Noncommutative Choquet theory and noncommutative majorization

Matthew Kennedy
University of Waterloo, Waterloo, Canada

May 22, 2023

What is Choquet theory?

My answer: Choquet theory is (commutative) operator space theory from the dual perspective. Specifically, utilizing the duality between compact convex sets and function systems.

What is Choquet theory?

My answer: Choquet theory is (commutative) operator space theory from the dual perspective. Specifically, utilizing the duality between compact convex sets and function systems.

A function system is an operator system that embeds into a commutative C^{*}-algebra (i.e. $1 \in F=F^{*} \subseteq \mathrm{C}(X)$ for compact X).

What is Choquet theory?

My answer: Choquet theory is (commutative) operator space theory from the dual perspective. Specifically, utilizing the duality between compact convex sets and function systems.

A function system is an operator system that embeds into a commutative C^{*}-algebra (i.e. $1 \in F=F^{*} \subseteq \mathrm{C}(X)$ for compact X).

Theorem (Kadison 1951)

A function system F is unitally order isomorphic to the function system $\mathrm{A}(C)$ of continuous affine functions on its state space $C=S(F)$

$$
F \rightarrow \mathrm{~A}(C): f \rightarrow \hat{f} \quad \text { where } \quad \hat{f}(x)=x(f) \text { for } x \in C
$$

Hence the category of function systems with unital order homomorphisms is dual to the category of compact convex sets with continuous affine maps.

What is Choquet theory?

My answer: Choquet theory is (commutative) operator space theory from the dual perspective. Specifically, utilizing the duality between compact convex sets and function systems.

A function system is an operator system that embeds into a commutative C^{*}-algebra (i.e. $1 \in F=F^{*} \subseteq \mathrm{C}(X)$ for compact X).

Theorem (Kadison 1951)

A function system F is unitally order isomorphic to the function system $\mathrm{A}(C)$ of continuous affine functions on its state space $C=S(F)$

$$
F \rightarrow \mathrm{~A}(C): f \rightarrow \hat{f} \quad \text { where } \hat{f}(x)=x(f) \quad \text { for } \quad x \in C
$$

Hence the category of function systems with unital order homomorphisms is dual to the category of compact convex sets with continuous affine maps.

The convex structure of C reveals itself in the interplay between the function system $\mathrm{A}(C)$ and the convex functions in $C(C)$: if $f \in \mathrm{C}(C)$ is convex, then $f(x)=\sup \{a(x): a \in A(C), a \leq f\}$.

Choquet order

Let C be a compact convex set. A probability measure $\mu \in \operatorname{Prob}(C)$ represents $x \in C$ or has barycenter x if $\left.\mu\right|_{\mathrm{A}(C)}=x$.

Choquet order

Let C be a compact convex set. A probability measure $\mu \in \operatorname{Prob}(C)$ represents $x \in C$ or has barycenter x if $\left.\mu\right|_{\mathrm{A}(C)}=x$.

Every $x \in C$ has at least one representing measure, namely δ_{x}. This is the only representing measure for x iff $x \in \partial C$.

Choquet order

Let C be a compact convex set. A probability measure $\mu \in \operatorname{Prob}(C)$ represents $x \in C$ or has barycenter x if $\left.\mu\right|_{\mathrm{A}(C)}=x$.

Every $x \in C$ has at least one representing measure, namely δ_{x}. This is the only representing measure for x iff $x \in \partial C$.

Definition

The Choquet order on $\operatorname{Prob}(C)$ is the partial order defined by

$$
\mu \prec \nu \quad \text { if } \quad \mu(f) \leq \nu(f) \quad \text { for all convex } f \in \mathrm{C}(C)
$$

Choquet order

Let C be a compact convex set. A probability measure $\mu \in \operatorname{Prob}(C)$ represents $x \in C$ or has barycenter x if $\left.\mu\right|_{\mathrm{A}(C)}=x$.

Every $x \in C$ has at least one representing measure, namely δ_{x}. This is the only representing measure for x iff $x \in \partial C$.

Definition

The Choquet order on $\operatorname{Prob}(C)$ is the partial order defined by

$$
\mu \prec \nu \quad \text { if } \quad \mu(f) \leq \nu(f) \quad \text { for all convex } f \in \mathrm{C}(C) .
$$

Intuition: $\mu \prec \nu$ means that the support of ν is closer to the extreme boundary ∂K than the support of μ.

Choquet order

Let C be a compact convex set. A probability measure $\mu \in \operatorname{Prob}(C)$ represents $x \in C$ or has barycenter x if $\left.\mu\right|_{\mathrm{A}(C)}=x$.

Every $x \in C$ has at least one representing measure, namely δ_{x}. This is the only representing measure for x iff $x \in \partial C$.

Definition

The Choquet order on $\operatorname{Prob}(C)$ is the partial order defined by

$$
\mu \prec \nu \quad \text { if } \quad \mu(f) \leq \nu(f) \quad \text { for all convex } f \in \mathrm{C}(C) .
$$

Intuition: $\mu \prec \nu$ means that the support of ν is closer to the extreme boundary ∂K than the support of μ.

For $x \in C$, the set $\left\{\mu \in \operatorname{Prob}(C):\left.\mu\right|_{\mathrm{A}(C)}=x\right\}$ has a unique minimal element δ_{x}. By Zorn, it always contains at least one maximal element.

Choquet order

Let C be a compact convex set. A probability measure $\mu \in \operatorname{Prob}(C)$ represents $x \in C$ or has barycenter x if $\left.\mu\right|_{\mathrm{A}(C)}=x$.

Every $x \in C$ has at least one representing measure, namely δ_{x}. This is the only representing measure for x iff $x \in \partial C$.

Definition

The Choquet order on $\operatorname{Prob}(C)$ is the partial order defined by

$$
\mu \prec \nu \quad \text { if } \quad \mu(f) \leq \nu(f) \quad \text { for all convex } f \in \mathrm{C}(C) .
$$

Intuition: $\mu \prec \nu$ means that the support of ν is closer to the extreme boundary ∂K than the support of μ.

For $x \in C$, the set $\left\{\mu \in \operatorname{Prob}(C):\left.\mu\right|_{\mathrm{A}(C)}=x\right\}$ has a unique minimal element δ_{x}. By Zorn, it always contains at least one maximal element.

Theorem (Choquet 1956, Bishop - de Leeuw 1959)

A probability measure $\mu \in \operatorname{Prob}(C)$ is maximal if and only if it is supported on the extreme boundary $\partial \mathrm{C}$. Hence every point in C has a representing measure supported on ∂C.

Choquet order

Let C be a compact convex set. A probability measure $\mu \in \operatorname{Prob}(C)$ represents $x \in C$ or has barycenter x if $\left.\mu\right|_{\mathrm{A}(C)}=x$.

Every $x \in C$ has at least one representing measure, namely δ_{x}. This is the only representing measure for x iff $x \in \partial C$.

Definition

The Choquet order on $\operatorname{Prob}(C)$ is the partial order defined by

$$
\mu \prec \nu \quad \text { if } \quad \mu(f) \leq \nu(f) \quad \text { for all convex } f \in \mathrm{C}(C) .
$$

Intuition: $\mu \prec \nu$ means that the support of ν is closer to the extreme boundary ∂K than the support of μ.

For $x \in C$, the set $\left\{\mu \in \operatorname{Prob}(C):\left.\mu\right|_{\mathrm{A}(C)}=x\right\}$ has a unique minimal element δ_{x}. By Zorn, it always contains at least one maximal element.

Theorem (Choquet 1956, Bishop - de Leeuw 1959)

A probability measure $\mu \in \operatorname{Prob}(C)$ is maximal if and only if it is supported on the extreme boundary $\partial \mathrm{C}$. Hence every point in C has a representing measure supported on ∂C.

