Noncommutative Choquet theory and noncommutative majorization

Matthew Kennedy

University of Waterloo, Waterloo, Canada

May 22, 2023

My answer: Choquet theory is (commutative) operator space theory from the dual perspective. Specifically, utilizing the duality between compact convex sets and function systems.

My answer: Choquet theory is (commutative) operator space theory from the dual perspective. Specifically, utilizing the duality between compact convex sets and function systems.

A **function system** is an operator system that embeds into a commutative C*-algebra (i.e. $1 \in F = F^* \subseteq C(X)$ for compact X).

My answer: Choquet theory is (commutative) operator space theory from the dual perspective. Specifically, utilizing the duality between compact convex sets and function systems.

A **function system** is an operator system that embeds into a commutative C*-algebra (i.e. $1 \in F = F^* \subseteq C(X)$ for compact X).

Theorem (Kadison 1951)

A function system F is unitally order isomorphic to the function system A(C) of continuous affine functions on its state space C = S(F)

$$F \to A(C): f \to \hat{f}$$
 where $\hat{f}(x) = x(f)$ for $x \in C$.

Hence the category of function systems with unital order homomorphisms is dual to the category of compact convex sets with continuous affine maps.

My answer: Choquet theory is (commutative) operator space theory from the dual perspective. Specifically, utilizing the duality between compact convex sets and function systems.

A **function system** is an operator system that embeds into a commutative C*-algebra (i.e. $1 \in F = F^* \subseteq C(X)$ for compact X).

Theorem (Kadison 1951)

A function system F is unitally order isomorphic to the function system A(C) of continuous affine functions on its state space C = S(F)

$$F \to A(C): f \to \hat{f}$$
 where $\hat{f}(x) = x(f)$ for $x \in C$.

Hence the category of function systems with unital order homomorphisms is dual to the category of compact convex sets with continuous affine maps.

The convex structure of *C* reveals itself in the interplay between the function system A(C) and the convex functions in C(C): if $f \in C(C)$ is convex, then $f(x) = \sup\{a(x) : a \in A(C), a \le f\}$.

Let C be a compact convex set. A probability measure $\mu \in Prob(C)$ represents $x \in C$ or has barycenter x if $\mu|_{A(C)} = x$.

Let C be a compact convex set. A probability measure $\mu \in Prob(C)$ represents $x \in C$ or has barycenter x if $\mu|_{A(C)} = x$.

Every $x \in C$ has at least one representing measure, namely δ_x . This is the only representing measure for x iff $x \in \partial C$.

Let C be a compact convex set. A probability measure $\mu \in Prob(C)$ represents $x \in C$ or has barycenter x if $\mu|_{A(C)} = x$.

Every $x \in C$ has at least one representing measure, namely δ_x . This is the only representing measure for x iff $x \in \partial C$.

Definition

The **Choquet order** on Prob(C) is the partial order defined by

 $\mu \prec \nu$ if $\mu(f) \leq \nu(f)$ for all convex $f \in C(C)$.

Let C be a compact convex set. A probability measure $\mu \in Prob(C)$ represents $x \in C$ or has barycenter x if $\mu|_{A(C)} = x$.

Every $x \in C$ has at least one representing measure, namely δ_x . This is the only representing measure for x iff $x \in \partial C$.

Definition

The **Choquet order** on Prob(C) is the partial order defined by

 $\mu \prec \nu$ if $\mu(f) \leq \nu(f)$ for all convex $f \in C(C)$.

Intuition: $\mu \prec \nu$ means that the support of ν is closer to the extreme boundary ∂K than the support of μ .

Let C be a compact convex set. A probability measure $\mu \in Prob(C)$ represents $x \in C$ or has barycenter x if $\mu|_{A(C)} = x$.

Every $x \in C$ has at least one representing measure, namely δ_x . This is the only representing measure for x iff $x \in \partial C$.

Definition

The **Choquet order** on Prob(C) is the partial order defined by

 $\mu \prec \nu$ if $\mu(f) \leq \nu(f)$ for all convex $f \in C(C)$.

Intuition: $\mu \prec \nu$ means that the support of ν is closer to the extreme boundary ∂K than the support of μ .

For $x \in C$, the set $\{\mu \in \operatorname{Prob}(C) : \mu|_{A(C)} = x\}$ has a unique minimal element δ_x . By Zorn, it always contains at least one maximal element.

Let C be a compact convex set. A probability measure $\mu \in Prob(C)$ represents $x \in C$ or has barycenter x if $\mu|_{A(C)} = x$.

Every $x \in C$ has at least one representing measure, namely δ_x . This is the only representing measure for x iff $x \in \partial C$.

Definition

The **Choquet order** on Prob(C) is the partial order defined by

 $\mu \prec \nu$ if $\mu(f) \leq \nu(f)$ for all convex $f \in C(C)$.

Intuition: $\mu \prec \nu$ means that the support of ν is closer to the extreme boundary ∂K than the support of μ .

For $x \in C$, the set $\{\mu \in \operatorname{Prob}(C) : \mu|_{A(C)} = x\}$ has a unique minimal element δ_x . By Zorn, it always contains at least one maximal element.

Theorem (Choquet 1956, Bishop - de Leeuw 1959)

A probability measure $\mu \in Prob(C)$ is maximal if and only if it is supported on the extreme boundary ∂C . Hence every point in C has a representing measure supported on ∂C .

Let C be a compact convex set. A probability measure $\mu \in Prob(C)$ represents $x \in C$ or has barycenter x if $\mu|_{A(C)} = x$.

Every $x \in C$ has at least one representing measure, namely δ_x . This is the only representing measure for x iff $x \in \partial C$.

Definition

The **Choquet order** on Prob(C) is the partial order defined by

 $\mu \prec \nu$ if $\mu(f) \leq \nu(f)$ for all convex $f \in C(C)$.

Intuition: $\mu \prec \nu$ means that the support of ν is closer to the extreme boundary ∂K than the support of μ .

For $x \in C$, the set $\{\mu \in \operatorname{Prob}(C) : \mu|_{A(C)} = x\}$ has a unique minimal element δ_x . By Zorn, it always contains at least one maximal element.

Theorem (Choquet 1956, Bishop - de Leeuw 1959)

A probability measure $\mu \in Prob(C)$ is maximal if and only if it is supported on the extreme boundary ∂C . Hence every point in C has a representing measure supported on ∂C .

Note: In finite dimensions, this is Carathéodory's theorem.

Definition

A compact convex set C is a **simplex** iff every point in C has a **unique** maximal representing measure.

Definition

A compact convex set C is a **simplex** iff every point in C has a **unique** maximal representing measure.

Examples:

1. *n*-simplices in \mathbb{R}^n .

