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What is Choquet theory?

My answer: Choquet theory is (commutative) operator space theory from
the dual perspective. Specifically, utilizing the duality between compact
convex sets and function systems.

A function system is an operator system that embeds into a commutative
C*-algebra (i.e. 1 ∈ F = F ∗ ⊆ C(X ) for compact X ).

Theorem (Kadison 1951)

A function system F is unitally order isomorphic to the function system
A(C ) of continuous affine functions on its state space C = S(F )

F → A(C ) : f → f̂ where f̂ (x) = x(f ) for x ∈ C .

Hence the category of function systems with unital order homomorphisms
is dual to the category of compact convex sets with continuous affine
maps.

The convex structure of C reveals itself in the interplay between the
function system A(C ) and the convex functions in C (C ): if f ∈ C(C ) is
convex, then f (x) = sup{a(x) : a ∈ A(C ), a ≤ f }.
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Choquet order

Let C be a compact convex set. A probability measure µ ∈ Prob(C )
represents x ∈ C or has barycenter x if µ|A(C) = x .

Every x ∈ C has at least one representing measure, namely δx . This is the
only representing measure for x iff x ∈ ∂C .

Definition

The Choquet order on Prob(C ) is the partial order defined by

µ ≺ ν if µ(f ) ≤ ν(f ) for all convex f ∈ C(C ).

Intuition: µ ≺ ν means that the support of ν is closer to the extreme
boundary ∂K than the support of µ.

For x ∈ C , the set {µ ∈ Prob(C ) : µ|A(C) = x} has a unique minimal
element δx . By Zorn, it always contains at least one maximal element.

Theorem (Choquet 1956, Bishop - de Leeuw 1959)

A probability measure µ ∈ Prob(C ) is maximal if and only if it is
supported on the extreme boundary ∂C. Hence every point in C has a
representing measure supported on ∂C.

Note: In finite dimensions, this is Carathéodory’s theorem.
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3



Choquet order

Let C be a compact convex set. A probability measure µ ∈ Prob(C )
represents x ∈ C or has barycenter x if µ|A(C) = x .

Every x ∈ C has at least one representing measure, namely δx . This is the
only representing measure for x iff x ∈ ∂C .

Definition

The Choquet order on Prob(C ) is the partial order defined by

µ ≺ ν if µ(f ) ≤ ν(f ) for all convex f ∈ C(C ).

Intuition: µ ≺ ν means that the support of ν is closer to the extreme
boundary ∂K than the support of µ.

For x ∈ C , the set {µ ∈ Prob(C ) : µ|A(C) = x} has a unique minimal
element δx . By Zorn, it always contains at least one maximal element.

Theorem (Choquet 1956, Bishop - de Leeuw 1959)

A probability measure µ ∈ Prob(C ) is maximal if and only if it is
supported on the extreme boundary ∂C. Hence every point in C has a
representing measure supported on ∂C.

Note: In finite dimensions, this is Carathéodory’s theorem.
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Simplices

Definition

A compact convex set C is a simplex iff every point in C has a unique
maximal representing measure.

Examples:

1. n-simplices in Rn.

2. State spaces of commutative C*-algebras, i.e. Bauer simplices. A
simplex C is Bauer iff ∂C is closed (Bauer 1963).

3. The Poulsen simplex. Unique metrizable simplex P with ∂P dense in
P (Lindenstrauss-Olsen-Sternfeld 1978).

4. Invariant probability measures Prob(X )G on a compact G -space X .
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Two applications of simplices

Theorem (Namioka-Phelps 1969)

A compact convex set C is a simplex iff A(C ) is nuclear.

Theorem (Glasner-Weiss 1997)

A locally compact group G has property (T) iff Prob(X )G is a Bauer
simplex for every compact G-space X .
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Some history of noncommutative convexity

(Arveson 1969): Considers operator systems as noncommutative analogues
of function systems. Establishes injectivity of B(H) and conjectures
existence of noncommutative analogues of Choquet boundary and Shilov
boundary for an operator system.

(Hamana 1979): Establishes existence of Shilov boundary (C*-envelope) of
an operator system.

(Wittstock 1981): Introduces notion of matrix convex set.

(Effros-Winkler 1997): Establishes analogue of Hahn-Banach separation
theorem for matrix convex sets.