Note: In finite dimensions, this is Carathéodory's theorem.

Simplices

Definition

A compact convex set C is a simplex iff every point in C has a unique maximal representing measure.

Simplices

Definition

A compact convex set C is a simplex iff every point in C has a unique maximal representing measure.

Examples:
$1 . n$-simplices in \mathbb{R}^{n}.

Simplices

Definition

A compact convex set C is a simplex iff every point in C has a unique maximal representing measure.

Examples:

1. n-simplices in \mathbb{R}^{n}.
2. State spaces of commutative C^{*}-algebras, i.e. Bauer simplices. A simplex C is Bauer iff ∂C is closed (Bauer 1963).

Simplices

Definition

A compact convex set C is a simplex iff every point in C has a unique maximal representing measure.

Examples:

1. n-simplices in \mathbb{R}^{n}.
2. State spaces of commutative C^{*}-algebras, i.e. Bauer simplices. A simplex C is Bauer iff ∂C is closed (Bauer 1963).
3. The Poulsen simplex. Unique metrizable simplex P with ∂P dense in P (Lindenstrauss-Olsen-Sternfeld 1978).

Simplices

Definition

A compact convex set C is a simplex iff every point in C has a unique maximal representing measure.

Examples:

1. n-simplices in \mathbb{R}^{n}.
2. State spaces of commutative C^{*}-algebras, i.e. Bauer simplices. A simplex C is Bauer iff ∂C is closed (Bauer 1963).
3. The Poulsen simplex. Unique metrizable simplex P with ∂P dense in P (Lindenstrauss-Olsen-Sternfeld 1978).
4. Invariant probability measures $\operatorname{Prob}(X)^{G}$ on a compact G-space X.

Two applications of simplices

Theorem (Namioka-Phelps 1969)

A compact convex set C is a simplex iff $\mathrm{A}(\mathrm{C})$ is nuclear.
is evident that $S^{\wedge} \subset S$, and the following theorem gives conditions under which $S^{\wedge}=S$. The validity of " (c) implies (a)" was suggested to us by E. Effiros.

Theorem 1.4. Let S_{1} be the state space of $\left(E_{1}, P_{1}, u_{1}\right)$; then the following assertions are equivalent
(a) S_{1} is a simplex.
(b) S_{1} is simplex-like.
(c) For any partially ordered linear space with order unit (E_{2}, P_{2}, u_{2}), the two state spaces resulting from the two orderings on $E_{1} \otimes E_{2}$ coincide.

Two applications of simplices

Theorem (Namioka-Phelps 1969)

A compact convex set C is a simplex iff $\mathrm{A}(\mathrm{C})$ is nuclear.

```
is evident that \(S^{\wedge} \subset S\), and the following theorem gives conditions
under which \(S^{\wedge}=S\). The validity of " (c) implies (a)" was suggested
to us by E. Effiros.
Theorem 1.4. Let \(S_{1}\) be the state space of \(\left(E_{1}, P_{1}, u_{1}\right)\); then the following assertions are equivalent
(a) \(S_{1}\) is a simplex.
(b) \(S_{1}\) is simplex-like.
(c) For any partially ordered linear space with order unit ( \(E_{2}, P_{2}, u_{2}\) ), the two state spaces resulting from the two orderings on \(E_{1} \otimes E_{2}\) coincide.
```


Theorem (Glasner-Weiss 1997)

A locally compact group G has property (T) iff $\operatorname{Prob}(X)^{G}$ is a Bauer simplex for every compact G-space X.

Some history of noncommutative convexity

(Arveson 1969): Considers operator systems as noncommutative analogues of function systems. Establishes injectivity of $\mathcal{B}(H)$ and conjectures existence of noncommutative analogues of Choquet boundary and Shilov boundary for an operator system.

Some history of noncommutative convexity

(Arveson 1969): Considers operator systems as noncommutative analogues of function systems. Establishes injectivity of $\mathcal{B}(H)$ and conjectures existence of noncommutative analogues of Choquet boundary and Shilov boundary for an operator system.
(Hamana 1979): Establishes existence of Shilov boundary (C*-envelope) of an operator system.

Some history of noncommutative convexity

(Arveson 1969): Considers operator systems as noncommutative analogues of function systems. Establishes injectivity of $\mathcal{B}(H)$ and conjectures existence of noncommutative analogues of Choquet boundary and Shilov boundary for an operator system.
(Hamana 1979): Establishes existence of Shilov boundary (C*-envelope) of an operator system.
(Wittstock 1981): Introduces notion of matrix convex set.

Some history of noncommutative convexity

(Arveson 1969): Considers operator systems as noncommutative analogues of function systems. Establishes injectivity of $\mathcal{B}(H)$ and conjectures existence of noncommutative analogues of Choquet boundary and Shilov boundary for an operator system.
(Hamana 1979): Establishes existence of Shilov boundary (C*-envelope) of an operator system.
(Wittstock 1981): Introduces notion of matrix convex set.
(Effros-Winkler 1997): Establishes analogue of Hahn-Banach separation theorem for matrix convex sets.

Some history of noncommutative convexity

(Arveson 1969): Considers operator systems as noncommutative analogues of function systems. Establishes injectivity of $\mathcal{B}(H)$ and conjectures existence of noncommutative analogues of Choquet boundary and Shilov boundary for an operator system.
(Hamana 1979): Establishes existence of Shilov boundary (C*-envelope) of an operator system.
(Wittstock 1981): Introduces notion of matrix convex set.
(Effros-Winkler 1997): Establishes analogue of Hahn-Banach separation theorem for matrix convex sets.
(Webster-Winkler 1999): Establishes dual equivalence between category of unital operator systems and category of matrix convex sets.

Some history of noncommutative convexity

(Arveson 1969): Considers operator systems as noncommutative analogues of function systems. Establishes injectivity of $\mathcal{B}(H)$ and conjectures existence of noncommutative analogues of Choquet boundary and Shilov boundary for an operator system.
(Hamana 1979): Establishes existence of Shilov boundary (C*-envelope) of an operator system.
(Wittstock 1981): Introduces notion of matrix convex set.
(Effros-Winkler 1997): Establishes analogue of Hahn-Banach separation theorem for matrix convex sets.
(Webster-Winkler 1999): Establishes dual equivalence between category of unital operator systems and category of matrix convex sets.
(Arveson 2007, Davidson-K 2015): Establishes existence of Choquet boundary of an operator system.

Some history of noncommutative convexity

(Arveson 1969): Considers operator systems as noncommutative analogues of function systems. Establishes injectivity of $\mathcal{B}(H)$ and conjectures existence of noncommutative analogues of Choquet boundary and Shilov boundary for an operator system.
(Hamana 1979): Establishes existence of Shilov boundary (C*-envelope) of an operator system.
(Wittstock 1981): Introduces notion of matrix convex set.
(Effros-Winkler 1997): Establishes analogue of Hahn-Banach separation theorem for matrix convex sets.
(Webster-Winkler 1999): Establishes dual equivalence between category of unital operator systems and category of matrix convex sets.
(Arveson 2007, Davidson-K 2015): Establishes existence of Choquet boundary of an operator system.

Note: missing numerous developments in operator spaces/systems (e.g. Choi-Effros, Effros-Ruan), matrix convexity and real algebraic geometry.

Two missing pieces in operator space theory

Geometric side

 Missing a good notion of extreme point for a matrix convex set, corresponding Krein-Milman-type theorem, etc.
Two missing pieces in operator space theory

Geometric side

Missing a good notion of extreme point for a matrix convex set, corresponding Krein-Milman-type theorem, etc.

