ξ ∈ E[∞]} for α ∈ E^{*}.
- The set E^* is indexing the vertices of a forest T_E , where the level *n* has $|E^n|$ vertices.

• The forest T_E looks like

- A partial isomorphism of *T_E* is given by a bijection g : u₁E^{*} → u₂E^{*} preserving length and such that g · (αe) ∈ (g · α)E¹ for α ∈ E^k and e ∈ E¹.
- The set $PIso(T_E)$ forms a discrete groupoid with unit space E^0 .
- In this example, $PIso(T_E)$ is transitive, but it could happen that there is no bijection $g: u_1E^* \to u_2E^*$ for $u_1 \neq u_2$.
- PIso(T_E) could be a group bundle. If $|E^0| = 1$, then PIso(T_E) =Aut(T_E) is a group.

Self-similar groupoid actions

- Let *E* be a finite directed graph with no sources, and let *G* be a groupoid with unit space E^0 . We denote by *d* and *t* the domain and target maps $G \to E^0$.
- **Definition**. A *self-similar action* (G, E) on the path space of *E* is given by a faithful groupoid homomorphism $G \to \text{PIso}(T_E)$ such that for every $g \in G$ and every $e \in d(g)E^1$ there exists a unique $h \in G$ denoted by $g|_e$ and called the restriction of *g* to *e* such that

$$g \cdot (e\mu) = (g \cdot e)(h \cdot \mu)$$
 for all $\mu \in s(e)E^*$.

We have

$$d(g|_e) = s(e), \ t(g|_e) = s(g \cdot e) = g|_e \cdot s(e), \ r(g \cdot e) = g \cdot r(e).$$

In general $s(g \cdot e) \neq g \cdot s(e)$, i.e. the source map is not *G*-equivariant.

• A self-similar action (G, E) is said to be level transitive if it is transitive on each E^n . The action is level transitive iff its extension to $\partial T_E = E^{\infty}$ is minimal.

Examples

• Example. Let *E* be the graph

• Consider the groupoid $G = \langle a, b, c \rangle$ and define the self-similar action (G, E) given by

$$a \cdot e_1 = e_2, \ a|_{e_1} = u, \ a \cdot e_3 = e_6, \ a|_{e_3} = b,$$

 $b \cdot e_2 = e_5, \ b|_{e_2} = a, \ b \cdot e_6 = e_4, \ b|_{e_6} = c,$
 $c \cdot e_4 = e_2, \ c|_{e_4} = a^{-1}, \ c \cdot e_5 = e_6, \ c|_{e_5} = b.$

• Then for example

$$b \cdot e_2 e_1 = e_5(b|_{e_2} \cdot e_1) = e_5(a \cdot e_1) = e_5 e_2.$$

• Note that the action of G is level transitive. It can be shown that G is a transitive groupoid with isotropy $\mathbb{Z} = \langle a^{-1}cba \rangle$.

• **Theorem.** If (G, E) is pseudo free $(g \cdot e = e \text{ and } g|_e = s(e)$ implies g = r(e)), then there is a locally compact Hausdorff étale groupoid of germs

$$\mathcal{G}(G,E) = \{ [\alpha, g, \beta; \xi] : \alpha, \beta \in E^*, \ g \in G_{s(\beta)}^{s(\alpha)}, \ \xi \in \beta E^{\infty} \},$$

where $[\alpha, g, \beta; \beta \gamma \eta] = [\alpha(g \cdot \gamma), g|_{\gamma}, \beta \gamma; \beta \gamma \eta].$

- The unit space of G(G, E) is identified with E[∞] by the map [α, s(α), α; ξ] → ξ.
- The topology on $\mathcal{G}(G, E)$ is generated by the compact open bisections of the form

$$Z(\alpha, g, \beta) = \{ [\alpha, g, \beta; \xi] \in \mathcal{G}(G, E) : \xi \in Z(\beta) \}.$$

