Basis Problems and Expansions, III

Stevo Todorcevic

The Fields Institute, March 17, 2023

(ロ)、(型)、(E)、(E)、 E) の(の)

What is a basis problem?

Definition

Given a quasi-ordered class (\mathcal{K}, \leq) of mathematical structures of the same type, we say that $\mathcal{K}_0 \subseteq \mathcal{K}$ is a **basis** of \mathcal{K} if for every $K \in \mathcal{K}$ there is $K_0 \in \mathcal{K}_0$ such that $K_0 \leq K$.

Problem

Suppose \mathcal{K}_0 is a downwards closed subclass of a given quasi-ordered class (\mathcal{K}, \leq). Can one characterize \mathcal{K}_0 by forbidding finitely many members of \mathcal{K} ?

Basis problem for gaps in $\mathcal{P}(\omega)/\text{Fin}$

Basis problem for gaps in $\mathcal{P}(\omega)/\mathrm{Fin}$

Notation:

Fix a countable index set N. For $a, b \subseteq N$, set

 $a \subseteq^* b$ iff $a \setminus b$ is finite,

 $a \perp b$ iff $a \cap b$ is finite.

For $\mathcal{A}, \mathcal{B} \subseteq \mathcal{P}(N)$, set

 $\mathcal{A} \perp \mathcal{B} \text{ iff } (\forall a \in \mathcal{A}) (\forall b \in \mathcal{B}) \ a \perp b.$ $\mathcal{A}^{\perp} = \{b : (\forall a \in \mathcal{A}) \ b \cap a \text{ is finite}\}.$

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ∽ � � �

Definition

A **preideal** on a countable set N is a family I of subsets of N such that if $x \in I$ and $y \subseteq x$ is infinite, then $y \in I$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Definition

A **preideal** on a countable set N is a family I of subsets of N such that if $x \in I$ and $y \subseteq x$ is infinite, then $y \in I$.

Definition

Let $\Gamma = {\Gamma_i : i \in n}$ be a *n*-sequence of preideals on the set *N* and let \mathfrak{X} be a family of subsets of $n = {0, 1, ..., n - 1}$.

Definition

A **preideal** on a countable set N is a family I of subsets of N such that if $x \in I$ and $y \subseteq x$ is infinite, then $y \in I$.

Definition

Let $\Gamma = {\Gamma_i : i \in n}$ be a *n*-sequence of preideals on the set N and let \mathfrak{X} be a family of subsets of $n = {0, 1, ..., n - 1}$.

1. We say that Γ is **separated** if there exist $a_0, \ldots, a_{n-1} \subseteq N$ such that $\bigcap_{i \in n} a_i = \emptyset$ and $x \subseteq^* a_i$ for all $x \in \Gamma_i$, $i \in n$.

Definition

A **preideal** on a countable set N is a family I of subsets of N such that if $x \in I$ and $y \subseteq x$ is infinite, then $y \in I$.

Definition

Let $\Gamma = {\Gamma_i : i \in n}$ be a *n*-sequence of preideals on the set *N* and let \mathfrak{X} be a family of subsets of $n = {0, 1, ..., n - 1}$.

1. We say that Γ is **separated** if there exist $a_0, \ldots, a_{n-1} \subseteq N$ such that $\bigcap_{i \in n} a_i = \emptyset$ and $x \subseteq^* a_i$ for all $x \in \Gamma_i$, $i \in n$.

2. We say that Γ is an \mathfrak{X} -gap if it is not separated, but $\bigcap_{i \in A} x_i =^* \emptyset$ whenever $x_i \in \Gamma_i$, $A \in \mathfrak{X}$.

Definition

A **preideal** on a countable set N is a family I of subsets of N such that if $x \in I$ and $y \subseteq x$ is infinite, then $y \in I$.

Definition

Let $\Gamma = {\Gamma_i : i \in n}$ be a *n*-sequence of preideals on the set *N* and let \mathfrak{X} be a family of subsets of $n = {0, 1, ..., n - 1}$.

1. We say that Γ is **separated** if there exist $a_0, \ldots, a_{n-1} \subseteq N$ such that $\bigcap_{i \in n} a_i = \emptyset$ and $x \subseteq^* a_i$ for all $x \in \Gamma_i$, $i \in n$.