Operator algebraic side Missing a theory of nc continuous functions, convex nc functions, nc measures, etc. Analogy with Taylor-Voiculescu theory of nc analytic functions.

Two missing pieces in operator space theory

Geometric side

Missing a good notion of extreme point for a matrix convex set, corresponding Krein-Milman-type theorem, etc.

Operator algebraic side Missing a theory of nc continuous functions, convex nc functions, nc measures, etc. Analogy with Taylor-Voiculescu theory of nc analytic functions.

Classical notions are essential to fully develop the classical theory. In my view, operator space theory is incomplete without these.

Noncommutative convexity

Definition (DK2019)

A compact nc convex set over a dual operator space E is a graded set $K=\coprod_{n \leq \kappa} K_{n}$ with $K_{n} \subseteq M_{n}(E)$ such that each K_{n} is compact in the dual topology on $M_{n}(E)$ and K is closed under nc convex combinations:

$$
\sum \alpha_{i}^{*} x_{i} \alpha_{i} \in K_{n}
$$

for $x_{i} \in K_{n_{i}}$ and $\alpha_{i} \in M_{n, n_{i}}$ satisfying $\sum \alpha_{i}^{*} \alpha_{i}=1_{n}$.

Noncommutative convexity

Definition (DK2019)

A compact nc convex set over a dual operator space E is a graded set $K=\coprod_{n \leq \kappa} K_{n}$ with $K_{n} \subseteq M_{n}(E)$ such that each K_{n} is compact in the dual topology on $M_{n}(E)$ and K is closed under nc convex combinations:

$$
\sum \alpha_{i}^{*} x_{i} \alpha_{i} \in K_{n}
$$

for $x_{i} \in K_{n_{i}}$ and $\alpha_{i} \in M_{n, n_{i}}$ satisfying $\sum \alpha_{i}^{*} \alpha_{i}=1_{n}$.
Here, κ is a suitably large infinite cardinal and $M_{n} \cong \mathcal{B}(H)$ for $\operatorname{dim} H=n$. Refines notion of matrix convex set, where $n<\infty$. Subtle but crucial difference.

Noncommutative convexity

Definition (DK2019)

A compact nc convex set over a dual operator space E is a graded set $K=\coprod_{n \leq \kappa} K_{n}$ with $K_{n} \subseteq M_{n}(E)$ such that each K_{n} is compact in the dual topology on $M_{n}(E)$ and K is closed under nc convex combinations:

$$
\sum \alpha_{i}^{*} x_{i} \alpha_{i} \in K_{n}
$$

for $x_{i} \in K_{n_{i}}$ and $\alpha_{i} \in M_{n, n_{i}}$ satisfying $\sum \alpha_{i}^{*} \alpha_{i}=1_{n}$.
Here, κ is a suitably large infinite cardinal and $M_{n} \cong \mathcal{B}(H)$ for $\operatorname{dim} H=n$. Refines notion of matrix convex set, where $n<\infty$. Subtle but crucial difference.

Key example: Let S be an operator system. The nc state space of S is

$$
K=\sqcup_{n \leq \kappa} K_{n}, \quad \text { where } \quad K_{n}=\left\{x: A \rightarrow M_{n} \text { ucp }\right\}
$$

Noncommutative convexity

Definition (DK2019)

A compact nc convex set over a dual operator space E is a graded set $K=\coprod_{n \leq \kappa} K_{n}$ with $K_{n} \subseteq M_{n}(E)$ such that each K_{n} is compact in the dual topology on $M_{n}(E)$ and K is closed under nc convex combinations:

$$
\sum \alpha_{i}^{*} x_{i} \alpha_{i} \in K_{n}
$$

for $x_{i} \in K_{n_{i}}$ and $\alpha_{i} \in M_{n, n_{i}}$ satisfying $\sum \alpha_{i}^{*} \alpha_{i}=1_{n}$.
Here, κ is a suitably large infinite cardinal and $M_{n} \cong \mathcal{B}(H)$ for $\operatorname{dim} H=n$. Refines notion of matrix convex set, where $n<\infty$. Subtle but crucial difference.

Key example: Let S be an operator system. The nc state space of S is

$$
K=\sqcup_{n \leq \kappa} K_{n}, \quad \text { where } \quad K_{n}=\left\{x: A \rightarrow M_{n} \text { ucp }\right\}
$$

Theorem (Arveson 2007, DK 2015)

A compact nc convex set is the closed convex hull of its extreme points.
The extreme boundary ∂K can be identified with an (often very complicated) subset of the irreducible representations of $\mathrm{C}^{*}(\mathrm{~A}(K))$. So necessary to allow $n=\infty$.

Noncommutative functions

Definition (DK2019)

Let K be a compact nc convex set. A function $f: K \rightarrow \coprod M_{n}$ is an nc function if it is graded, respects direct sums and is equivariant with respect to unitaries:

1. $f\left(K_{n}\right) \subseteq M_{n}$ for all n
2. $f\left(\oplus x_{i}\right)=\oplus f\left(x_{i}\right)$ for all $x_{i} \in K_{n_{i}}$
3. $f\left(\alpha^{*} x \alpha\right)=\alpha^{*} f(x) \alpha$ for all $x \in K_{n}$ and unitaries $\alpha \in M_{n}$

The function f is affine if in addition it is equivariant with respect to isometries:
3'. $f\left(\beta^{*} x \beta\right)=\beta^{*} f(x) \beta$ for all $x \in K_{n}$ and isometries $\alpha \in M_{n, m}$

Noncommutative functions

Definition (DK2019)

Let K be a compact nc convex set. A function $f: K \rightarrow \amalg M_{n}$ is an nc function if it is graded, respects direct sums and is equivariant with respect to unitaries:

1. $f\left(K_{n}\right) \subseteq M_{n}$ for all n
2. $f\left(\oplus x_{i}\right)=\oplus f\left(x_{i}\right)$ for all $x_{i} \in K_{n_{i}}$
3. $f\left(\alpha^{*} x \alpha\right)=\alpha^{*} f(x) \alpha$ for all $x \in K_{n}$ and unitaries $\alpha \in M_{n}$

The function f is affine if in addition it is equivariant with respect to isometries:
3'. $f\left(\beta^{*} x \beta\right)=\beta^{*} f(x) \beta$ for all $x \in K_{n}$ and isometries $\alpha \in M_{n, m}$
Analogous to notion of nc holomorphic function on nc domain defined by Taylor (1973) and Voiculescu (2000).

Noncommutative functions

Definition (DK2019)

Let K be a compact nc convex set. A function $f: K \rightarrow \coprod M_{n}$ is an nc function if it is graded, respects direct sums and is equivariant with respect to unitaries:

1. $f\left(K_{n}\right) \subseteq M_{n}$ for all n
2. $f\left(\oplus x_{i}\right)=\oplus f\left(x_{i}\right)$ for all $x_{i} \in K_{n_{i}}$
3. $f\left(\alpha^{*} x \alpha\right)=\alpha^{*} f(x) \alpha$ for all $x \in K_{n}$ and unitaries $\alpha \in M_{n}$

The function f is affine if in addition it is equivariant with respect to isometries:
3'. $f\left(\beta^{*} x \beta\right)=\beta^{*} f(x) \beta$ for all $x \in K_{n}$ and isometries $\alpha \in M_{n, m}$
Analogous to notion of nc holomorphic function on nc domain defined by Taylor (1973) and Voiculescu (2000).

We write $\mathrm{C}(K)$ for the C^{*}-algebra of continuous nc functions on $K, \mathrm{~A}(K)$ for the unital operator system of continuous affine nc functions on K. Elements in $\mathrm{C}(K)$ are "uniform" limits of nc *-polynomials in $\mathrm{A}(K)$.