- If G is amenable, then $\mathcal{G}(G, E)$ is also amenable and $C^*(G, E) = C^*(\mathcal{G}(G, E))$ is nuclear.
- $\mathcal{G}(G, E)$ is minimal iff *E* is *G*-transitive.
- G(G, E) is effective (essentially principal) iff
 (a) every G-circuit (a pair (g, α) with s(α) = g · r(α)) has an entry;
 (b) for every g ∈ G \ G⁽⁰⁾ there is ζ ∈ Z(d(g)) such that g · ζ ≠ ζ.
- If $\mathcal{G}(G, E)$ is effective and minimal, then $\mathcal{G}(G, E)$ is purely infinite since it contains the graph groupoid \mathcal{G}_E ,

$$\begin{aligned} \mathcal{G}_E &= \{ (\alpha\xi, |\alpha| - |\beta|, \beta\xi) \in E^{\infty} \times \mathbb{Z} \times E^{\infty} : \alpha, \beta \in E^*, \ s(\alpha) = s(\beta) \} \cong \\ &\cong \{ [\alpha, s(\alpha), \beta; \beta\xi] \in \mathcal{G}(G, E) : \alpha, \beta \in E^*, \ s(\alpha) = s(\beta), \ \xi \in E^{\infty} \}. \end{aligned}$$

G-tables and the Higman-Thompson groups

• A *G*-table for (G, E) with $|uE^1|$ constant is a matrix of the form

$$\tau = \begin{pmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_m \\ g_1 & g_2 & \cdots & g_m \\ \beta_1 & \beta_2 & \cdots & \beta_m \end{pmatrix},$$

where $\alpha_i, \beta_i \in E^*, g_i \in G^{s(\alpha_i)}_{s(\beta_i)}$ and $E^{\infty} = \bigsqcup_{i=1}^m Z(\alpha_i) = \bigsqcup_{i=1}^m Z(\beta_i)$.

- A *G*-table τ determines a homeomorphism $\overline{\tau}$ of E^{∞} taking $\beta_i \xi$ into $\alpha_i(g_i \cdot \xi)$.
- The set of all such homeomorphisms is a countable subgroup $V_E(G)$ of Homeo (E^{∞}) , called the Higman-Thompson group.

• Given a *G*-table
$$\tau = \begin{pmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_m \\ g_1 & g_2 & \cdots & g_m \\ \beta_1 & \beta_2 & \cdots & \beta_m \end{pmatrix}$$
, the map
 $\tau \mapsto T = S_{\alpha_1} U_{g_1} S_{\beta_2}^* + S_{\alpha_2} U_{g_2} S_{\beta_2}^* + \cdots + S_{\alpha_m} U_{g_m} S_{\beta_n}^*$

defines a faithful unitary representation of the group
$$V_E(G)$$
 in the C^* -algebra $C^*(G, E)$.

• The Cuntz-Pimsner algebra $C^*(G, E)$ is generated by U_g, P_v and S_e such that

- $g \mapsto U_g$ is a representation of G with $U_v = P_v$ for $v \in E^0$;
- S_e are partial isometries with $S_e^* S_e = P_{s(e)}$ and $\sum_{r(e)=v} S_e S_e^* = P_v$;

•
$$U_g S_e = \begin{cases} S_{g \cdot e} U_{g|_e} \text{ if } d(g) = r(e) \\ 0, \text{ otherwise;} \end{cases}$$
 $U_g P_v = \begin{cases} P_{g \cdot v} U_g \text{ if } d(g) = v \\ 0, \text{ otherwise.} \end{cases}$

 If π : X → Y is a local homeomorphism between locally compact Hausdorff spaces, then for f ∈ C_c(X, Z) define

$$\pi_*(f)(y) := \sum_{\pi(x)=y} f(x)$$

- It follows that $\pi_*(f) \in C_c(Y, \mathbb{Z})$.
- Given an étale groupoid G with domain and target maps d, t: G → G⁽⁰⁾, let G⁽¹⁾ = G and for n ≥ 2 let G⁽ⁿ⁾ be the space of composable strings of n elements in G with the product topology.
- For $n \ge 2$ and i = 0, ..., n, we let $\partial_i : \mathcal{G}^{(n)} \to \mathcal{G}^{(n-1)}$ be the face maps defined by

$$\partial_i(g_1, g_2, ..., g_n) = \begin{cases} (g_2, g_3, ..., g_n) & \text{if } i = 0, \\ (g_1, ..., g_i g_{i+1}, ..., g_n) & \text{if } 1 \le i \le n-1 \\ (g_1, g_2, ..., g_{n-1}) & \text{if } i = n. \end{cases}$$