2. We say that Γ is an \mathfrak{X} -gap if it is not separated, but $\bigcap_{i \in A} x_i =^* \emptyset$ whenever $x_i \in \Gamma_i$, $A \in \mathfrak{X}$.

Definition

When $\mathfrak{X} = [n]^2$ an \mathfrak{X} -gap will be called an *n*-gap.

Definition

A **preideal** on a countable set N is a family I of subsets of N such that if $x \in I$ and $y \subseteq x$ is infinite, then $y \in I$.

Definition

Let $\Gamma = {\Gamma_i : i \in n}$ be a *n*-sequence of preideals on the set *N* and let \mathfrak{X} be a family of subsets of $n = {0, 1, ..., n - 1}$.

- 1. We say that Γ is **separated** if there exist $a_0, \ldots, a_{n-1} \subseteq N$ such that $\bigcap_{i \in n} a_i = \emptyset$ and $x \subseteq^* a_i$ for all $x \in \Gamma_i$, $i \in n$.
- 2. We say that Γ is an \mathfrak{X} -gap if it is not separated, but $\bigcap_{i \in A} x_i =^* \emptyset$ whenever $x_i \in \Gamma_i$, $A \in \mathfrak{X}$.

Definition

When $\mathfrak{X} = [n]^2$ an \mathfrak{X} -gap will be called an *n*-gap. When $\mathfrak{X} = \{\{1, 2, ..., n-1\}\}$ an \mathfrak{X} -gap will be called an n_* -gap.

Theorem (Hausdorff, 1909, 1934; Luzin, 1947) There is an \aleph_1 -generated 2-gap in $\mathcal{P}(\omega)$ /Fin.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem (Hausdorff, 1909, 1934; Luzin, 1947) There is an \aleph_1 -generated 2-gap in $\mathcal{P}(\omega)$ /Fin.

Theorem (Aviles-T., 2011)

For k > 2, assuming Martin's axiom, there are no < c-generated k-gaps in $\mathcal{P}(\omega)/\text{FIN}$.

Theorem (Hausdorff, 1909, 1934; Luzin, 1947) There is an \aleph_1 -generated 2-gap in $\mathcal{P}(\omega)/\text{Fin}$.

Theorem (Aviles-T., 2011)

For k > 2, assuming Martin's axiom, there are no < c-generated k-gaps in $\mathcal{P}(\omega)/\text{FIN}$.

Definition

A 2-gap $(\mathcal{A}, \mathcal{B})$ for which \mathcal{A} and \mathcal{B} are σ -directed under the inclusion modulo finite is called a **Hausdorff gap**.

Theorem (Hausdorff, 1909, 1934; Luzin, 1947) There is an \aleph_1 -generated 2-gap in $\mathcal{P}(\omega)/\text{Fin}$.

Theorem (Aviles-T., 2011)

For k > 2, assuming Martin's axiom, there are no < c-generated k-gaps in $\mathcal{P}(\omega)/\text{FIN}$.

Definition

A 2-gap $(\mathcal{A}, \mathcal{B})$ for which \mathcal{A} and \mathcal{B} are σ -directed under the inclusion modulo finite is called a **Hausdorff gap**.

Theorem (T. 1996)

There are no analytic Hausdorff gaps.

Some applications of analytic gaps

Theorem (T., 1999)

The class of non-metrizable separable compact spaces of Baire-class-1 functions defined on a Polish space has the **3-element basis** $\{S, D, P\}$, where S is the split-interval, D the (separable version of the) Alexandrov duplicate of the Cantor set, and P the one-point compactification of the Cantor tree space.

Some applications of analytic gaps

Theorem (T., 1999)

The class of non-metrizable separable compact spaces of Baire-class-1 functions defined on a Polish space has the **3-element basis** $\{S, D, P\}$, where S is the split-interval, D the (separable version of the) Alexandrov duplicate of the Cantor set, and P the one-point compactification of the Cantor tree space.

Theorem (T., 1999)

If x is a non- G_{δ} point of some compact set K of Baire-class-1 functions then K contains a topological copy of P where x plays the role of point at infinity.

(日) (同) (三) (三) (三) (○) (○)

Some applications of analytic gaps

Theorem (T., 1999)

The class of non-metrizable separable compact spaces of Baire-class-1 functions defined on a Polish space has the **3-element basis** $\{S, D, P\}$, where S is the split-interval, D the (separable version of the) Alexandrov duplicate of the Cantor set, and P the one-point compactification of the Cantor tree space.