Noncommutative functions

Definition (DK2019)

Let K be a compact nc convex set. A function $f: K \rightarrow \amalg M_{n}$ is an nc function if it is graded, respects direct sums and is equivariant with respect to unitaries:

1. $f\left(K_{n}\right) \subseteq M_{n}$ for all n
2. $f\left(\oplus x_{i}\right)=\oplus f\left(x_{i}\right)$ for all $x_{i} \in K_{n_{i}}$
3. $f\left(\alpha^{*} x \alpha\right)=\alpha^{*} f(x) \alpha$ for all $x \in K_{n}$ and unitaries $\alpha \in M_{n}$

The function f is affine if in addition it is equivariant with respect to isometries:
3'. $f\left(\beta^{*} x \beta\right)=\beta^{*} f(x) \beta$ for all $x \in K_{n}$ and isometries $\alpha \in M_{n, m}$
Analogous to notion of nc holomorphic function on nc domain defined by Taylor (1973) and Voiculescu (2000).

We write $\mathrm{C}(K)$ for the C^{*}-algebra of continuous nc functions on $K, \mathrm{~A}(K)$ for the unital operator system of continuous affine nc functions on K. Elements in $\mathrm{C}(K)$ are "uniform" limits of $n c$ *-polynomials in $\mathrm{A}(K)$.

Note: Nonzero nc functions can be zero on K_{n} for $n<\infty$. Similarly, discontinuous nc functions can be continuous on K_{n} for $n<\infty$. More justification for $n=\infty$.

Noncommutative functions

Theorem (Webster-Winkler 1999, DK 2019)

An operator system S is unitally completely order isomorphic to the operator system $\mathrm{A}(K)$ of continuous nc affine functions on its nc state space $K=S_{n c}(S)$.

$$
S \rightarrow \mathrm{~A}(K): s \rightarrow \hat{s} \quad \text { where } \quad \hat{s}(x)=x(s) \quad \text { for } \quad x \in K .
$$

Hence the category of operator systems with unital complete order homomorphisms is dual to the category of compact nc convex sets with continuous nc affine maps.

Noncommutative functions

Theorem (Webster-Winkler 1999, DK 2019)

An operator system S is unitally completely order isomorphic to the operator system $\mathrm{A}(K)$ of continuous nc affine functions on its nc state space $K=S_{n c}(S)$.

$$
S \rightarrow \mathrm{~A}(K): s \rightarrow \hat{s} \quad \text { where } \quad \hat{s}(x)=x(s) \quad \text { for } \quad x \in K .
$$

Hence the category of operator systems with unital complete order homomorphisms is dual to the category of compact nc convex sets with continuous nc affine maps.

Theorem (DK 2019)

The C^{*}-algebra $C(K)$ coincides with the maximal/universal C^{*}-algebra of the operator system $\mathrm{A}(K)$. Its bidual $C(K)^{* *}$ is the C^{*}-algebra of bounded nc functions on K.

Noncommutative functions

Theorem (Webster-Winkler 1999, DK 2019)

An operator system S is unitally completely order isomorphic to the operator system $\mathrm{A}(K)$ of continuous nc affine functions on its nc state space $K=S_{n c}(S)$.

$$
S \rightarrow \mathrm{~A}(K): s \rightarrow \hat{s} \quad \text { where } \quad \hat{s}(x)=x(s) \quad \text { for } \quad x \in K
$$

Hence the category of operator systems with unital complete order homomorphisms is dual to the category of compact nc convex sets with continuous nc affine maps.

Theorem (DK 2019)

The C^{*}-algebra $C(K)$ coincides with the maximal/universal C^{*}-algebra of the operator system $\mathrm{A}(K)$. Its bidual $C(K)^{* *}$ is the C^{*}-algebra of bounded nc functions on K.

Can be viewed as very special case of the noncommutative Stone-Weierstrass problem. Proof uses noncommutative Gelfand representation theorem of Takesaki (1967) and Bichteler (1969).

Example: The Cuntz operator system

Let $S=\operatorname{span}\left\{1, v_{1}, v_{1}^{*}, \ldots, v_{d}, v_{d}^{*}\right\}$ be the operator system spanned by the canonical generators of the Cuntz algebra \mathcal{O}_{d}, i.e. $v_{i}^{*} v_{j}=\delta_{i j} 1$. Then $S \cong \mathrm{~A}(K)$, where $K=\sqcup_{n \leq \aleph_{0}}$ is the nc d-ball

$$
K_{n}=\left\{x=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in M_{n}^{d}:\left\|\left(\alpha_{1}, \ldots, \alpha_{d}\right)\right\| \leq 1\right\} .
$$

Example: The Cuntz operator system

Let $S=\operatorname{span}\left\{1, v_{1}, v_{1}^{*}, \ldots, v_{d}, v_{d}^{*}\right\}$ be the operator system spanned by the canonical generators of the Cuntz algebra \mathcal{O}_{d}, i.e. $v_{i}^{*} v_{j}=\delta_{i j} 1$. Then $S \cong \mathrm{~A}(K)$, where $K=\sqcup_{n \leq \aleph_{0}}$ is the nc d-ball

$$
K_{n}=\left\{x=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in M_{n}^{d}:\left\|\left(\alpha_{1}, \ldots, \alpha_{d}\right)\right\| \leq 1\right\} .
$$

The extreme boundary ∂K coincides with the set of irreducible representations of \mathcal{O}_{d}.

Example: The Cuntz operator system

Let $S=\operatorname{span}\left\{1, v_{1}, v_{1}^{*}, \ldots, v_{d}, v_{d}^{*}\right\}$ be the operator system spanned by the canonical generators of the Cuntz algebra \mathcal{O}_{d}, i.e. $v_{i}^{*} v_{j}=\delta_{i j} 1$. Then $S \cong \mathrm{~A}(K)$, where $K=\sqcup_{n \leq \aleph_{0}}$ is the nc d-ball

$$
K_{n}=\left\{x=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in M_{n}^{d}:\left\|\left(\alpha_{1}, \ldots, \alpha_{d}\right)\right\| \leq 1\right\}
$$

The extreme boundary ∂K coincides with the set of irreducible representations of \mathcal{O}_{d}.

The continuous nc function on K are uniform limits of ${ }^{*}$-polynomials in d-noncommuting variables, e.g. for $d=2$,

$$
p\left(z_{1}, z_{2}\right)=z_{1}^{3}+5 z_{2}-2 z_{1} z_{1}^{*}+z_{2} z_{2}^{*}+\left(z_{1} z_{2}-z_{2} z_{1}\right)^{*}\left(z_{1} z_{2}-z_{2} z_{1}\right)
$$

Example: The Cuntz operator system

Let $S=\operatorname{span}\left\{1, v_{1}, v_{1}^{*}, \ldots, v_{d}, v_{d}^{*}\right\}$ be the operator system spanned by the canonical generators of the Cuntz algebra \mathcal{O}_{d}, i.e. $v_{i}^{*} v_{j}=\delta_{i j} 1$. Then $S \cong \mathrm{~A}(K)$, where $K=\sqcup_{n \leq \aleph_{0}}$ is the nc d-ball

$$
K_{n}=\left\{x=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in M_{n}^{d}:\left\|\left(\alpha_{1}, \ldots, \alpha_{d}\right)\right\| \leq 1\right\}
$$

The extreme boundary ∂K coincides with the set of irreducible representations of \mathcal{O}_{d}.