(Webster-Winkler 1999): Establishes dual equivalence between category of
unital operator systems and category of matrix convex sets.

(Arveson 2007, Davidson-K 2015): Establishes existence of Choquet
boundary of an operator system.

Note: missing numerous developments in operator spaces/systems (e.g.
Choi-Effros, Effros-Ruan), matrix convexity and real algebraic geometry.
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Two missing pieces in operator space theory

Geometric side
Missing a good notion of extreme point for a matrix convex set,
corresponding Krein-Milman-type theorem, etc.

Operator algebraic side
Missing a theory of nc continuous functions, convex nc functions, nc
measures, etc. Analogy with Taylor-Voiculescu theory of nc analytic
functions.

Classical notions are essential to fully develop the classical theory. In my
view, operator space theory is incomplete without these.
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Noncommutative convexity

Definition (DK2019)

A compact nc convex set over a dual operator space E is a graded set
K =

∐
n≤κ Kn with Kn ⊆ Mn(E ) such that each Kn is compact in the dual

topology on Mn(E ) and K is closed under nc convex combinations:∑
α∗
i xiαi ∈ Kn

for xi ∈ Kni and αi ∈ Mn,ni satisfying
∑

α∗
i αi = 1n.

Here, κ is a suitably large infinite cardinal and Mn
∼= B(H) for dimH = n.

Refines notion of matrix convex set, where n < ∞. Subtle but crucial
difference.

Key example: Let S be an operator system. The nc state space of S is

K = ⊔n≤κKn, where Kn = {x : A → Mn ucp}.

Theorem (Arveson 2007, DK 2015)

A compact nc convex set is the closed convex hull of its extreme points.

The extreme boundary ∂K can be identified with an (often very
complicated) subset of the irreducible representations of C∗(A(K )). So
necessary to allow n = ∞.
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Noncommutative functions

Definition (DK2019)

Let K be a compact nc convex set. A function f : K →
∐

Mn is an nc
function if it is graded, respects direct sums and is equivariant with
respect to unitaries:

1. f (Kn) ⊆ Mn for all n

2. f (⊕xi ) = ⊕f (xi ) for all xi ∈ Kni

3. f (α∗xα) = α∗f (x)α for all x ∈ Kn and unitaries α ∈ Mn

The function f is affine if in addition it is equivariant with respect to
isometries:

3’. f (β∗xβ) = β∗f (x)β for all x ∈ Kn and isometries α ∈ Mn,m

Analogous to notion of nc holomorphic function on nc domain defined by
Taylor (1973) and Voiculescu (2000).

We write C(K ) for the C*-algebra of continuous nc functions on K , A(K )
for the unital operator system of continuous affine nc functions on K .
Elements in C(K ) are“uniform” limits of nc *-polynomials in A(K ).

Note: Nonzero nc functions can be zero on Kn for n < ∞. Similarly,
discontinuous nc functions can be continuous on Kn for n < ∞. More
justification for n = ∞.
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3’. f (β∗xβ) = β∗f (x)β for all x ∈ Kn and isometries α ∈ Mn,m

Analogous to notion of nc holomorphic function on nc domain defined by
Taylor (1973) and Voiculescu (2000).

We write C(K ) for the C*-algebra of continuous nc functions on K , A(K )
for the unital operator system of continuous affine nc functions on K .
Elements in C(K ) are“uniform” limits of nc *-polynomials in A(K ).

Note: Nonzero nc functions can be zero on Kn for n < ∞. Similarly,
discontinuous nc functions can be continuous on Kn for n < ∞. More
justification for n = ∞.

9



Noncommutative functions

Definition (DK2019)

Let K be a compact nc convex set. A function f : K →
∐

Mn is an nc
function if it is graded, respects direct sums and is equivariant with
respect to unitaries:

1. f (Kn) ⊆ Mn for all n

2. f (⊕xi ) = ⊕f (xi ) for all xi ∈ Kni

3. f (α∗xα) = α∗f (x)α for all x ∈ Kn and unitaries α ∈ Mn

The function f is affine if in addition it is equivariant with respect to
isometries:

3’. f (β∗xβ) = β∗f (x)β for all x ∈ Kn and isometries α ∈ Mn,m

Analogous to notion of nc holomorphic function on nc domain defined by
Taylor (1973) and Voiculescu (2000).