Theorem (T., 1999)

If x is a non- G_{δ} point of some compact set K of Baire-class-1 functions then K contains a topological copy of P where x plays the role of point at infinity.

Theorem (Argyros-Dodos-Kanellopoulos, 2008)

Every infinite-dimensional **dual** Banach space has an infinite-dimensional quotient with a Schauder basis.

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ∽ � � �

Definition

The orthogonal of the gap Γ is $\Gamma^{\perp} = (\bigcup_{i \in n} \Gamma_i)^{\perp}$. The gap Γ is called **dense** if Γ^{\perp} is just the family of finite subsets of *N*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Definition

The orthogonal of the gap Γ is $\Gamma^{\perp} = (\bigcup_{i \in n} \Gamma_i)^{\perp}$. The gap Γ is called **dense** if Γ^{\perp} is just the family of finite subsets of *N*.

Definition

For Γ and Δ two n_* -gaps on countable sets N and M, respectively, we say that

$\Gamma \leq \Delta$

if there exists a one-to-one map $\phi: N \to M$ such that for i < n,

if x ∈ Γ_i then φ(x) ∈ Δ_i.
 If x ∈ Γ_i[⊥] then φ(x) ∈ Δ_i[⊥].

Definition

The orthogonal of the gap Γ is $\Gamma^{\perp} = (\bigcup_{i \in n} \Gamma_i)^{\perp}$. The gap Γ is called **dense** if Γ^{\perp} is just the family of finite subsets of *N*.

Definition

For Γ and Δ two n_* -gaps on countable sets N and M, respectively, we say that

$$\Gamma \leq \Delta$$

if there exists a one-to-one map $\phi: N \to M$ such that for i < n,

1. if
$$x \in \Gamma_i$$
 then $\phi(x) \in \Delta_i$.

2. If
$$x\in {\sf \Gamma}_i^\perp$$
 then $\phi(x)\in \Delta_i^\perp.$

Two n_* -gaps Γ and Γ' are called **equivalent** if $\Gamma \leq \Gamma'$ and if $\Gamma' \leq \Gamma$.

When Γ is a n-gap, the second condition can be substituted by saying that if x ∈ Γ[⊥] then φ(x) ∈ Δ[⊥].

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- When Γ is a n-gap, the second condition can be substituted by saying that if x ∈ Γ[⊥] then φ(x) ∈ Δ[⊥].
- Notice also that if Δ is a n-gap, Γ is a n_{*}-gap, and Γ ≤ Δ, then Γ is an n-gap.

- When Γ is a n-gap, the second condition can be substituted by saying that if x ∈ Γ[⊥] then φ(x) ∈ Δ[⊥].
- Notice also that if Δ is a n-gap, Γ is a n_{*}-gap, and Γ ≤ Δ, then Γ is an n-gap.
- Another observation is that the above definition implies that $\phi(x) \in \Delta_i^{\perp\perp}$ if and only if $x \in \Gamma_i^{\perp\perp}$, and $\phi(x) \in \Delta^{\perp}$ if and only if $x \in \Gamma^{\perp}$.

- When Γ is a n-gap, the second condition can be substituted by saying that if x ∈ Γ[⊥] then φ(x) ∈ Δ[⊥].
- Notice also that if Δ is a n-gap, Γ is a n_{*}-gap, and Γ ≤ Δ, then Γ is an n-gap.
- Another observation is that the above definition implies that $\phi(x) \in \Delta_i^{\perp\perp}$ if and only if $x \in \Gamma_i^{\perp\perp}$, and $\phi(x) \in \Delta^{\perp}$ if and only if $x \in \Gamma^{\perp}$.
- Therefore the gaps {Γ_i^{⊥⊥} : i < n} and {Δ_i^{⊥⊥} ↾ φ"N : i < n} are completely identified under the bijection φ : N → φ"N.</p>

- When Γ is a n-gap, the second condition can be substituted by saying that if x ∈ Γ[⊥] then φ(x) ∈ Δ[⊥].
- Notice also that if Δ is a n-gap, Γ is a n_{*}-gap, and Γ ≤ Δ, then Γ is an n-gap.
- Another observation is that the above definition implies that $\phi(x) \in \Delta_i^{\perp\perp}$ if and only if $x \in \Gamma_i^{\perp\perp}$, and $\phi(x) \in \Delta^{\perp}$ if and only if $x \in \Gamma^{\perp}$.
- Therefore the gaps {Γ_i^{⊥⊥} : i < n} and {Δ_i^{⊥⊥} ↾ φ "N : i < n} are completely identified under the bijection φ : N → φ "N.</p>
- ► There are other variants of the order ≤ between gaps but all lead essentially to the same theory.