Definition

A compact convex set C is a **simplex** iff every point in C has a **unique** maximal representing measure.

Examples:

- 1. *n*-simplices in \mathbb{R}^n .
- 2. State spaces of commutative C*-algebras, i.e. Bauer simplices. A simplex C is Bauer iff ∂C is closed (Bauer 1963).

Definition

A compact convex set C is a **simplex** iff every point in C has a **unique** maximal representing measure.

Examples:

- 1. *n*-simplices in \mathbb{R}^n .
- 2. State spaces of commutative C*-algebras, i.e. Bauer simplices. A simplex C is Bauer iff ∂C is closed (Bauer 1963).
- 3. The Poulsen simplex. Unique metrizable simplex P with ∂P dense in P (Lindenstrauss-Olsen-Sternfeld 1978).

Definition

A compact convex set C is a **simplex** iff every point in C has a **unique** maximal representing measure.

Examples:

- 1. *n*-simplices in \mathbb{R}^n .
- 2. State spaces of commutative C*-algebras, i.e. Bauer simplices. A simplex C is Bauer iff ∂C is closed (Bauer 1963).
- 3. The Poulsen simplex. Unique metrizable simplex P with ∂P dense in P (Lindenstrauss-Olsen-Sternfeld 1978).
- 4. Invariant probability measures $Prob(X)^G$ on a compact G-space X.

Two applications of simplices

Theorem (Namioka-Phelps 1969)

A compact convex set C is a simplex iff A(C) is nuclear.

is evident that $S^{\wedge} \subset S$, and the following theorem gives conditions under which $S^{\wedge} = S$. The validity of "(c) implies (a)" was suggested to us by E. Effros.

THEOREM 1.4. Let S_1 be the state space of (E_i, P_i, u_i) ; then the following assertions are equivalent

- (a) S_1 is a simplex.
- (b) S_1 is simplex-like.

(c) For any partially ordered linear space with order unit (E_z, P_z, u_z) , the two state spaces resulting from the two orderings on $E_1 \otimes E_z$ coincide.

Two applications of simplices

Theorem (Namioka-Phelps 1969)

A compact convex set C is a simplex iff A(C) is nuclear.

is evident that $S^{\wedge} \subset S$, and the following theorem gives conditions under which $S^{\wedge} = S$. The validity of "(c) implies (a)" was suggested to us by E. Effros.

THEOREM 1.4. Let S_1 be the state space of (E_i, P_i, u_i) ; then the following assertions are equivalent

- (a) S_1 is a simplex.
- (b) S_1 is simplex-like.

(c) For any partially ordered linear space with order unit (E_z, P_z, u_z) , the two state spaces resulting from the two orderings on $E_1 \otimes E_z$ coincide.

Theorem (Glasner-Weiss 1997)

A locally compact group G has property (T) iff $Prob(X)^G$ is a Bauer simplex for every compact G-space X.

(Arveson 1969): Considers operator systems as noncommutative analogues of function systems. Establishes injectivity of $\mathcal{B}(H)$ and conjectures existence of noncommutative analogues of Choquet boundary and Shilov boundary for an operator system.

(Arveson 1969): Considers operator systems as noncommutative analogues of function systems. Establishes injectivity of $\mathcal{B}(H)$ and conjectures existence of noncommutative analogues of Choquet boundary and Shilov boundary for an operator system.

(Hamana 1979): Establishes existence of Shilov boundary (C*-envelope) of an operator system.

(Arveson 1969): Considers operator systems as noncommutative analogues of function systems. Establishes injectivity of $\mathcal{B}(H)$ and conjectures existence of noncommutative analogues of Choquet boundary and Shilov boundary for an operator system.

(Hamana 1979): Establishes existence of Shilov boundary (C*-envelope) of an operator system.

(Wittstock 1981): Introduces notion of matrix convex set.

(Arveson 1969): Considers operator systems as noncommutative analogues of function systems. Establishes injectivity of $\mathcal{B}(H)$ and conjectures existence of noncommutative analogues of Choquet boundary and Shilov boundary for an operator system.

(Hamana 1979): Establishes existence of Shilov boundary (C*-envelope) of an operator system.

(Wittstock 1981): Introduces notion of matrix convex set.

(Effros-Winkler 1997): Establishes analogue of Hahn-Banach separation theorem for matrix convex sets.

(Arveson 1969): Considers operator systems as noncommutative analogues of function systems. Establishes injectivity of $\mathcal{B}(H)$ and conjectures existence of noncommutative analogues of Choquet boundary and Shilov boundary for an operator system.

(Hamana 1979): Establishes existence of Shilov boundary (C*-envelope) of an operator system.

(Wittstock 1981): Introduces notion of matrix convex set.

(Effros-Winkler 1997): Establishes analogue of Hahn-Banach separation theorem for matrix convex sets.

(Webster-Winkler 1999): Establishes dual equivalence between category of unital operator systems and category of matrix convex sets.

(Arveson 1969): Considers operator systems as noncommutative analogues of function systems. Establishes injectivity of $\mathcal{B}(H)$ and conjectures existence of noncommutative analogues of Choquet boundary and Shilov boundary for an operator system.

(Hamana 1979): Establishes existence of Shilov boundary (C*-envelope) of an operator system.

(Wittstock 1981): Introduces notion of matrix convex set.

(Effros-Winkler 1997): Establishes analogue of Hahn-Banach separation theorem for matrix convex sets.

(Webster-Winkler 1999): Establishes dual equivalence between category of unital operator systems and category of matrix convex sets.

(Arveson 2007, Davidson-K 2015): Establishes existence of Choquet boundary of an operator system.

(Arveson 1969): Considers operator systems as noncommutative analogues of function systems. Establishes injectivity of $\mathcal{B}(H)$ and conjectures existence of noncommutative analogues of Choquet boundary and Shilov boundary for an operator system.

(Hamana 1979): Establishes existence of Shilov boundary (C*-envelope) of an operator system.

(Wittstock 1981): Introduces notion of matrix convex set.

(Effros-Winkler 1997): Establishes analogue of Hahn-Banach separation theorem for matrix convex sets.

(Webster-Winkler 1999): Establishes dual equivalence between category of unital operator systems and category of matrix convex sets.

(Arveson 2007, Davidson-K 2015): Establishes existence of Choquet boundary of an operator system.

Note: missing numerous developments in operator spaces/systems (e.g. Choi-Effros, Effros-Ruan), matrix convexity and real algebraic geometry.

Two missing pieces in operator space theory

Geometric side

Missing a good notion of extreme point for a matrix convex set, corresponding Krein-Milman-type theorem, etc.

Two missing pieces in operator space theory

Geometric side

Missing a good notion of extreme point for a matrix convex set, corresponding Krein-Milman-type theorem, etc.