We write C(K ) for the C*-algebra of continuous nc functions on K , A(K )
for the unital operator system of continuous affine nc functions on K .
Elements in C(K ) are“uniform” limits of nc *-polynomials in A(K ).

Note: Nonzero nc functions can be zero on Kn for n < ∞. Similarly,
discontinuous nc functions can be continuous on Kn for n < ∞. More
justification for n = ∞.

9



Noncommutative functions

Theorem (Webster-Winkler 1999, DK 2019)

An operator system S is unitally completely order isomorphic to the
operator system A(K ) of continuous nc affine functions on its nc state
space K = Snc(S).

S → A(K ) : s → ŝ where ŝ(x) = x(s) for x ∈ K .

Hence the category of operator systems with unital complete order
homomorphisms is dual to the category of compact nc convex sets with
continuous nc affine maps.

Theorem (DK 2019)

The C*-algebra C (K ) coincides with the maximal/universal C*-algebra of
the operator system A(K ). Its bidual C (K )∗∗ is the C*-algebra of
bounded nc functions on K.

Can be viewed as very special case of the noncommutative
Stone-Weierstrass problem. Proof uses noncommutative Gelfand
representation theorem of Takesaki (1967) and Bichteler (1969).
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Example: The Cuntz operator system

Let S = span{1, v1, v∗1 , . . . , vd , v∗d } be the operator system spanned by the
canonical generators of the Cuntz algebra Od , i.e. v

∗
i vj = δij1. Then

S ∼= A(K ), where K = ⊔n≤ℵ0 is the nc d-ball

Kn = {x = (α1, . . . , αd) ∈ Md
n : ∥(α1, . . . , αd)∥ ≤ 1}.

The extreme boundary ∂K coincides with the set of irreducible
representations of Od .

The continuous nc function on K are uniform limits of *-polynomials in
d-noncommuting variables, e.g. for d = 2,

p(z1, z2) = z31 + 5z2 − 2z1z
∗
1 + z2z

∗
2 + (z1z2 − z2z1)

∗(z1z2 − z2z1).

The uniform norm is

∥p∥∞ = sup{∥p(x)∥ : x ∈ K}.

Note: the operator system spanned by freely independent semicirculars
provides a (very interesting) example with ∂K a complicated subset of the
irreducible representations of the C*-algebra it generates.
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NC convex functions

Definition

A self-adjoint-valued nc function f ∈ C (K ) is convex if its epigraph

Epi(f ) =
∐
n

{(x , α) : f (x) ≤ α} ⊆
∐
n

Kn ×Mn

is an nc convex set.

Equivalent to f (α∗xα) ≤ α∗f (x)α for all x ∈ K and all isometries α.

Example

Let I ⊆ R be a compact interval. Define K =
∐

Kn by

Kn = {α ∈ (Mn)sa : σ(α) ⊆ I}.

Then K is a compact nc convex set with K1 = I . A self-adjoint function
f ∈ C (K ) is convex as an nc function iff the restriction f |K1 is operator
convex, i.e.

f (tα+ (1− t)β) ≤ tf (α) + (1− t)f (β)

for t ∈ [0, 1] and self-adjoint α, β ∈ Mn with σ(α), σ(β) ⊆ I .

Essentially the Hansen-Pedersen-Jensen inequality for operator convex
functions.
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Noncommutative Choquet order

Let K be a compact nc convex set. An nc state µ : C (K ) → Mn
represents x ∈ K or has barycenter x if µ|A(K) = δx .

Every x ∈ K has at least one representing nc state, namely δx . This is the
only representing nc state for x iff x ∈ ∂K .

Definition

The nc Choquet order on Snc(C (K )) is defined by

µ ≺ ν if µ(f ) ≤ ν(f ) for all convex f ∈ C (K ).

Intuition: µ ≺ ν means that the support of ν is closer to the extreme
boundary ∂K than the support of µ.

For x ∈ K , the set {µ ∈ Snc(C (K )) : µ|A(K) = x} has a unique minimal
element δx . By Zorn, it always contains at least one maximal element.

Theorem (NC Choquet-Bishop-de Leeuw - DK 2019)

An nc state µ ∈ Snc(C (K )) is maximal iff it is supported on the extreme
boundary ∂K in a certain precise sense. Hence every point in K has a
representing nc state supported on ∂K.
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Noncommutative simplices

Definition (K-Shamovich 2021)

A compact nc convex set K is an nc simplex if each point x ∈ K has a
unique maximal representing nc state.