• We define the homomorphisms $\delta_n : C_c(\mathcal{G}^{(n)}, \mathbb{Z}) \to C_c(\mathcal{G}^{(n-1)}, \mathbb{Z})$ given by

$$\delta_1 = d_* - t_*, \ \ \delta_n = \sum_{i=0}^n (-1)^i \partial_{i*} \ \text{for } n \ge 2.$$

- It can be verified that $\delta_n \circ \delta_{n+1} = 0$ for all $n \ge 1$.
- The Moerdijk-Crainic homology groups H_n(G) = H_n(G, ℤ) are by definition the homology groups of the chain complex C_c(G^(*), ℤ) given by

$$0 \stackrel{\delta_0}{\longleftarrow} C_c(\mathcal{G}^{(0)}, \mathbb{Z}) \stackrel{\delta_1}{\longleftarrow} C_c(\mathcal{G}^{(1)}, \mathbb{Z}) \stackrel{\delta_2}{\longleftarrow} C_c(\mathcal{G}^{(2)}, \mathbb{Z}) \longleftarrow \cdots$$

i.e. $H_n(\mathcal{G}) = \ker \delta_n / \operatorname{im} \delta_{n+1}$, where $\delta_0 = 0$.

• **Example**. For the action groupoid $\Gamma \ltimes X$ associated to a countable discrete group action $\Gamma \curvearrowright X$ on a Cantor set, it follows that

$$H_n(\Gamma \ltimes X) \cong H_n(\Gamma, C(X, \mathbb{Z})).$$

- Two equivalent groupoids have the same homology.
- Theorem (Ortega). For G an ample Hausdorff groupoid and ρ : G → Z a cocycle, we have the following long exact sequence

$$0 \longleftarrow H_0(\mathcal{G}) \longleftarrow H_0(\mathcal{G} \times_{\rho} \mathbb{Z}) \stackrel{id-\rho_*}{\longleftarrow} H_0(\mathcal{G} \times_{\rho} \mathbb{Z}) \longleftarrow H_1(\mathcal{G}) \longleftarrow \cdots$$

$$\cdots \longleftarrow H_n(\mathcal{G}) \longleftarrow H_n(\mathcal{G} \times_{\rho} \mathbb{Z}) \stackrel{id-\rho_*}{\longleftarrow} H_n(\mathcal{G} \times_{\rho} \mathbb{Z}) \longleftarrow H_{n+1}(\mathcal{G}) \longleftarrow \cdots$$

where ρ_* is the map induced by the action $\hat{\rho} : \mathbb{Z} \curvearrowright \mathcal{G} \times_{\rho} \mathbb{Z}$.

Topological full groups and the AH-conjecture

- The study of full groups in the setting of topological dynamics was initiated by T. Giordano, I. F. Putnam and C. F. Skau.
- Topological full groups associated to dynamical systems and to étale groupoids are complete invariants for continuous orbit equivalence and for groupoid isomorphism.
- They provide means of constructing new groups with interesting properties, most notably by providing the first examples of finitely generated infinite simple groups that are amenable.
- The topological full group of an effective étale groupoid ${\mathcal G}$ is

 $\llbracket \mathcal{G} \rrbracket := \{ \pi_U \mid U \subseteq \mathcal{G} \text{ full bisection} \},\$

where $\pi_U := t|_U \circ (d|_U)^{-1}$ from $d(U) = \mathcal{G}^{(0)}$ to $t(U) = \mathcal{G}^{(0)}$, which is a subgroup of Homeo $(\mathcal{G}^{(0)})$.

• **Theorem**. For a self-similar action (G, E) such that $\mathcal{G}(G, E)$ is effective, we have $V_E(G) \cong [\![\mathcal{G}(G, E)]\!]$. In particular, $V_E \cong [\![\mathcal{G}_E]\!] \subseteq [\![\mathcal{G}(G, E)]\!]$.