Operator algebraic side

Missing a theory of nc continuous functions, convex nc functions, nc measures, etc. Analogy with Taylor-Voiculescu theory of nc analytic functions.

Two missing pieces in operator space theory

Geometric side

Missing a good notion of extreme point for a matrix convex set, corresponding Krein-Milman-type theorem, etc.

Operator algebraic side

Missing a theory of nc continuous functions, convex nc functions, nc measures, etc. Analogy with Taylor-Voiculescu theory of nc analytic functions.

Classical notions are essential to fully develop the classical theory. In my view, operator space theory is incomplete without these.

Noncommutative convexity

Definition (DK2019)

A compact nc convex set over a dual operator space E is a graded set $K = \prod_{n \le \kappa} K_n$ with $K_n \subseteq M_n(E)$ such that each K_n is compact in the dual topology on $M_n(E)$ and K is closed under nc convex combinations:

$$\sum \alpha_i^* x_i \alpha_i \in K_n$$

for $x_i \in K_{n_i}$ and $\alpha_i \in M_{n,n_i}$ satisfying $\sum \alpha_i^* \alpha_i = 1_n$.

Noncommutative convexity

Definition (DK2019)

A compact nc convex set over a dual operator space E is a graded set $K = \prod_{n \le \kappa} K_n$ with $K_n \subseteq M_n(E)$ such that each K_n is compact in the dual topology on $M_n(E)$ and K is closed under nc convex combinations:

$$\sum \alpha_i^* x_i \alpha_i \in K_n$$

for $x_i \in K_{n_i}$ and $\alpha_i \in M_{n,n_i}$ satisfying $\sum \alpha_i^* \alpha_i = 1_n$.

Here, κ is a suitably large **infinite** cardinal and $M_n \cong \mathcal{B}(H)$ for dim H = n. Refines notion of matrix convex set, where $n < \infty$. Subtle but crucial difference.

Noncommutative convexity

Definition (DK2019)

A compact nc convex set over a dual operator space E is a graded set $K = \prod_{n \le \kappa} K_n$ with $K_n \subseteq M_n(E)$ such that each K_n is compact in the dual topology on $M_n(E)$ and K is closed under nc convex combinations:

$$\sum \alpha_i^* x_i \alpha_i \in K_n$$

for $x_i \in K_{n_i}$ and $\alpha_i \in M_{n,n_i}$ satisfying $\sum \alpha_i^* \alpha_i = 1_n$.

Here, κ is a suitably large **infinite** cardinal and $M_n \cong \mathcal{B}(H)$ for dim H = n. Refines notion of matrix convex set, where $n < \infty$. Subtle but crucial difference.

Key example: Let S be an operator system. The nc state space of S is

$$K = \sqcup_{n \leq \kappa} K_n$$
, where $K_n = \{x : A \to M_n \text{ ucp}\}.$

Definition (DK2019)

A compact nc convex set over a dual operator space E is a graded set $K = \prod_{n \le \kappa} K_n$ with $K_n \subseteq M_n(E)$ such that each K_n is compact in the dual topology on $M_n(E)$ and K is closed under nc convex combinations:

$$\sum \alpha_i^* x_i \alpha_i \in K_n$$

for $x_i \in K_{n_i}$ and $\alpha_i \in M_{n,n_i}$ satisfying $\sum \alpha_i^* \alpha_i = 1_n$.

Here, κ is a suitably large **infinite** cardinal and $M_n \cong \mathcal{B}(H)$ for dim H = n. Refines notion of matrix convex set, where $n < \infty$. Subtle but crucial difference.

Key example: Let S be an operator system. The nc state space of S is

$$K = \sqcup_{n < \kappa} K_n$$
, where $K_n = \{x : A \to M_n \text{ ucp}\}$.

Theorem (Arveson 2007, DK 2015)

A compact nc convex set is the closed convex hull of its extreme points.

The extreme boundary ∂K can be identified with an (often very complicated) subset of the irreducible representations of $C^*(A(K))$. So necessary to allow $n = \infty$.

Noncommutative functions

Definition (DK2019)

Let K be a compact nc convex set. A function $f : K \to \coprod M_n$ is an **nc function** if it is graded, respects direct sums and is equivariant with respect to unitaries:

1.
$$f(K_n) \subseteq M_n$$
 for all n

2.
$$f(\oplus x_i) = \oplus f(x_i)$$
 for all $x_i \in K_{n_i}$

3. $f(\alpha^* x \alpha) = \alpha^* f(x) \alpha$ for all $x \in K_n$ and unitaries $\alpha \in M_n$

The function f is **affine** if in addition it is equivariant with respect to isometries:

3'. $f(\beta^* x \beta) = \beta^* f(x) \beta$ for all $x \in K_n$ and isometries $\alpha \in M_{n,m}$

Noncommutative functions

Definition (DK2019)

Let K be a compact nc convex set. A function $f : K \to \coprod M_n$ is an **nc function** if it is graded, respects direct sums and is equivariant with respect to unitaries:

1.
$$f(K_n) \subseteq M_n$$
 for all n

2.
$$f(\oplus x_i) = \oplus f(x_i)$$
 for all $x_i \in K_{n_i}$

3. $f(\alpha^* x \alpha) = \alpha^* f(x) \alpha$ for all $x \in K_n$ and unitaries $\alpha \in M_n$

The function f is **affine** if in addition it is equivariant with respect to isometries:

3'.
$$f(\beta^* x \beta) = \beta^* f(x) \beta$$
 for all $x \in K_n$ and isometries $\alpha \in M_{n,m}$

Analogous to notion of nc holomorphic function on nc domain defined by Taylor (1973) and Voiculescu (2000).

Noncommutative functions

Definition (DK2019)

Let K be a compact nc convex set. A function $f : K \to \coprod M_n$ is an **nc function** if it is graded, respects direct sums and is equivariant with respect to unitaries:

1.
$$f(K_n) \subseteq M_n$$
 for all n

2.
$$f(\oplus x_i) = \oplus f(x_i)$$
 for all $x_i \in K_{n_i}$

3. $f(\alpha^* x \alpha) = \alpha^* f(x) \alpha$ for all $x \in K_n$ and unitaries $\alpha \in M_n$

The function f is **affine** if in addition it is equivariant with respect to isometries:

3'.
$$f(\beta^* x \beta) = \beta^* f(x) \beta$$
 for all $x \in K_n$ and isometries $\alpha \in M_{n,m}$

Analogous to notion of nc holomorphic function on nc domain defined by Taylor (1973) and Voiculescu (2000).

We write C(K) for the C*-algebra of continuous nc functions on K, A(K) for the unital operator system of continuous affine nc functions on K. Elements in C(K) are "uniform" limits of nc *-polynomials in A(K).