- When Γ is a n-gap, the second condition can be substituted by saying that if x ∈ Γ[⊥] then φ(x) ∈ Δ[⊥].
- Notice also that if Δ is a n-gap, Γ is a n_{*}-gap, and Γ ≤ Δ, then Γ is an n-gap.
- Another observation is that the above definition implies that $\phi(x) \in \Delta_i^{\perp\perp}$ if and only if $x \in \Gamma_i^{\perp\perp}$, and $\phi(x) \in \Delta^{\perp}$ if and only if $x \in \Gamma^{\perp}$.
- Therefore the gaps {Γ_i^{⊥⊥} : i < n} and {Δ_i^{⊥⊥} ↾ φ "N : i < n} are completely identified under the bijection φ : N → φ "N.</p>
- ► There are other variants of the order ≤ between gaps but all lead essentially to the same theory.

Definition

An analytic n_* -gap Γ is said to be a **minimal analytic** n_* -gap if for every other analytic n_* -gap Δ , if $\Delta \leq \Gamma$, then $\Gamma \leq \Delta$.

Theorem (Aviles-T., 2014)

Fix a positive integers n.

For every analytic n_{*}-gap Γ there exists a minimal analytic n_{*}-gap Δ such that Δ ≤ Γ.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Theorem (Aviles-T., 2014)

Fix a positive integers n.

- For every analytic n_{*}-gap Γ there exists a minimal analytic n_{*}-gap Δ such that Δ ≤ Γ.
- Up to equivalence, there exist only finitely many minimal analytic n_{*}-gaps.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Theorem (Aviles-T., 2014)

Fix a positive integers n.

- For every analytic n_{*}-gap Γ there exists a minimal analytic n_{*}-gap Δ such that Δ ≤ Γ.
- Up to equivalence, there exist only finitely many minimal analytic n_{*}-gaps.

Remark

Up to permutations there is exactly 5 minimal analytic 2-gaps. Most of them already show up in the literature.

Theorem (Aviles-T., 2014)

Fix a positive integers n.

- For every analytic n_{*}-gap Γ there exists a minimal analytic n_{*}-gap Δ such that Δ ≤ Γ.
- Up to equivalence, there exist only finitely many minimal analytic n_{*}-gaps.

Remark

Up to permutations there is exactly 5 minimal analytic 2-gaps. Most of them already show up in the literature.

Corollary

Let \mathcal{U} be a countable family of pairwise disjoint analytic open subsets of $\beta \mathbb{N} \setminus \mathbb{N}$, and let $\{U_0, U_1, U_2\} \subseteq \mathcal{U}$ be pairwise distinct such that $\overline{U_0} \cap \overline{U_1} \cap \overline{U_2} \neq \emptyset$. Then, there exists a point $x \in \overline{U_0} \cap \overline{U_1} \cap \overline{U_2}$ such that

 $|\{U \in \mathcal{U} : x \in \overline{U}\}| \le 61.$

Moreover, 61 is optimal in this result.

For a positive integer n, let J(n) be the minimal for which the conclusion of this Corollary is true with 3 replaced with n. Then we have the following:

n	1	2	3	4	5	6	7	
J(n)	1	8	61	480	3881	31976	266981	

The expansion

Definition

Fix an integer $n \ge 2$ and consider $n^{<\omega}$ as a tree ordered by end-extension \le . For i < n, a **chain of type** [i] is a chain C of the tree with the property that if s < t are two consequtive nodes of C then

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- s[^]i ≤ t,
- $t(k) \leq i$ for all $k \in dom(t) \setminus dom(s)$.