• A table $\begin{pmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_m \\ g_1 & g_2 & \cdots & g_m \\ \beta_1 & \beta_2 & \cdots & \beta_m \end{pmatrix}$ determines a full bisection $\bigsqcup_{i=1}^m Z(\alpha_i, g_i, \beta_i)$.

Topological full groups and the AH-conjecture

- The commutator subgroup of $\llbracket \mathcal{G} \rrbracket$ is denoted by $D(\llbracket \mathcal{G} \rrbracket)$ and the abelianization of $\llbracket \mathcal{G} \rrbracket$ is $\llbracket \mathcal{G} \rrbracket_{ab} = \llbracket \mathcal{G} \rrbracket / D(\llbracket \mathcal{G} \rrbracket)$.
- The AH-conjecture of Matui claims that for \mathcal{G} effective minimal étale with $\mathcal{G}^{(0)}$ the Cantor set, the following sequence is exact

$$H_0(\mathcal{G})\otimes \mathbb{Z}_2 \xrightarrow{j} \llbracket \mathcal{G} \rrbracket_{ab} \xrightarrow{I_{ab}} H_1(\mathcal{G}) \to 0.$$

- The map I_{ab} is induced by the index map $I : \llbracket \mathcal{G} \rrbracket \to H_1(\mathcal{G})$ given by $\pi_U \mapsto [\chi_U]$, where $\chi_U \in \ker \delta_1 = \ker(d_* t_*)$.
- The map *j* takes $[\chi_{d(U)}] \otimes \overline{1}$ into $[\pi_{\widehat{U}}]$, where $U \subseteq \mathcal{G}$ is a bisection with $d(U) \cap t(U) = \emptyset$ and $\pi_{\widehat{U}} \in \llbracket \mathcal{G} \rrbracket$ is the transposition corresponding to the full bisection

$$\hat{U} := U \sqcup U^{-1} \sqcup (\mathcal{G}^{(0)} \setminus (t(U) \cup d(U))).$$

- Matui proved that the AH-conjecture holds for the graph groupoid \mathcal{G}_E and for other groupoids.
- If *T*(*G*) denotes the subgroup of [[*G*]] generated by all transpositions, then *T*(*G*) ⊆ ker(*I*).
- We say that \mathcal{G} has property TR if $\mathcal{T}(\mathcal{G}) = \ker(I)$. In order to verify the AH-conjecture for \mathcal{G} , it suffices to establish property TR.
- The initial motivation was to check the AH-conjecture for $\mathcal{G}(G, E)$ in particular cases and to understand the index map $I : [\mathcal{G}(G, E)] \to H_1(\mathcal{G}(G, E))$.

Topological full groups and the AH-conjecture

- Using the new results of Xin Li, the AH-conjecture holds for all groupoids $\mathcal{G}(G, E)$, as long as they are purely infinite, minimal and ample. In particular, $\mathcal{G}(G, E)$ has the property TR.
- Example. The groupoid $\mathcal{G}(G, E)$ obtained from the self-similar action in the Example on page **??** has $H_1(\mathcal{G}(G, E)) \cong \mathbb{Z}$, so $I : [\mathcal{G}(G, E)] \to \mathbb{Z}$.

• Consider the *G*-table
$$\tau = \begin{pmatrix} u & v & e_4 & e_5 \\ a^{-1} & cb & cb & a \\ e_4 & e_5 & v & u \end{pmatrix}$$
 and the transpositions
 $\tau_1 = \begin{pmatrix} u & e_4 & e_5 & v \\ a^{-1} & a & v & v \\ e_4 & u & e_5 & v \end{pmatrix}, \tau_2 = \begin{pmatrix} v & e_5 & e_4 & u \\ cb & b^{-1}c^{-1} & v & u \\ e_5 & v & e_4 & u \end{pmatrix}$ and
 $\tau_3 = \begin{pmatrix} u & v & w \\ a^{-1}cb & b^{-1}c^{-1}a & w \\ v & u & w \end{pmatrix}.$

• A computation shows that

$$\tau_3 \tau_2 \tau_1 \tau = \begin{pmatrix} e_4 & e_5 & v & u \\ v & v & v & (a^{-1}cba)^2 \\ e_4 & e_5 & v & u \end{pmatrix},$$

which is not a product of transpositions, since $G_{\mu}^{u} \cong \mathbb{Z}$. In particular, τ is not in ker(I).