Definition (DK2019)

Let K be a compact nc convex set. A function $f : K \to \coprod M_n$ is an **nc function** if it is graded, respects direct sums and is equivariant with respect to unitaries:

1.
$$f(K_n) \subseteq M_n$$
 for all n

2.
$$f(\oplus x_i) = \oplus f(x_i)$$
 for all $x_i \in K_{n_i}$

3. $f(\alpha^* x \alpha) = \alpha^* f(x) \alpha$ for all $x \in K_n$ and unitaries $\alpha \in M_n$

The function f is **affine** if in addition it is equivariant with respect to isometries:

3'.
$$f(\beta^* x \beta) = \beta^* f(x) \beta$$
 for all $x \in K_n$ and isometries $\alpha \in M_{n,m}$

Analogous to notion of nc holomorphic function on nc domain defined by Taylor (1973) and Voiculescu (2000).

We write C(K) for the C*-algebra of continuous nc functions on K, A(K) for the unital operator system of continuous affine nc functions on K. Elements in C(K) are "uniform" limits of nc *-polynomials in A(K).

Note: Nonzero nc functions can be zero on K_n for $n < \infty$. Similarly, discontinuous nc functions can be continuous on K_n for $n < \infty$. More justification for $n = \infty$.

Theorem (Webster-Winkler 1999, DK 2019)

An operator system S is unitally completely order isomorphic to the operator system A(K) of continuous nc affine functions on its nc state space $K = S_{nc}(S)$.

 $S \to A(K) : s \to \hat{s}$ where $\hat{s}(x) = x(s)$ for $x \in K$.

Hence the category of operator systems with unital complete order homomorphisms is dual to the category of compact nc convex sets with continuous nc affine maps.

Theorem (Webster-Winkler 1999, DK 2019)

An operator system S is unitally completely order isomorphic to the operator system A(K) of continuous nc affine functions on its nc state space $K = S_{nc}(S)$.

 $S \to A(K) : s \to \hat{s}$ where $\hat{s}(x) = x(s)$ for $x \in K$.

Hence the category of operator systems with unital complete order homomorphisms is dual to the category of compact nc convex sets with continuous nc affine maps.

Theorem (DK 2019)

The C*-algebra C(K) coincides with the maximal/universal C*-algebra of the operator system A(K). Its bidual $C(K)^{**}$ is the C*-algebra of bounded nc functions on K.

Theorem (Webster-Winkler 1999, DK 2019)

An operator system S is unitally completely order isomorphic to the operator system A(K) of continuous nc affine functions on its nc state space $K = S_{nc}(S)$.

 $S \to A(K) : s \to \hat{s}$ where $\hat{s}(x) = x(s)$ for $x \in K$.

Hence the category of operator systems with unital complete order homomorphisms is dual to the category of compact nc convex sets with continuous nc affine maps.

Theorem (DK 2019)

The C*-algebra C(K) coincides with the maximal/universal C*-algebra of the operator system A(K). Its bidual $C(K)^{**}$ is the C*-algebra of bounded nc functions on K.

Can be viewed as very special case of the noncommutative Stone-Weierstrass problem. Proof uses noncommutative Gelfand representation theorem of Takesaki (1967) and Bichteler (1969).

Let $S = \text{span}\{1, v_1, v_1^*, \dots, v_d, v_d^*\}$ be the operator system spanned by the canonical generators of the Cuntz algebra \mathcal{O}_d , i.e. $v_i^* v_j = \delta_{ij} 1$. Then $S \cong A(K)$, where $K = \bigsqcup_{n \leq \aleph_0}$ is the nc *d*-ball

$$K_n = \{x = (\alpha_1, \ldots, \alpha_d) \in M_n^d : \|(\alpha_1, \ldots, \alpha_d)\| \le 1\}.$$

Let $S = \text{span}\{1, v_1, v_1^*, \dots, v_d, v_d^*\}$ be the operator system spanned by the canonical generators of the Cuntz algebra \mathcal{O}_d , i.e. $v_i^* v_j = \delta_{ij} 1$. Then $S \cong A(K)$, where $K = \bigsqcup_{n < \aleph_0}$ is the nc *d*-ball

$$K_n = \{x = (\alpha_1, \ldots, \alpha_d) \in M_n^d : \|(\alpha_1, \ldots, \alpha_d)\| \le 1\}.$$

The extreme boundary ∂K coincides with the set of irreducible representations of \mathcal{O}_d .

Let $S = \text{span}\{1, v_1, v_1^*, \dots, v_d, v_d^*\}$ be the operator system spanned by the canonical generators of the Cuntz algebra \mathcal{O}_d , i.e. $v_i^* v_j = \delta_{ij} 1$. Then $S \cong A(K)$, where $K = \bigsqcup_{n < \aleph_0}$ is the nc *d*-ball

$$K_n = \{x = (\alpha_1, \ldots, \alpha_d) \in M_n^d : \|(\alpha_1, \ldots, \alpha_d)\| \le 1\}.$$

The extreme boundary ∂K coincides with the set of irreducible representations of \mathcal{O}_d .

The continuous nc function on K are uniform limits of *-polynomials in d-noncommuting variables, e.g. for d = 2,

$$p(z_1, z_2) = z_1^3 + 5z_2 - 2z_1z_1^* + z_2z_2^* + (z_1z_2 - z_2z_1)^*(z_1z_2 - z_2z_1).$$

Let $S = \text{span}\{1, v_1, v_1^*, \dots, v_d, v_d^*\}$ be the operator system spanned by the canonical generators of the Cuntz algebra \mathcal{O}_d , i.e. $v_i^* v_j = \delta_{ij} 1$. Then $S \cong A(K)$, where $K = \bigsqcup_{n < \aleph_0}$ is the nc *d*-ball

$$K_n = \{x = (\alpha_1, \ldots, \alpha_d) \in M_n^d : \|(\alpha_1, \ldots, \alpha_d)\| \le 1\}.$$

The extreme boundary ∂K coincides with the set of irreducible representations of \mathcal{O}_d .

The continuous nc function on K are uniform limits of *-polynomials in d-noncommuting variables, e.g. for d = 2,

$$p(z_1, z_2) = z_1^3 + 5z_2 - 2z_1z_1^* + z_2z_2^* + (z_1z_2 - z_2z_1)^*(z_1z_2 - z_2z_1).$$

The uniform norm is

$$\|p\|_{\infty} = \sup\{\|p(x)\| : x \in K\}.$$

Let $S = \text{span}\{1, v_1, v_1^*, \dots, v_d, v_d^*\}$ be the operator system spanned by the canonical generators of the Cuntz algebra \mathcal{O}_d , i.e. $v_i^* v_j = \delta_{ij} 1$. Then $S \cong A(K)$, where $K = \bigsqcup_{n < \aleph_0}$ is the nc *d*-ball

$$K_n = \{x = (\alpha_1, \ldots, \alpha_d) \in M_n^d : \|(\alpha_1, \ldots, \alpha_d)\| \le 1\}.$$

The extreme boundary ∂K coincides with the set of irreducible representations of \mathcal{O}_d .