The continuous nc function on K are uniform limits of ${ }^{*}$-polynomials in d-noncommuting variables, e.g. for $d=2$,

$$
p\left(z_{1}, z_{2}\right)=z_{1}^{3}+5 z_{2}-2 z_{1} z_{1}^{*}+z_{2} z_{2}^{*}+\left(z_{1} z_{2}-z_{2} z_{1}\right)^{*}\left(z_{1} z_{2}-z_{2} z_{1}\right)
$$

The uniform norm is

$$
\|p\|_{\infty}=\sup \{\|p(x)\|: x \in K\}
$$

Example: The Cuntz operator system

Let $S=\operatorname{span}\left\{1, v_{1}, v_{1}^{*}, \ldots, v_{d}, v_{d}^{*}\right\}$ be the operator system spanned by the canonical generators of the Cuntz algebra \mathcal{O}_{d}, i.e. $v_{i}^{*} v_{j}=\delta_{i j} 1$. Then $S \cong \mathrm{~A}(K)$, where $K=\sqcup_{n \leq \aleph_{0}}$ is the nc d-ball

$$
K_{n}=\left\{x=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in M_{n}^{d}:\left\|\left(\alpha_{1}, \ldots, \alpha_{d}\right)\right\| \leq 1\right\} .
$$

The extreme boundary ∂K coincides with the set of irreducible representations of \mathcal{O}_{d}.

The continuous nc function on K are uniform limits of ${ }^{*}$-polynomials in d-noncommuting variables, e.g. for $d=2$,

$$
p\left(z_{1}, z_{2}\right)=z_{1}^{3}+5 z_{2}-2 z_{1} z_{1}^{*}+z_{2} z_{2}^{*}+\left(z_{1} z_{2}-z_{2} z_{1}\right)^{*}\left(z_{1} z_{2}-z_{2} z_{1}\right) .
$$

The uniform norm is

$$
\|p\|_{\infty}=\sup \{\|p(x)\|: x \in K\} .
$$

Note: the operator system spanned by freely independent semicirculars provides a (very interesting) example with ∂K a complicated subset of the irreducible representations of the C^{*}-algebra it generates.

NC convex functions

Definition

A self-adjoint-valued nc function $f \in C(K)$ is convex if its epigraph

$$
\operatorname{Epi}(f)=\coprod_{n}\{(x, \alpha): f(x) \leq \alpha\} \subseteq \coprod_{n} K_{n} \times M_{n}
$$

is an nc convex set.

NC convex functions

Definition

A self-adjoint-valued nc function $f \in C(K)$ is convex if its epigraph

$$
\operatorname{Epi}(f)=\coprod_{n}\{(x, \alpha): f(x) \leq \alpha\} \subseteq \coprod_{n} K_{n} \times M_{n}
$$

is an nc convex set.
Equivalent to $f\left(\alpha^{*} x \alpha\right) \leq \alpha^{*} f(x) \alpha$ for all $x \in K$ and all isometries α.

NC convex functions

Definition

A self-adjoint-valued nc function $f \in C(K)$ is convex if its epigraph

$$
\operatorname{Epi}(f)=\coprod_{n}\{(x, \alpha): f(x) \leq \alpha\} \subseteq \coprod_{n} K_{n} \times M_{n}
$$

is an nc convex set.
Equivalent to $f\left(\alpha^{*} x \alpha\right) \leq \alpha^{*} f(x) \alpha$ for all $x \in K$ and all isometries α.

Example

Let $I \subseteq \mathbb{R}$ be a compact interval. Define $K=\amalg K_{n}$ by

$$
K_{n}=\left\{\alpha \in\left(M_{n}\right)_{s a}: \sigma(\alpha) \subseteq I\right\} .
$$

Then K is a compact nc convex set with $K_{1}=I$. A self-adjoint function $f \in C(K)$ is convex as an nc function iff the restriction $\left.f\right|_{K_{1}}$ is operator convex, i.e.

$$
f(t \alpha+(1-t) \beta) \leq t f(\alpha)+(1-t) f(\beta)
$$

for $t \in[0,1]$ and self-adjoint $\alpha, \beta \in M_{n}$ with $\sigma(\alpha), \sigma(\beta) \subseteq I$.

NC convex functions

Definition

A self-adjoint-valued nc function $f \in C(K)$ is convex if its epigraph

$$
\operatorname{Epi}(f)=\coprod_{n}\{(x, \alpha): f(x) \leq \alpha\} \subseteq \coprod_{n} K_{n} \times M_{n}
$$

is an nc convex set.
Equivalent to $f\left(\alpha^{*} x \alpha\right) \leq \alpha^{*} f(x) \alpha$ for all $x \in K$ and all isometries α.

Example

Let $I \subseteq \mathbb{R}$ be a compact interval. Define $K=\amalg K_{n}$ by

$$
K_{n}=\left\{\alpha \in\left(M_{n}\right)_{s a}: \sigma(\alpha) \subseteq I\right\} .
$$

Then K is a compact nc convex set with $K_{1}=I$. A self-adjoint function $f \in C(K)$ is convex as an nc function iff the restriction $\left.f\right|_{K_{1}}$ is operator convex, i.e.

$$
f(t \alpha+(1-t) \beta) \leq t f(\alpha)+(1-t) f(\beta)
$$

for $t \in[0,1]$ and self-adjoint $\alpha, \beta \in M_{n}$ with $\sigma(\alpha), \sigma(\beta) \subseteq I$.
Essentially the Hansen-Pedersen-Jensen inequality for operator convex functions.

Noncommutative Choquet order

Let K be a compact nc convex set. An nc state $\mu: C(K) \rightarrow M_{n}$ represents $x \in K$ or has barycenter x if $\left.\mu\right|_{\mathbf{A}(K)}=\delta_{x}$.

Noncommutative Choquet order

Let K be a compact nc convex set. An nc state $\mu: C(K) \rightarrow M_{n}$ represents $x \in K$ or has barycenter x if $\left.\mu\right|_{\mathbf{A}(K)}=\delta_{x}$.

Every $x \in K$ has at least one representing nc state, namely δ_{x}. This is the only representing nc state for x iff $x \in \partial K$.

Noncommutative Choquet order

Let K be a compact nc convex set. An nc state $\mu: C(K) \rightarrow M_{n}$ represents $x \in K$ or has barycenter x if $\left.\mu\right|_{\mathbf{A}(K)}=\delta_{x}$.

Every $x \in K$ has at least one representing nc state, namely δ_{x}. This is the only representing nc state for x iff $x \in \partial K$.

Definition

The nc Choquet order on $S_{n c}(C(K))$ is defined by

$$
\mu \prec \nu \quad \text { if } \quad \mu(f) \leq \nu(f) \quad \text { for all convex } f \in C(K)
$$

Intuition: $\mu \prec \nu$ means that the support of ν is closer to the extreme boundary ∂K than the support of μ.

Noncommutative Choquet order

Let K be a compact nc convex set. An nc state $\mu: C(K) \rightarrow M_{n}$ represents $x \in K$ or has barycenter x if $\left.\mu\right|_{\mathbf{A}(K)}=\delta_{x}$.

Every $x \in K$ has at least one representing nc state, namely δ_{x}. This is the only representing nc state for x iff $x \in \partial K$.

Definition

The nc Choquet order on $S_{n c}(C(K))$ is defined by

$$
\mu \prec \nu \quad \text { if } \quad \mu(f) \leq \nu(f) \quad \text { for all convex } f \in C(K)
$$

Intuition: $\mu \prec \nu$ means that the support of ν is closer to the extreme boundary ∂K than the support of μ.

For $x \in K$, the set $\left\{\mu \in S_{n c}(C(K)):\left.\mu\right|_{\mathrm{A}(K)}=x\right\}$ has a unique minimal element δ_{x}. By Zorn, it always contains at least one maximal element.

Noncommutative Choquet order

Let K be a compact nc convex set. An nc state $\mu: C(K) \rightarrow M_{n}$ represents $x \in K$ or has barycenter x if $\left.\mu\right|_{\mathbf{A}(K)}=\delta_{x}$.