The expansion

Definition

Fix an integer $n \ge 2$ and consider $n^{<\omega}$ as a tree ordered by end-extension \le . For i < n, a **chain of type** [i] is a chain C of the tree with the property that if s < t are two consequtive nodes of C then

•
$$t(k) \leq i$$
 for all $k \in dom(t) \setminus dom(s)$.

Theorem (Aviles-T., 2014)

If $\Gamma = \{\Gamma_i : i \in n\}$ are analytic preideals on a countable index set N which are not separated, then there exists a permutation $\varepsilon : n \to n$ and a one-to-one map $u : n^{<\omega} \to N$ such that $u(x) \in \Gamma_{\varepsilon(i)}$ whenever x is a chain of type [i], i < n.

A partition theorem for trees

For a fixed natural number k, we denote by W_k the set of all finite sequences of natural numbers from $\{0, \ldots, k\}$ that start by k, that is

$$W_k = \{ (t_0, t_1, \dots, t_p) : t_0 = k, t_i \in \{0, \dots, k\}, i = 1, \dots, p \}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A partition theorem for trees

For a fixed natural number k, we denote by W_k the set of all finite sequences of natural numbers from $\{0, \ldots, k\}$ that start by k, that is

$$W_k = \{ (t_0, t_1, \ldots, t_p) : t_0 = k, t_i \in \{0, \ldots, k\}, i = 1, \ldots, p \}$$

Definition

We will say that a subset $F \subset m^{<\omega}$ is **closed** if it satisfies:

1. If $s, t \in F$, then $s \wedge t \in F$

2. If
$$s = t \cap r_1 \cap \cdots \cap r_k$$
 with $t, s \in F$, $r_1 \in W_{i_1}, \ldots, r_k \in W_{i_k}$,
 $i_1 < i_2 < \cdots < i_k$, then $t \cap r_1 \in F$ (therefore also $t \cap r_1 \cap r_2 \in F$, etc.)

A partition theorem for trees

For a fixed natural number k, we denote by W_k the set of all finite sequences of natural numbers from $\{0, \ldots, k\}$ that start by k, that is

$$W_k = \{ (t_0, t_1, \ldots, t_p) : t_0 = k, t_i \in \{0, \ldots, k\}, i = 1, \ldots, p \}$$

Definition

We will say that a subset $F \subset m^{<\omega}$ is **closed** if it satisfies:

1. If
$$s, t \in F$$
, then $s \wedge t \in F$
2. If $s = t \cap r_1 \cap \cdots \cap r_k$ with $t, s \in F$, $r_1 \in W_{i_1}, \ldots, r_k \in W_{i_k}$,
 $i_1 < i_2 < \cdots < i_k$, then $t \cap r_1 \in F$ (therefore also $t \cap r_1 \cap r_2 \in F$,
etc.)

Given $F \subset m^{<\omega}$, let $\langle F \rangle$ be the closed set **generated by** *F*.

Definition

Consider sets $X \subset m^{<\omega}$, $Y \subset n^{<\omega}$. A function $f : X \to Y$ is called an **equivalence** if it is the restriction of a bijection $g : \langle X \rangle \to \langle Y \rangle$ satisfying the following for all $s, t \in \langle X \rangle$

1.
$$g(t \wedge s) = g(t) \wedge g(s)$$
,

2.
$$g(t) \prec g(s)$$
 iff $t \prec s$,

3. If $t \leq s$ then for every $k, s \setminus t \in W_k$ iff $g(s) \setminus g(t) \in W_k$

where \prec is the notation of the lexicographical orderings on $m^{<\omega}$ and $n^{<\omega}.$

Definition

Consider sets $X \subset m^{<\omega}$, $Y \subset n^{<\omega}$. A function $f : X \to Y$ is called an **equivalence** if it is the restriction of a bijection $g : \langle X \rangle \to \langle Y \rangle$ satisfying the following for all $s, t \in \langle X \rangle$

1.
$$g(t \wedge s) = g(t) \wedge g(s)$$
,

2.
$$g(t) \prec g(s)$$
 iff $t \prec s$,

3. If $t \leq s$ then for every $k, s \setminus t \in W_k$ iff $g(s) \setminus g(t) \in W_k$

where \prec is the notation of the lexicographical orderings on $m^{<\omega}$ and $n^{<\omega}.$

Definition

A sequence $\{w_0, w_1, \ldots\} \subset W_k$ is called **basic** if

$$|w_i| > \sum_{j < i} |w_j|$$

for every *i*.