The continuous nc function on K are uniform limits of *-polynomials in d-noncommuting variables, e.g. for d = 2,

$$p(z_1, z_2) = z_1^3 + 5z_2 - 2z_1z_1^* + z_2z_2^* + (z_1z_2 - z_2z_1)^*(z_1z_2 - z_2z_1).$$

The uniform norm is

$$||p||_{\infty} = \sup\{||p(x)|| : x \in K\}.$$

Note: the operator system spanned by freely independent semicirculars provides a (very interesting) example with ∂K a complicated subset of the irreducible representations of the C*-algebra it generates.

Definition

A self-adjoint-valued nc function $f \in C(K)$ is **convex** if its epigraph

$$\mathsf{Epi}(f) = \coprod_n \{(x, \alpha) : f(x) \le \alpha\} \subseteq \coprod_n K_n \times M_n$$

is an nc convex set.

Definition

A self-adjoint-valued nc function $f \in C(K)$ is **convex** if its epigraph

$$\mathsf{Epi}(f) = \coprod_n \{(x, \alpha) : f(x) \le \alpha\} \subseteq \coprod_n K_n \times M_n$$

is an nc convex set.

Equivalent to $f(\alpha^* x \alpha) \leq \alpha^* f(x) \alpha$ for all $x \in K$ and all isometries α .

Definition

A self-adjoint-valued nc function $f \in C(K)$ is **convex** if its epigraph

$$\mathsf{Epi}(f) = \coprod_n \{(x, \alpha) : f(x) \le \alpha\} \subseteq \coprod_n K_n \times M_n$$

is an nc convex set.

Equivalent to $f(\alpha^* x \alpha) \leq \alpha^* f(x) \alpha$ for all $x \in K$ and all isometries α .

Example

Let $I \subseteq \mathbb{R}$ be a compact interval. Define $K = \coprod K_n$ by

$$K_n = \{ \alpha \in (M_n)_{sa} : \sigma(\alpha) \subseteq I \}.$$

Then K is a compact nc convex set with $K_1 = I$. A self-adjoint function $f \in C(K)$ is convex as an nc function iff the restriction $f|_{K_1}$ is operator convex, i.e.

$$f(t\alpha + (1-t)\beta) \le tf(\alpha) + (1-t)f(\beta)$$

for $t \in [0,1]$ and self-adjoint $\alpha, \beta \in M_n$ with $\sigma(\alpha), \sigma(\beta) \subseteq I$.

Definition

A self-adjoint-valued nc function $f \in C(K)$ is **convex** if its epigraph

$$\mathsf{Epi}(f) = \coprod_n \{(x, \alpha) : f(x) \le \alpha\} \subseteq \coprod_n K_n \times M_n$$

is an nc convex set.

Equivalent to $f(\alpha^* x \alpha) \leq \alpha^* f(x) \alpha$ for all $x \in K$ and all isometries α .

Example

Let $I \subseteq \mathbb{R}$ be a compact interval. Define $K = \coprod K_n$ by

$$K_n = \{ \alpha \in (M_n)_{sa} : \sigma(\alpha) \subseteq I \}.$$

Then K is a compact nc convex set with $K_1 = I$. A self-adjoint function $f \in C(K)$ is convex as an nc function iff the restriction $f|_{K_1}$ is operator convex, i.e.

$$f(t\alpha + (1-t)\beta) \le tf(\alpha) + (1-t)f(\beta)$$

for $t \in [0,1]$ and self-adjoint $\alpha, \beta \in M_n$ with $\sigma(\alpha), \sigma(\beta) \subseteq I$.

Essentially the Hansen-Pedersen-Jensen inequality for operator convex functions.

Let K be a compact nc convex set. An nc state $\mu : C(K) \to M_n$ represents $x \in K$ or has barycenter x if $\mu|_{A(K)} = \delta_x$.

Let K be a compact nc convex set. An nc state $\mu : C(K) \to M_n$ represents $x \in K$ or has barycenter x if $\mu|_{A(K)} = \delta_x$.

Every $x \in K$ has at least one representing nc state, namely δ_x . This is the only representing nc state for x iff $x \in \partial K$.

Let K be a compact nc convex set. An nc state $\mu : C(K) \to M_n$ represents $x \in K$ or has barycenter x if $\mu|_{A(K)} = \delta_x$.

Every $x \in K$ has at least one representing nc state, namely δ_x . This is the only representing nc state for x iff $x \in \partial K$.

Definition

The **nc Choquet order** on $S_{nc}(C(K))$ is defined by

$$\mu \prec \nu$$
 if $\mu(f) \leq \nu(f)$ for all convex $f \in C(K)$.

Intuition: $\mu \prec \nu$ means that the support of ν is closer to the extreme boundary ∂K than the support of μ .

Let K be a compact nc convex set. An nc state $\mu : C(K) \to M_n$ represents $x \in K$ or has barycenter x if $\mu|_{A(K)} = \delta_x$.

Every $x \in K$ has at least one representing nc state, namely δ_x . This is the only representing nc state for x iff $x \in \partial K$.

Definition

The **nc Choquet order** on $S_{nc}(C(K))$ is defined by

 $\mu \prec \nu$ if $\mu(f) \leq \nu(f)$ for all convex $f \in C(K)$.

Intuition: $\mu \prec \nu$ means that the support of ν is closer to the extreme boundary ∂K than the support of μ .

For $x \in K$, the set $\{\mu \in S_{nc}(C(K)) : \mu|_{A(K)} = x\}$ has a unique minimal element δ_x . By Zorn, it always contains at least one maximal element.

Let K be a compact nc convex set. An nc state $\mu : C(K) \to M_n$ represents $x \in K$ or has barycenter x if $\mu|_{A(K)} = \delta_x$.

Every $x \in K$ has at least one representing nc state, namely δ_x . This is the only representing nc state for x iff $x \in \partial K$.

Definition

The **nc Choquet order** on $S_{nc}(C(K))$ is defined by

 $\mu \prec \nu$ if $\mu(f) \leq \nu(f)$ for all convex $f \in C(K)$.

Intuition: $\mu \prec \nu$ means that the support of ν is closer to the extreme boundary ∂K than the support of μ .

For $x \in K$, the set $\{\mu \in S_{nc}(C(K)) : \mu|_{A(K)} = x\}$ has a unique minimal element δ_x . By Zorn, it always contains at least one maximal element.