Every $x \in K$ has at least one representing nc state, namely δ_{x}. This is the only representing nc state for x iff $x \in \partial K$.

Definition

The nc Choquet order on $S_{n c}(C(K))$ is defined by

$$
\mu \prec \nu \quad \text { if } \quad \mu(f) \leq \nu(f) \quad \text { for all convex } f \in C(K)
$$

Intuition: $\mu \prec \nu$ means that the support of ν is closer to the extreme boundary ∂K than the support of μ.

For $x \in K$, the set $\left\{\mu \in S_{n c}(C(K)):\left.\mu\right|_{\mathrm{A}(K)}=x\right\}$ has a unique minimal element δ_{x}. By Zorn, it always contains at least one maximal element.

Theorem (NC Choquet-Bishop-de Leeuw - DK 2019)

An nc state $\mu \in S_{n c}(C(K))$ is maximal iff it is supported on the extreme boundary ∂K in a certain precise sense. Hence every point in K has a representing nc state supported on ∂K.

Noncommutative simplices

Definition (K-Shamovich 2021)

A compact nc convex set K is an nc simplex if each point $x \in K$ has a unique maximal representing nc state.

Noncommutative simplices

Definition (K-Shamovich 2021)

A compact nc convex set K is an nc simplex if each point $x \in K$ has a unique maximal representing nc state.

Examples:

1. Classical simplices (if K_{1} is a simplex, then K is uniquely determined and is an nc simplex).

Noncommutative simplices

Definition (K-Shamovich 2021)

A compact nc convex set K is an nc simplex if each point $x \in K$ has a unique maximal representing nc state.

Examples:

1. Classical simplices (if K_{1} is a simplex, then K is uniquely determined and is an nc simplex).
2. NC state spaces of C^{*}-algebras. An nc simplex K is Bauer if ∂C is closed. A compact nc convex set is the nc state space of a C*-algebra iff it is an nc Bauer simplex (KS 2021).

Noncommutative simplices

Definition (K-Shamovich 2021)

A compact nc convex set K is an nc simplex if each point $x \in K$ has a unique maximal representing nc state.

Examples:

1. Classical simplices (if K_{1} is a simplex, then K is uniquely determined and is an nc simplex).
2. NC state spaces of C^{*}-algebras. An nc simplex K is Bauer if ∂C is closed. A compact nc convex set is the nc state space of a C*-algebra iff it is an nc Bauer simplex (KS 2021).
3. The nc Poulsen simplex (nc state space of an operator system constructed by Kirchberg-Wasserman).

Noncommutative simplices

Definition (K-Shamovich 2021)

A compact nc convex set K is an nc simplex if each point $x \in K$ has a unique maximal representing nc state.

Examples:

1. Classical simplices (if K_{1} is a simplex, then K is uniquely determined and is an nc simplex).
2. NC state spaces of C^{*}-algebras. An nc simplex K is Bauer if ∂C is closed. A compact nc convex set is the nc state space of a C*-algebra iff it is an nc Bauer simplex (KS 2021).
3. The nc Poulsen simplex (nc state space of an operator system constructed by Kirchberg-Wasserman).
4. Invariant nc states $S_{n c}(A)^{G}$ on a G-C*-algebra A (KS 2021).

Noncommutative simplices

Definition (K-Shamovich 2021)

A compact nc convex set K is an nc simplex if each point $x \in K$ has a unique maximal representing nc state.

Examples:

1. Classical simplices (if K_{1} is a simplex, then K is uniquely determined and is an nc simplex).
2. NC state spaces of C^{*}-algebras. An nc simplex K is Bauer if ∂C is closed. A compact nc convex set is the nc state space of a C*-algebra iff it is an nc Bauer simplex (KS 2021).
3. The nc Poulsen simplex (nc state space of an operator system constructed by Kirchberg-Wasserman).
4. Invariant nc states $S_{n c}(A)^{G}$ on a G - C^{*}-algebra A (KS 2021).
5. K is an nc simplex iff $A(K)^{* *}$ is a von Neumann algebra (KS 2021), e.g. if $\mathrm{A}(K)$ has WEP.

Noncommutative simplices

Definition (K-Shamovich 2021)

A compact nc convex set K is an nc simplex if each point $x \in K$ has a unique maximal representing nc state.

Examples:

1. Classical simplices (if K_{1} is a simplex, then K is uniquely determined and is an nc simplex).
2. NC state spaces of C^{*}-algebras. An nc simplex K is Bauer if ∂C is closed. A compact nc convex set is the nc state space of a C*-algebra iff it is an nc Bauer simplex (KS 2021).
3. The nc Poulsen simplex (nc state space of an operator system constructed by Kirchberg-Wasserman).
4. Invariant nc states $S_{n c}(A)^{G}$ on a G - C^{*}-algebra A (KS 2021).
5. K is an nc simplex iff $A(K)^{* *}$ is a von Neumann algebra (KS 2021), e.g. if $\mathrm{A}(K)$ has WEP.

Noncommutative simplices

Definition (K-Shamovich 2021)

A compact nc convex set K is an nc simplex if each point $x \in K$ has a unique maximal representing nc state.

Examples:

1. Classical simplices (if K_{1} is a simplex, then K is uniquely determined and is an nc simplex).
2. NC state spaces of C^{*}-algebras. An nc simplex K is Bauer if ∂C is closed. A compact nc convex set is the nc state space of a C*-algebra iff it is an nc Bauer simplex (KS 2021).
3. The nc Poulsen simplex (nc state space of an operator system constructed by Kirchberg-Wasserman).
4. Invariant nc states $S_{n c}(A)^{G}$ on a G - C^{*}-algebra A (KS 2021).
5. K is an nc simplex iff $A(K)^{* *}$ is a von Neumann algebra (KS 2021), e.g. if $\mathrm{A}(K)$ has WEP.

Intuition: K is an nc simplex if every point in K can be uniquely expressed as an nc convex combination of extreme points of K.

Noncommutative simplices

Definition (K-Shamovich 2021)

A compact nc convex set K is an nc simplex if each point $x \in K$ has a unique maximal representing nc state.

Examples:

1. Classical simplices (if K_{1} is a simplex, then K is uniquely determined and is an nc simplex).
2. NC state spaces of C^{*}-algebras. An nc simplex K is Bauer if ∂C is closed. A compact nc convex set is the nc state space of a C*-algebra iff it is an nc Bauer simplex (KS 2021).
3. The nc Poulsen simplex (nc state space of an operator system constructed by Kirchberg-Wasserman).
4. Invariant nc states $S_{n c}(A)^{G}$ on a G - C^{*}-algebra $A(K S ~ 2021)$.
5. K is an nc simplex iff $A(K)^{* *}$ is a von Neumann algebra (KS 2021), e.g. if $\mathrm{A}(K)$ has WEP.

Intuition: K is an nc simplex if every point in K can be uniquely expressed as an nc convex combination of extreme points of K.