Define $T: W_k \to W_{k-1}$ by

$$T(w)(i) = \max\{0, w(i) - 1\}.$$

Let $T^{(0)}: W_k \to W_k$ be the identity map, $T^{(1)} = T$, $T^{(j)}: W_k \to W_{k-j}$ be the *j*-th iterate of *T*. Let $T_i = T^{(k-i)}: W_k \to W_i$ using the same subindex for T_i as for the range space W_i . Define $T: W_k \to W_{k-1}$ by

$$T(w)(i) = \max\{0, w(i) - 1\}.$$

Let $T^{(0)}: W_k \to W_k$ be the identity map, $T^{(1)} = T$, $T^{(j)}: W_k \to W_{k-j}$ be the *j*-th iterate of *T*. Let $T_i = T^{(k-i)}: W_k \to W_i$ using the same subindex for T_i as for the range space W_i .

Definition

Let $m \leq n < \omega$. A function

$$\psi: m^{<\omega} \to n^{<\omega}$$

will be called a **basic embedding** if there exists a basic sequence $\{w_s : s \in m^{<\omega}\} \subset W_{m-1}$ such that for every $t \in m^{<\omega}$ and for every $i \in m$, we have that

$$\psi(t^{-}i) = \psi(t)^{-}T_i(w_{t^{-}i}).$$

Proposition

If $\psi : m^{<\omega} \to n^{<\omega}$ is a basic embedding, then X is equivalent to $\psi(X)$ for every set $X \subset m^{<\omega}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proposition

If $\psi : m^{<\omega} \to n^{<\omega}$ is a basic embedding, then X is equivalent to $\psi(X)$ for every set $X \subset m^{<\omega}$.

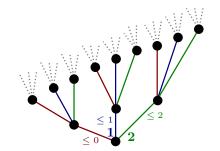
Definition

A **basic subtree** of $m^{<\omega}$ is the range of a basic embedding $\psi: m^{<\omega} \to m^{<\omega}$. For a fixed set $X_0 \subset m^{<\omega}$, let us say that Y is an X_0 -set if Y is equivalent to X_0 .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Example

A basic subtree of $3^{<\omega}$:



< □ > < @ > < ≧ > < ≧ >

æ

Theorem (Partition Theorem for Trees)

Fix a set $X_0 \subset m^{<\omega}$. Then for every finite partition of the X_0 -subsets of $m^{<\omega}$ into Souslin-measurable subsets, there exists a basic subtree $T \subset m^{<\omega}$ all of whose X_0 -subsets lie in the same piece of the partition.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Partition Theorem for Trees)

Fix a set $X_0 \subset m^{<\omega}$. Then for every finite partition of the X_0 -subsets of $m^{<\omega}$ into Souslin-measurable subsets, there exists a basic subtree $T \subset m^{<\omega}$ all of whose X_0 -subsets lie in the same piece of the partition.

Theorem (Finite Partition Theorem for Trees) For every positive integers m, every finite $X_0 \subseteq m^{<\omega}$, and every positive integer kthere is a positive integer l such that for every 2-coloring of the family of all X_0 -subsets of $m^{<l}$ there is $Y \subseteq m^{<l}$ equivalent to $m^{<k}$ such that the family of all X_0 -subsets of Y is monochromatic. Expansion problem for \mathbb{Q}

Expansion problem for \mathbb{Q}

Theorem (Laver 1970)

For every natural number k and every set $R \subseteq \mathbb{Q}^k$ there is $M \subseteq \mathbb{Q}$ order-isomorphic to \mathbb{Q} such that $R \cap M^k$ is $(\mathbb{Q}, \leq, <')$ -canonical relation on M, where \leq is the usual ordering on \mathbb{Q} and where <'is a well-order of \mathbb{Q} of order-type ω .

Expansion problem for \mathbb{Q}

Theorem (Laver 1970)

For every natural number k and every set $R \subseteq \mathbb{Q}^k$ there is $M \subseteq \mathbb{Q}$ order-isomorphic to \mathbb{Q} such that $R \cap M^k$ is $(\mathbb{Q}, \leq, <')$ -canonical relation on M, where \leq is the usual ordering on \mathbb{Q} and where <'is a well-order of \mathbb{Q} of order-type ω .