Theorem (NC Choquet-Bishop-de Leeuw - DK 2019)

An nc state $\mu \in S_{nc}(C(K))$ is maximal iff it is supported on the extreme boundary ∂K in a certain precise sense. Hence every point in K has a representing nc state supported on ∂K .

Definition (K-Shamovich 2021)

A compact nc convex set K is an **nc simplex** if each point $x \in K$ has a unique maximal representing nc state.

Definition (K-Shamovich 2021)

A compact nc convex set K is an **nc simplex** if each point $x \in K$ has a unique maximal representing nc state.

Examples:

1. Classical simplices (if K_1 is a simplex, then K is uniquely determined and is an nc simplex).

Definition (K-Shamovich 2021)

A compact nc convex set K is an **nc simplex** if each point $x \in K$ has a unique maximal representing nc state.

- 1. Classical simplices (if K_1 is a simplex, then K is uniquely determined and is an nc simplex).
- 2. NC state spaces of C*-algebras. An nc simplex K is Bauer if ∂C is closed. A compact nc convex set is the nc state space of a C*-algebra iff it is an nc Bauer simplex (KS 2021).

Definition (K-Shamovich 2021)

A compact nc convex set K is an **nc simplex** if each point $x \in K$ has a unique maximal representing nc state.

- 1. Classical simplices (if K_1 is a simplex, then K is uniquely determined and is an nc simplex).
- 2. NC state spaces of C*-algebras. An nc simplex K is Bauer if ∂C is closed. A compact nc convex set is the nc state space of a C*-algebra iff it is an nc Bauer simplex (KS 2021).
- 3. The nc Poulsen simplex (nc state space of an operator system constructed by Kirchberg-Wasserman).

Definition (K-Shamovich 2021)

A compact nc convex set K is an **nc simplex** if each point $x \in K$ has a unique maximal representing nc state.

- 1. Classical simplices (if K_1 is a simplex, then K is uniquely determined and is an nc simplex).
- 2. NC state spaces of C*-algebras. An nc simplex K is Bauer if ∂C is closed. A compact nc convex set is the nc state space of a C*-algebra iff it is an nc Bauer simplex (KS 2021).
- 3. The nc Poulsen simplex (nc state space of an operator system constructed by Kirchberg-Wasserman).
- 4. Invariant nc states $S_{nc}(A)^{G}$ on a G-C*-algebra A (KS 2021).

Definition (K-Shamovich 2021)

A compact nc convex set K is an **nc simplex** if each point $x \in K$ has a unique maximal representing nc state.

- 1. Classical simplices (if K_1 is a simplex, then K is uniquely determined and is an nc simplex).
- 2. NC state spaces of C*-algebras. An nc simplex K is Bauer if ∂C is closed. A compact nc convex set is the nc state space of a C*-algebra iff it is an nc Bauer simplex (KS 2021).
- 3. The nc Poulsen simplex (nc state space of an operator system constructed by Kirchberg-Wasserman).
- 4. Invariant nc states $S_{nc}(A)^G$ on a G-C*-algebra A (KS 2021).
- 5. K is an nc simplex iff $A(K)^{**}$ is a von Neumann algebra (KS 2021), e.g. if A(K) has WEP.

Definition (K-Shamovich 2021)

A compact nc convex set K is an **nc simplex** if each point $x \in K$ has a unique maximal representing nc state.

- 1. Classical simplices (if K_1 is a simplex, then K is uniquely determined and is an nc simplex).
- 2. NC state spaces of C*-algebras. An nc simplex K is Bauer if ∂C is closed. A compact nc convex set is the nc state space of a C*-algebra iff it is an nc Bauer simplex (KS 2021).
- 3. The nc Poulsen simplex (nc state space of an operator system constructed by Kirchberg-Wasserman).
- 4. Invariant nc states $S_{nc}(A)^G$ on a G-C*-algebra A (KS 2021).
- 5. K is an nc simplex iff $A(K)^{**}$ is a von Neumann algebra (KS 2021), e.g. if A(K) has WEP.

Definition (K-Shamovich 2021)

A compact nc convex set K is an **nc simplex** if each point $x \in K$ has a unique maximal representing nc state.

Examples:

- 1. Classical simplices (if K_1 is a simplex, then K is uniquely determined and is an nc simplex).
- 2. NC state spaces of C*-algebras. An nc simplex K is Bauer if ∂C is closed. A compact nc convex set is the nc state space of a C*-algebra iff it is an nc Bauer simplex (KS 2021).
- 3. The nc Poulsen simplex (nc state space of an operator system constructed by Kirchberg-Wasserman).
- 4. Invariant nc states $S_{nc}(A)^G$ on a G-C*-algebra A (KS 2021).
- 5. K is an nc simplex iff $A(K)^{**}$ is a von Neumann algebra (KS 2021), e.g. if A(K) has WEP.

Intuition: K is an nc simplex if every point in K can be uniquely expressed as an nc convex combination of extreme points of K.

Definition (K-Shamovich 2021)

A compact nc convex set K is an **nc simplex** if each point $x \in K$ has a unique maximal representing nc state.

Examples:

- 1. Classical simplices (if K_1 is a simplex, then K is uniquely determined and is an nc simplex).
- 2. NC state spaces of C*-algebras. An nc simplex K is Bauer if ∂C is closed. A compact nc convex set is the nc state space of a C*-algebra iff it is an nc Bauer simplex (KS 2021).
- 3. The nc Poulsen simplex (nc state space of an operator system constructed by Kirchberg-Wasserman).
- 4. Invariant nc states $S_{nc}(A)^{G}$ on a G-C*-algebra A (KS 2021).
- 5. K is an nc simplex iff $A(K)^{**}$ is a von Neumann algebra (KS 2021), e.g. if A(K) has WEP.

Intuition: K is an nc simplex if every point in K can be uniquely expressed as an nc convex combination of extreme points of K.

Theorem (KS 2021, K-Kim-Manor 2021)

A locally compact group G has property (T) iff $S_{nc}(A)^G$ is a Bauer simplex for every G-C*-algebra A

Definition (Hardy-Littlewood-Pólya 1929)

For $a, b \in \mathbb{R}^n$, a is **majorized** by b, written $a \prec b$ if

 $f(a) \leq f(b)$ for all convex functions $f \in C(\mathbb{R}^n)$

Definition (Hardy-Littlewood-Pólya 1929)

For $a, b \in \mathbb{R}^n$, a is **majorized** by b, written $a \prec b$ if

 $f(a) \leq f(b)$ for all convex functions $f \in C(\mathbb{R}^n)$

Theorem (Hardy-Littlewood-Pólya 1929)

For $a, b \in \mathbb{R}^n$, the following are equivalent: 1. $a \prec b$,

Definition (Hardy-Littlewood-Pólya 1929)

For $a, b \in \mathbb{R}^n$, a is **majorized** by b, written $a \prec b$ if

 $f(a) \leq f(b)$ for all convex functions $f \in C(\mathbb{R}^n)$

Theorem (Hardy-Littlewood-Pólya 1929)

For $a, b \in \mathbb{R}^{n}$, the following are equivalent: 1. $a \prec b$, 2. $\sum_{i=1}^{k} a_{i} \leq \sum_{i=1}^{k} b_{i}$ for $1 \leq k \leq n$ with equality for k = n.