Theorem (KS 2021, K-Kim-Manor 2021)

A locally compact group G has property (T) iff $S_{n c}(A)^{G}$ is a Bauer simplex for every G-C*-algebra A

Classical majorization

Definition (Hardy-Littlewood-Pólya 1929)
For $a, b \in \mathbb{R}^{n}, a$ is majorized by b, written $a \prec b$ if

$$
f(a) \leq f(b) \quad \text { for all convex functions } f \in C\left(\mathbb{R}^{n}\right)
$$

Classical majorization

Definition (Hardy-Littlewood-Pólya 1929)

For $a, b \in \mathbb{R}^{n}$, a is majorized by b, written $a \prec b$ if

$$
f(a) \leq f(b) \quad \text { for all convex functions } f \in C\left(\mathbb{R}^{n}\right)
$$

Theorem (Hardy-Littlewood-Pólya 1929)

For $a, b \in \mathbb{R}^{n}$, the following are equivalent:

1. $a \prec b$,

Classical majorization

Definition (Hardy-Littlewood-Pólya 1929)

For $a, b \in \mathbb{R}^{n}$, a is majorized by b, written $a \prec b$ if

$$
f(a) \leq f(b) \quad \text { for all convex functions } f \in C\left(\mathbb{R}^{n}\right)
$$

Theorem (Hardy-Littlewood-Pólya 1929)

For $a, b \in \mathbb{R}^{n}$, the following are equivalent:

1. $a \prec b$,
2. $\sum_{i=1}^{k} a_{i} \leq \sum_{i=1}^{k} b_{i}$ for $1 \leq k \leq n$ with equality for $k=n$.

Classical majorization

Definition (Hardy-Littlewood-Pólya 1929)

For $a, b \in \mathbb{R}^{n}$, a is majorized by b, written $a \prec b$ if

$$
f(a) \leq f(b) \quad \text { for all convex functions } f \in C\left(\mathbb{R}^{n}\right)
$$

Theorem (Hardy-Littlewood-Pólya 1929)

For $a, b \in \mathbb{R}^{n}$, the following are equivalent:

1. $a \prec b$,
2. $\sum_{i=1}^{k} a_{i} \leq \sum_{i=1}^{k} b_{i}$ for $1 \leq k \leq n$ with equality for $k=n$.
3. $a=D b$ for doubly stochastic $D \in M_{n}$.

Classical majorization

Definition (Hardy-Littlewood-Pólya 1929)

For $a, b \in \mathbb{R}^{n}$, a is majorized by b, written $a \prec b$ if

$$
f(a) \leq f(b) \quad \text { for all convex functions } f \in C\left(\mathbb{R}^{n}\right)
$$

Theorem (Hardy-Littlewood-Pólya 1929)

For $a, b \in \mathbb{R}^{n}$, the following are equivalent:

1. $a \prec b$,
2. $\sum_{i=1}^{k} a_{i} \leq \sum_{i=1}^{k} b_{i}$ for $1 \leq k \leq n$ with equality for $k=n$.
3. $a=D b$ for doubly stochastic $D \in M_{n}$.

Classical majorization

Definition (Hardy-Littlewood-Pólya 1929)

For $a, b \in \mathbb{R}^{n}$, a is majorized by b, written $a \prec b$ if

$$
f(a) \leq f(b) \quad \text { for all convex functions } f \in C\left(\mathbb{R}^{n}\right)
$$

Theorem (Hardy-Littlewood-Pólya 1929)

For $a, b \in \mathbb{R}^{n}$, the following are equivalent:

1. $a \prec b$,
2. $\sum_{i=1}^{k} a_{i} \leq \sum_{i=1}^{k} b_{i}$ for $1 \leq k \leq n$ with equality for $k=n$.
3. $a=D b$ for doubly stochastic $D \in M_{n}$.

Choquet-theoretic perspective: Let $A=\operatorname{Diag}(a), B=\operatorname{Diag}(b)$ and let $C \subseteq \mathbb{R}$ be a closed interval containing their spectrum. Define $\mu_{A}, \mu_{B} \in \operatorname{Prob}(C)$ by

$$
\mu_{A}(f)=\operatorname{Tr}(f(A)), \mu_{B}(f)=\operatorname{Tr}(f(B)) .
$$

Then $a \prec b$ iff $\mu_{A} \prec_{c} \mu_{B}$.

Majorization in a finite von Neumann algebra

Let (M, τ) be a finite von Neumann algebra.

Definition

For $a, b \in M$, a is majorized by b, written $a \prec b$ if

$$
f(a) \leq f(b) \quad \text { for all convex functions } f \in \mathrm{C}(C),
$$

where $C \subseteq \mathbb{R}$ is an interval containing $\sigma(a), \sigma(b)$.

Majorization in a finite von Neumann algebra

Let (M, τ) be a finite von Neumann algebra.

Definition

For $a, b \in M$, a is majorized by b, written $a \prec b$ if

$$
f(a) \leq f(b) \quad \text { for all convex functions } f \in \mathrm{C}(C),
$$

where $C \subseteq \mathbb{R}$ is an interval containing $\sigma(a), \sigma(b)$.
A map $\phi: M \rightarrow M$ is doubly stochastic if it is normal unital completely positive and trace preserving.

Majorization in a finite von Neumann algebra

Let (M, τ) be a finite von Neumann algebra.

Definition

For $a, b \in M$, a is majorized by b, written $a \prec b$ if

$$
f(a) \leq f(b) \quad \text { for all convex functions } f \in \mathrm{C}(C),
$$

where $C \subseteq \mathbb{R}$ is an interval containing $\sigma(a), \sigma(b)$.
A map $\phi: M \rightarrow M$ is doubly stochastic if it is normal unital completely positive and trace preserving.

Theorem (Kamei 1983, Hiai 1987)

For $a, b \in M_{\text {sa }}$, the following are equivalent:

1. $a \prec b$,

Majorization in a finite von Neumann algebra

Let (M, τ) be a finite von Neumann algebra.

Definition

For $a, b \in M$, a is majorized by b, written $a \prec b$ if

$$
f(a) \leq f(b) \quad \text { for all convex functions } f \in \mathrm{C}(C),
$$

where $C \subseteq \mathbb{R}$ is an interval containing $\sigma(a), \sigma(b)$.
A map $\phi: M \rightarrow M$ is doubly stochastic if it is normal unital completely positive and trace preserving.

Theorem (Kamei 1983, Hiai 1987)

For $a, b \in M_{\text {sa }}$, the following are equivalent:

1. $a \prec b$,
2. the spectral scales of a and b satisfy the HLP inequalities,

Majorization in a finite von Neumann algebra

Let (M, τ) be a finite von Neumann algebra.

Definition

For $a, b \in M$, a is majorized by b, written $a \prec b$ if

$$
f(a) \leq f(b) \quad \text { for all convex functions } f \in \mathrm{C}(C),
$$

where $C \subseteq \mathbb{R}$ is an interval containing $\sigma(a), \sigma(b)$.
A map $\phi: M \rightarrow M$ is doubly stochastic if it is normal unital completely positive and trace preserving.

Theorem (Kamei 1983, Hiai 1987)

For $a, b \in M_{\text {sa }}$, the following are equivalent:

1. $a \prec b$,
2. the spectral scales of a and b satisfy the HLP inequalities,
3. $a=\phi(b)$ for doubly stochastic $\phi: M \rightarrow M$.

Majorization in a finite von Neumann algebra

Let (M, τ) be a finite von Neumann algebra.

Definition

For $a, b \in M$, a is majorized by b, written $a \prec b$ if

$$
f(a) \leq f(b) \quad \text { for all convex functions } f \in \mathrm{C}(C),
$$

where $C \subseteq \mathbb{R}$ is an interval containing $\sigma(a), \sigma(b)$.
A map $\phi: M \rightarrow M$ is doubly stochastic if it is normal unital completely positive and trace preserving.

Theorem (Kamei 1983, Hiai 1987)

For $a, b \in M_{\text {sa }}$, the following are equivalent:

1. $a \prec b$,
2. the spectral scales of a and b satisfy the HLP inequalities,
3. $a=\phi(b)$ for doubly stochastic $\phi: M \rightarrow M$.
4. $a \in \overline{\operatorname{conv}}\left\{u b u^{*}: u \in \mathcal{U}(M)\right\}$.

Majorization in a finite von Neumann algebra

Let (M, τ) be a finite von Neumann algebra.