Examples:

1. Classical simplices (if K1 is a simplex, then K is uniquely determined
and is an nc simplex).

2. NC state spaces of C*-algebras. An nc simplex K is Bauer if ∂C is
closed. A compact nc convex set is the nc state space of a C*-algebra
iff it is an nc Bauer simplex (KS 2021).

3. The nc Poulsen simplex (nc state space of an operator system
constructed by Kirchberg-Wasserman).

4. Invariant nc states Snc(A)
G on a G -C*-algebra A (KS 2021).

5. K is an nc simplex iff A(K )∗∗ is a von Neumann algebra (KS 2021),
e.g. if A(K ) has WEP.

Intuition: K is an nc simplex if every point in K can be uniquely
expressed as an nc convex combination of extreme points of K .

Theorem (KS 2021, K-Kim-Manor 2021)

A locally compact group G has property (T) iff Snc(A)
G is a Bauer

simplex for every G-C*-algebra A
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Classical majorization

Definition (Hardy-Littlewood-Pólya 1929)

For a, b ∈ Rn, a is majorized by b, written a ≺ b if

f (a) ≤ f (b) for all convex functions f ∈ C (Rn)

Theorem (Hardy-Littlewood-Pólya 1929)

For a, b ∈ Rn, the following are equivalent:

1. a ≺ b,

2.
∑k

i=1 ai ≤
∑k

i=1 bi for 1 ≤ k ≤ n with equality for k = n.

3. a = Db for doubly stochastic D ∈ Mn.

Choquet-theoretic perspective: Let A = Diag(a), B = Diag(b) and let
C ⊆ R be a closed interval containing their spectrum. Define
µA, µB ∈ Prob(C ) by

µA(f ) = Tr(f (A)), µB(f ) = Tr(f (B)).

Then a ≺ b iff µA ≺c µB .
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Majorization in a finite von Neumann algebra

Let (M, τ) be a finite von Neumann algebra.

Definition

For a, b ∈ M, a is majorized by b, written a ≺ b if

f (a) ≤ f (b) for all convex functions f ∈ C(C ),

where C ⊆ R is an interval containing σ(a), σ(b).

A map ϕ : M → M is doubly stochastic if it is normal unital completely
positive and trace preserving.

Theorem (Kamei 1983, Hiai 1987)

For a, b ∈ Msa, the following are equivalent:

1. a ≺ b,

2. the spectral scales of a and b satisfy the HLP inequalities,

3. a = ϕ(b) for doubly stochastic ϕ : M → M.

4. a ∈ conv{ubu∗ : u ∈ U(M)}.

Note: (4) utilizes the Birkhoff-von Neumann theorem.
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Noncommutative majorization

Let (M, τ) be a finite von Neumann algebra.

Definition (K-Marcoux-Skoufranis 2023)

For tuples a = (ai ), b = (bi ) in M, a is majorized by b, written a ≺ b if

f (a) ≤ f (b) for all convex nc functions f ∈ C (K ),

where K is a sufficiently large compact nc convex set.

Note: Elements are not required to be self-adjoint.

Recall: a map ϕ : M → M is doubly stochastic if it is normal unital
completely positive and trace preserving.

Theorem (KMS 2023)

For tuples a = (ai ), b = (bi ) in Msa, the following are equivalent:

1. a ≺ b,

2. ai = ϕ(bi ) for all i for a doubly stochastic map ϕ : M → M.

Note: Not true in general that a belongs to the unitary orbit of b (i.e. that
ϕ can be chosen to be mixed unitary) even for |a| = |b| = 1 in the
non-self-adjoint case. Counterexamples utilize negative solution to the
asymptotic Birkhoff-von Neumann conjecture (Haagerup-Musat 2011).
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Key idea

Key idea is equivalence between nc Choquet order and the“dilation order:”
for nc states µ, ν on C (K ), µ ≺nc ν iff there is a Stinespring
representations (πµ, v) of µ such that πµ|A(K) dilates to a Stinespring
representation (πν , v) of ν, i.e.

πν |A(K) =

[
πµ|A(K) ∗

∗ ∗

]
.

More generally, can characterize existence of ucp maps between tuples in
M that preserve arbitrary ucp maps on M, e.g. states, conditional
expectations.
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Thanks!