Definition (Hardy-Littlewood-Pólya 1929)

For $a, b \in \mathbb{R}^n$, a is **majorized** by b, written $a \prec b$ if

 $f(a) \leq f(b)$ for all convex functions $f \in C(\mathbb{R}^n)$

Theorem (Hardy-Littlewood-Pólya 1929)

For $a, b \in \mathbb{R}^n$, the following are equivalent:

1. $a \prec b$,

- 2. $\sum_{i=1}^{k} a_i \leq \sum_{i=1}^{k} b_i$ for $1 \leq k \leq n$ with equality for k = n.
- 3. a = Db for doubly stochastic $D \in M_n$.

Definition (Hardy-Littlewood-Pólya 1929)

For $a, b \in \mathbb{R}^n$, a is **majorized** by b, written $a \prec b$ if

 $f(a) \leq f(b)$ for all convex functions $f \in C(\mathbb{R}^n)$

Theorem (Hardy-Littlewood-Pólya 1929)

For $a, b \in \mathbb{R}^n$, the following are equivalent:

1. $a \prec b$,

- 2. $\sum_{i=1}^{k} a_i \leq \sum_{i=1}^{k} b_i$ for $1 \leq k \leq n$ with equality for k = n.
- 3. a = Db for doubly stochastic $D \in M_n$.

Definition (Hardy-Littlewood-Pólya 1929)

For $a, b \in \mathbb{R}^n$, a is **majorized** by b, written $a \prec b$ if

 $f(a) \leq f(b)$ for all convex functions $f \in C(\mathbb{R}^n)$

Theorem (Hardy-Littlewood-Pólya 1929)

For $a, b \in \mathbb{R}^n$, the following are equivalent:

1. $a \prec b$,

- 2. $\sum_{i=1}^{k} a_i \leq \sum_{i=1}^{k} b_i$ for $1 \leq k \leq n$ with equality for k = n.
- 3. a = Db for doubly stochastic $D \in M_n$.

Choquet-theoretic perspective: Let A = Diag(a), B = Diag(b) and let $C \subseteq \mathbb{R}$ be a closed interval containing their spectrum. Define $\mu_A, \mu_B \in Prob(C)$ by

$$\mu_A(f) = \operatorname{Tr}(f(A)), \ \mu_B(f) = \operatorname{Tr}(f(B)).$$

Then $a \prec b$ iff $\mu_A \prec_c \mu_B$.

Majorization in a finite von Neumann algebra

Let (M, τ) be a finite von Neumann algebra.

Definition

For $a, b \in M$, a is **majorized** by b, written $a \prec b$ if

 $f(a) \leq f(b)$ for all convex functions $f \in C(C)$,

where $C \subseteq \mathbb{R}$ is an interval containing $\sigma(a), \sigma(b)$.

Majorization in a finite von Neumann algebra

Let (M, τ) be a finite von Neumann algebra.

Definition

For $a, b \in M$, a is **majorized** by b, written $a \prec b$ if

 $f(a) \leq f(b)$ for all convex functions $f \in C(C)$,

where $C \subseteq \mathbb{R}$ is an interval containing $\sigma(a), \sigma(b)$.

A map $\phi: M \to M$ is **doubly stochastic** if it is normal unital completely positive and trace preserving.

Majorization in a finite von Neumann algebra

Let (M, τ) be a finite von Neumann algebra.

Definition

For $a, b \in M$, a is **majorized** by b, written $a \prec b$ if

 $f(a) \leq f(b)$ for all convex functions $f \in C(C)$,

where $C \subseteq \mathbb{R}$ is an interval containing $\sigma(a), \sigma(b)$.

A map $\phi: M \to M$ is **doubly stochastic** if it is normal unital completely positive and trace preserving.

Theorem (Kamei 1983, Hiai 1987)

For $a, b \in M_{sa}$, the following are equivalent: 1. $a \prec b$,

Let (M, τ) be a finite von Neumann algebra.

Definition

For $a, b \in M$, a is **majorized** by b, written $a \prec b$ if

 $f(a) \leq f(b)$ for all convex functions $f \in C(C)$,

where $C \subseteq \mathbb{R}$ is an interval containing $\sigma(a), \sigma(b)$.

A map $\phi: M \to M$ is **doubly stochastic** if it is normal unital completely positive and trace preserving.

Theorem (Kamei 1983, Hiai 1987)

- 1. $a \prec b$,
- 2. the spectral scales of a and b satisfy the HLP inequalities,

Let (M, τ) be a finite von Neumann algebra.

Definition

For $a, b \in M$, a is **majorized** by b, written $a \prec b$ if

 $f(a) \leq f(b)$ for all convex functions $f \in C(C)$,

where $C \subseteq \mathbb{R}$ is an interval containing $\sigma(a), \sigma(b)$.

A map $\phi: M \to M$ is **doubly stochastic** if it is normal unital completely positive and trace preserving.

Theorem (Kamei 1983, Hiai 1987)

- 1. $a \prec b$,
- 2. the spectral scales of a and b satisfy the HLP inequalities,
- 3. $a = \phi(b)$ for doubly stochastic $\phi : M \to M$.

Let (M, τ) be a finite von Neumann algebra.

Definition

For $a, b \in M$, a is **majorized** by b, written $a \prec b$ if

 $f(a) \leq f(b)$ for all convex functions $f \in C(C)$,

where $C \subseteq \mathbb{R}$ is an interval containing $\sigma(a), \sigma(b)$.

A map $\phi: M \to M$ is **doubly stochastic** if it is normal unital completely positive and trace preserving.

Theorem (Kamei 1983, Hiai 1987)

- 1. $a \prec b$,
- 2. the spectral scales of a and b satisfy the HLP inequalities,
- 3. $a = \phi(b)$ for doubly stochastic $\phi : M \to M$.
- 4. $a \in \overline{\operatorname{conv}} \{ ubu^* : u \in \mathcal{U}(M) \}.$

Let (M, τ) be a finite von Neumann algebra.