Definition

For $a, b \in M$, a is majorized by b, written $a \prec b$ if

$$
f(a) \leq f(b) \quad \text { for all convex functions } f \in \mathrm{C}(C),
$$

where $C \subseteq \mathbb{R}$ is an interval containing $\sigma(a), \sigma(b)$.
A map $\phi: M \rightarrow M$ is doubly stochastic if it is normal unital completely positive and trace preserving.

Theorem (Kamei 1983, Hiai 1987)

For $a, b \in M_{\text {sa }}$, the following are equivalent:

1. $a \prec b$,
2. the spectral scales of a and b satisfy the HLP inequalities,
3. $a=\phi(b)$ for doubly stochastic $\phi: M \rightarrow M$.
4. $a \in \overline{\operatorname{conv}}\left\{u b u^{*}: u \in \mathcal{U}(M)\right\}$.

Majorization in a finite von Neumann algebra

Let (M, τ) be a finite von Neumann algebra.

Definition

For $a, b \in M$, a is majorized by b, written $a \prec b$ if

$$
f(a) \leq f(b) \quad \text { for all convex functions } f \in \mathrm{C}(C),
$$

where $C \subseteq \mathbb{R}$ is an interval containing $\sigma(a), \sigma(b)$.
A map $\phi: M \rightarrow M$ is doubly stochastic if it is normal unital completely positive and trace preserving.

Theorem (Kamei 1983, Hiai 1987)

For $a, b \in M_{\text {sa }}$, the following are equivalent:

1. $a \prec b$,
2. the spectral scales of a and b satisfy the HLP inequalities,
3. $a=\phi(b)$ for doubly stochastic $\phi: M \rightarrow M$.
4. $a \in \overline{\operatorname{conv}}\left\{u b u^{*}: u \in \mathcal{U}(M)\right\}$.

Note: (4) utilizes the Birkhoff-von Neumann theorem.

Noncommutative majorization

Let (M, τ) be a finite von Neumann algebra.

Definition (K-Marcoux-Skoufranis 2023)

For tuples $a=\left(a_{i}\right), b=\left(b_{i}\right)$ in M, a is majorized by b, written $a \prec b$ if

$$
f(a) \leq f(b) \quad \text { for all convex nc functions } f \in C(K),
$$

where K is a sufficiently large compact nc convex set.
Note: Elements are not required to be self-adjoint.

Noncommutative majorization

Let (M, τ) be a finite von Neumann algebra.

Definition (K-Marcoux-Skoufranis 2023)

For tuples $a=\left(a_{i}\right), b=\left(b_{i}\right)$ in M, a is majorized by b, written $a \prec b$ if

$$
f(a) \leq f(b) \quad \text { for all convex nc functions } f \in C(K)
$$

where K is a sufficiently large compact nc convex set.
Note: Elements are not required to be self-adjoint.
Recall: a map $\phi: M \rightarrow M$ is doubly stochastic if it is normal unital completely positive and trace preserving.

Theorem (KMS 2023)

For tuples $a=\left(a_{i}\right), b=\left(b_{i}\right)$ in $M_{s a}$, the following are equivalent:

1. $a \prec b$,

Noncommutative majorization

Let (M, τ) be a finite von Neumann algebra.

Definition (K-Marcoux-Skoufranis 2023)

For tuples $a=\left(a_{i}\right), b=\left(b_{i}\right)$ in M, a is majorized by b, written $a \prec b$ if

$$
f(a) \leq f(b) \quad \text { for all convex nc functions } f \in C(K)
$$

where K is a sufficiently large compact nc convex set.
Note: Elements are not required to be self-adjoint.
Recall: a map $\phi: M \rightarrow M$ is doubly stochastic if it is normal unital completely positive and trace preserving.

Theorem (KMS 2023)

For tuples $a=\left(a_{i}\right), b=\left(b_{i}\right)$ in $M_{\text {sa }}$, the following are equivalent:

1. $a \prec b$,
2. $a_{i}=\phi\left(b_{i}\right)$ for all i for a doubly stochastic $\operatorname{map} \phi: M \rightarrow M$.

Noncommutative majorization

Let (M, τ) be a finite von Neumann algebra.

Definition (K-Marcoux-Skoufranis 2023)

For tuples $a=\left(a_{i}\right), b=\left(b_{i}\right)$ in M, a is majorized by b, written $a \prec b$ if

$$
f(a) \leq f(b) \quad \text { for all convex nc functions } f \in C(K)
$$

where K is a sufficiently large compact nc convex set.
Note: Elements are not required to be self-adjoint.
Recall: a map $\phi: M \rightarrow M$ is doubly stochastic if it is normal unital completely positive and trace preserving.

Theorem (KMS 2023)

For tuples $a=\left(a_{i}\right), b=\left(b_{i}\right)$ in $M_{\text {sa }}$, the following are equivalent:

1. $a \prec b$,
2. $a_{i}=\phi\left(b_{i}\right)$ for all i for a doubly stochastic $\operatorname{map} \phi: M \rightarrow M$.

Noncommutative majorization

Let (M, τ) be a finite von Neumann algebra.

Definition (K-Marcoux-Skoufranis 2023)

For tuples $a=\left(a_{i}\right), b=\left(b_{i}\right)$ in M, a is majorized by b, written $a \prec b$ if

$$
f(a) \leq f(b) \quad \text { for all convex nc functions } f \in C(K)
$$

where K is a sufficiently large compact nc convex set.
Note: Elements are not required to be self-adjoint.
Recall: a map $\phi: M \rightarrow M$ is doubly stochastic if it is normal unital completely positive and trace preserving.

Theorem (KMS 2023)

For tuples $a=\left(a_{i}\right), b=\left(b_{i}\right)$ in $M_{s a}$, the following are equivalent:

1. $a \prec b$,
2. $a_{i}=\phi\left(b_{i}\right)$ for all i for a doubly stochastic map $\phi: M \rightarrow M$.

Note: Not true in general that a belongs to the unitary orbit of b (i.e. that ϕ can be chosen to be mixed unitary) even for $|a|=|b|=1$ in the non-self-adjoint case. Counterexamples utilize negative solution to the asymptotic Birkhoff-von Neumann conjecture (Haagerup-Musat 2011).

Key idea

Key idea is equivalence between nc Choquet order and the "dilation order:" for nc states μ, ν on $C(K), \mu \prec_{n c} \nu$ iff there is a Stinespring representations $\left(\pi_{\mu}, v\right)$ of μ such that $\left.\pi_{\mu}\right|_{\mathrm{A}(K)}$ dilates to a Stinespring representation $\left(\pi_{\nu}, v\right)$ of ν, i.e.

$$
\left.\pi_{\nu}\right|_{\mathrm{A}(K)}=\left[\begin{array}{cc}
\left.\pi_{\mu}\right|_{\mathrm{A}(K)} & * \\
* & *
\end{array}\right] .
$$

Key idea

Key idea is equivalence between nc Choquet order and the "dilation order:" for nc states μ, ν on $C(K), \mu \prec_{n c} \nu$ iff there is a Stinespring representations $\left(\pi_{\mu}, v\right)$ of μ such that $\left.\pi_{\mu}\right|_{\mathrm{A}(K)}$ dilates to a Stinespring representation $\left(\pi_{\nu}, v\right)$ of ν, i.e.

$$
\left.\pi_{\nu}\right|_{\mathrm{A}(K)}=\left[\begin{array}{cc}
\left.\pi_{\mu}\right|_{\mathrm{A}(K)} & * \\
* & *
\end{array}\right] .
$$

More generally, can characterize existence of ucp maps between tuples in M that preserve arbitrary ucp maps on M, e.g. states, conditional expectations.

Thanks!