THANK YOU!

- M. Crainic and I. Moerdijk, A homology theory for étale groupoids, J. Reine Angew. Math. 521 (2000), 25–46.
- V. Deaconu, On groupoids and C*-algebras from self-similar actions, New York J. of Math. 27 (2021), 923–942.
- R. Exel, E. Pardo, Self-Similar graphs: a unified treatment of Katsura and Nekrashevych algebras, Adv. Math. 306 (2017), 1046–1129.
- C. Farsi, A. Kumjian, D. Pask and A. Sims, Ample groupoids: equivalence, homology, and Matui's HK conjecture, Münster J. Math. 12 (2019), no. 2, 411–451.
- M. Laca, I. Raeburn, J. Ramagge, M. F. Whittaker, Equilibrium states on operator algebras associated to self-similar actions of groupoids on graphs, Adv. Math. 331 (2018), 268–325.
- K. Juschenko, N. Monod, Cantor systems, piecewise translations and simple amenable groups, Ann. of Math. (2) 178 (2013), no. 2, 775–787.
- X. Li, Ample groupoids, topological full groups, algebraic K-theory spectra and infinite loop spaces, arXiv: 2209.08087v1 [math. GR].
- K. Matsumoto, H. Matui, *Full groups of Cuntz-Krieger algebras and Higman-Thompson groups*. Groups Geom. Dyn. 11 (2017), no. 2, 499–531.
- H. Matui, Homology and topological full groups of étale groupoids on totally disconnected spaces, Proc. London Math. Soc. (3) 104 (2012), 27–56.
- H. Matui, *Topological full groups of étale groupoids*, Operator algebras and applications-the Abel Symposium 2015, 203–230, Springer 2017.
- V. Nekrashevych, C*-algebras and self-similar groups, J. Reine Angew. Math. 630 (2009) 59–123.
- P. Nyland, E. Ortega, Katsura-Exel-Pardo groupoids and the AH conjecture, J. London Math. Soc. (2) 104 (2021) 2240–2259.

• Given a self-similar action (G, E), there is a cocycle

$$\rho: \mathcal{G}(G, E) \to \mathbb{Z}, \ \rho([\alpha, g, \beta; \xi]) = |\alpha| - |\beta|$$

with kernel

$$\mathcal{N}(G, E) = \bigcup_{k \ge 1} \mathcal{N}_k(G, E)$$
, where

 $\mathcal{N}_{k}(G, E) = \{ [\alpha, g, \beta; \xi] \in \mathcal{G}(G, E) : |\alpha| = |\beta| = k \} \cong (E^{\infty} \rtimes G) \times R_{k},$

and R_k is an equivalence relation on E^k .

- There is a homomorphism $\tau_k : \mathcal{N}_k(G, E) \to G, [\alpha, g, \beta; \xi] \mapsto g$ with kernel $E^{\infty} \times R_k$.
- Since N(G, E) is equivalent to the skew product G(G, E) ×_ρ Z, we have an exact sequence

$$0 \longleftarrow H_0(\mathcal{G}(G, E)) \longleftarrow H_0(\mathcal{N}(G, E)) \stackrel{id-\rho_*}{\longleftarrow} H_0(\mathcal{N}(G, E)) \longleftarrow H_1(\mathcal{G}(G, E))$$

$$\uparrow$$

$$\cdots \longrightarrow H_2(\mathcal{N}(G,E)) \longrightarrow H_2(\mathcal{G}(G,E)) \longrightarrow H_1(\mathcal{N}(G,E)) \stackrel{id-\rho_*}{\longrightarrow} H_1(\mathcal{N}(G,E))$$

where ρ_* is the map induced by the action $\hat{\rho} : \mathbb{Z} \curvearrowright \mathcal{G}(G, E) \times_{\rho} \mathbb{Z}$ which takes (γ, n) into $(\gamma, n + 1)$.

• This allows to compute $H_*(\mathcal{G}(G, E))$ in some cases and to compare it with $K_*(C^*(G, E))$.