Definition

For $a, b \in M$, a is **majorized** by b, written $a \prec b$ if

 $f(a) \leq f(b)$ for all convex functions $f \in C(C)$,

where $C \subseteq \mathbb{R}$ is an interval containing $\sigma(a), \sigma(b)$.

A map $\phi: M \to M$ is **doubly stochastic** if it is normal unital completely positive and trace preserving.

Theorem (Kamei 1983, Hiai 1987)

- 1. $a \prec b$,
- 2. the spectral scales of a and b satisfy the HLP inequalities,
- 3. $a = \phi(b)$ for doubly stochastic $\phi : M \to M$.
- 4. $a \in \overline{\operatorname{conv}} \{ ubu^* : u \in \mathcal{U}(M) \}.$

Let (M, τ) be a finite von Neumann algebra.

Definition

For $a, b \in M$, a is **majorized** by b, written $a \prec b$ if

 $f(a) \leq f(b)$ for all convex functions $f \in C(C)$,

where $C \subseteq \mathbb{R}$ is an interval containing $\sigma(a), \sigma(b)$.

A map $\phi: M \to M$ is **doubly stochastic** if it is normal unital completely positive and trace preserving.

Theorem (Kamei 1983, Hiai 1987)

For $a, b \in M_{sa}$, the following are equivalent:

- 1. $a \prec b$,
- 2. the spectral scales of a and b satisfy the HLP inequalities,
- 3. $a = \phi(b)$ for doubly stochastic $\phi : M \to M$.
- 4. $a \in \overline{\operatorname{conv}} \{ ubu^* : u \in \mathcal{U}(M) \}.$

Note: (4) utilizes the Birkhoff-von Neumann theorem.

Let (M, τ) be a finite von Neumann algebra.

Definition (K-Marcoux-Skoufranis 2023)

For tuples $a = (a_i), b = (b_i)$ in M, a is **majorized** by b, written $a \prec b$ if

 $f(a) \leq f(b)$ for all convex nc functions $f \in C(K)$,

where K is a sufficiently large compact nc convex set.

Note: Elements are not required to be self-adjoint.

Let (M, τ) be a finite von Neumann algebra.

Definition (K-Marcoux-Skoufranis 2023)

For tuples $a = (a_i), b = (b_i)$ in M, a is **majorized** by b, written $a \prec b$ if

 $f(a) \leq f(b)$ for all convex nc functions $f \in C(K)$,

where K is a sufficiently large compact nc convex set.

Note: Elements are not required to be self-adjoint.

Recall: a map $\phi: M \to M$ is **doubly stochastic** if it is normal unital completely positive and trace preserving.

Theorem (KMS 2023)

For tuples $a = (a_i), b = (b_i)$ in M_{sa} , the following are equivalent: 1. $a \prec b$,

Let (M, τ) be a finite von Neumann algebra.

Definition (K-Marcoux-Skoufranis 2023)

For tuples $a = (a_i), b = (b_i)$ in M, a is **majorized** by b, written $a \prec b$ if

 $f(a) \leq f(b)$ for all convex nc functions $f \in C(K)$,

where K is a sufficiently large compact nc convex set.

Note: Elements are not required to be self-adjoint.

Recall: a map $\phi: M \to M$ is **doubly stochastic** if it is normal unital completely positive and trace preserving.

Theorem (KMS 2023)

For tuples $a = (a_i), b = (b_i)$ in M_{sa} , the following are equivalent:

- 1. $a \prec b$,
- 2. $a_i = \phi(b_i)$ for all *i* for a doubly stochastic map $\phi : M \to M$.

Let (M, τ) be a finite von Neumann algebra.

Definition (K-Marcoux-Skoufranis 2023)

For tuples $a = (a_i), b = (b_i)$ in M, a is **majorized** by b, written $a \prec b$ if

 $f(a) \leq f(b)$ for all convex nc functions $f \in C(K)$,

where K is a sufficiently large compact nc convex set.

Note: Elements are not required to be self-adjoint.

Recall: a map $\phi: M \to M$ is **doubly stochastic** if it is normal unital completely positive and trace preserving.

Theorem (KMS 2023)

For tuples $a = (a_i), b = (b_i)$ in M_{sa} , the following are equivalent:

- 1. $a \prec b$,
- 2. $a_i = \phi(b_i)$ for all *i* for a doubly stochastic map $\phi : M \to M$.

Let (M, τ) be a finite von Neumann algebra.

Definition (K-Marcoux-Skoufranis 2023)

For tuples $a = (a_i), b = (b_i)$ in M, a is **majorized** by b, written $a \prec b$ if

 $f(a) \leq f(b)$ for all convex nc functions $f \in C(K)$,

where K is a sufficiently large compact nc convex set.

Note: Elements are not required to be self-adjoint.

Recall: a map $\phi: M \to M$ is **doubly stochastic** if it is normal unital completely positive and trace preserving.

Theorem (KMS 2023)

For tuples $a = (a_i), b = (b_i)$ in M_{sa} , the following are equivalent:

1.
$$a \prec b$$
,

2.
$$a_i = \phi(b_i)$$
 for all *i* for a doubly stochastic map $\phi : M \to M$.

Note: Not true in general that *a* belongs to the unitary orbit of *b* (i.e. that ϕ can be chosen to be mixed unitary) even for |a| = |b| = 1 in the non-self-adjoint case. Counterexamples utilize negative solution to the asymptotic Birkhoff-von Neumann conjecture (Haagerup-Musat 2011).

Key idea

Key idea is equivalence between nc Choquet order and the "dilation order:" for nc states μ, ν on C(K), $\mu \prec_{nc} \nu$ iff there is a Stinespring representations (π_{μ}, ν) of μ such that $\pi_{\mu}|_{A(K)}$ dilates to a Stinespring representation (π_{ν}, ν) of ν , i.e.

$$\pi_{\nu}|_{\mathcal{A}(\mathcal{K})} = \begin{bmatrix} \pi_{\mu}|_{\mathcal{A}(\mathcal{K})} & *\\ * & * \end{bmatrix}.$$

Key idea

Key idea is equivalence between nc Choquet order and the "dilation order:" for nc states μ, ν on C(K), $\mu \prec_{nc} \nu$ iff there is a Stinespring representations (π_{μ}, \mathbf{v}) of μ such that $\pi_{\mu}|_{A(K)}$ dilates to a Stinespring representation (π_{ν}, \mathbf{v}) of ν , i.e.

$$\pi_{\nu}|_{\mathcal{A}(\mathcal{K})} = \begin{bmatrix} \pi_{\mu}|_{\mathcal{A}(\mathcal{K})} & *\\ * & * \end{bmatrix}.$$

More generally, can characterize existence of ucp maps between tuples in M that preserve arbitrary ucp maps on M, e.g. states, conditional expectations.

Thanks!