Theorem (Laver 1970, Devlin 1979)

For every positive integer k there is an relations D_k on $\mathbb{Q}^{[k]}$ that has exactly $t_k = \tan^{2k-1}(0)$ classes such that for every equivalence relation E on $\mathbb{Q}^{[k]}$ with finitely many classes there is $M \subseteq \mathbb{Q}$ order-isomorphic to \mathbb{Q} such that the restriction of E on $M^{[k]}$ is coarser that the restriction of D_k on $M^{[k]}$. Other homogeneous structures

Problem

Let \mathbb{A} be a countable ultrahomogeneous structure.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Other homogeneous structures

Problem

Let $\mathbb A$ be a countable ultrahomogeneous structure.

► Under which condition on A we can find an expansion A* with finitely many relations such that every subset R of some finite power A^k is A*-canonical when restricted to some substructure of A isomorphic to A?

Other homogeneous structures

Problem

Let \mathbb{A} be a countable ultrahomogeneous structure.

- ► Under which condition on A we can find an expansion A* with finitely many relations such that every subset R of some finite power A^k is A*-canonical when restricted to some substructure of A isomorphic to A?
- ► Under which additional assumptions (if any) can we conclude that on any finite symmetric power A^[k] there is the finest canonical equivalence relation with finitely many classes?

The expansion problem for $top(\mathbb{Q})$

We now consider $\ensuremath{\mathbb{Q}}$ as a topological space.

Theorem (Baumgartner, 1986)

There is a mapping $f : \mathbb{Q}^{[2]} \to \mathbb{N}$ such that $f''X^{[2]} = \mathbb{N}$ for every $X \subseteq \mathbb{Q}$ homeomorphic to \mathbb{Q} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The expansion problem for $top(\mathbb{Q})$

We now consider ${\ensuremath{\mathbb Q}}$ as a topological space.

Theorem (Baumgartner, 1986)

There is a mapping $f : \mathbb{Q}^{[2]} \to \mathbb{N}$ such that $f'' X^{[2]} = \mathbb{N}$ for every $X \subseteq \mathbb{Q}$ homeomorphic to \mathbb{Q} .

Theorem (T., 1994)

There is an equivalence relation E_{osc} on $\mathbb{Q}^{[2]}$ with infinitely many classes $e_1, e_2, ..., e_k, ...$ such that if for some positive integer k the closure \overline{X} of some subset X of \mathbb{Q} has its kth Cantor-Bendixson derivative nonempty then

$$X^{[2]} \cap e_i \neq \emptyset$$
 for all $2 \leq i \leq 2k$.

Moreover, if X is not a discrete subspace of \mathbb{Q} then $X^{[2]} \cap e_1 \neq \emptyset$.

Theorem (T., 1994)

For every positive integer p and every continuous mapping

$$f: \mathbb{Q}^{[2]} \to \{0, 1, ..., p-1\}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

there is $X \subseteq \mathbb{Q}$ homeomorphic to \mathbb{Q} such that f is constant on $X^{[2]}$.

Theorem (T., 1994)

For every positive integer p and every continuous mapping

$$f: \mathbb{Q}^{[2]} \to \{0, 1, ..., p-1\}$$

there is $X \subseteq \mathbb{Q}$ homeomorphic to \mathbb{Q} such that f is constant on $X^{[2]}$.

Theorem (T., 1994)

There is a continuous map $f : \mathbb{Q}^{[3]} \to \mathbb{Q}$ such that $f(X^{[3]}) = \mathbb{Q}$ for every $X \subseteq \mathbb{Q}$ homeomorphic to \mathbb{Q} .

Theorem (T., 1994)

For every positive integer p and every continuous mapping

$$f: \mathbb{Q}^{[2]} \to \{0, 1, ..., p-1\}$$

there is $X \subseteq \mathbb{Q}$ homeomorphic to \mathbb{Q} such that f is constant on $X^{[2]}$.

Theorem (T., 1994)

There is a continuous map $f : \mathbb{Q}^{[3]} \to \mathbb{Q}$ such that $f(X^{[3]}) = \mathbb{Q}$ for every $X \subseteq \mathbb{Q}$ homeomorphic to \mathbb{Q} .

Theorem (T., 1994)

The class of equivalence relations on $\mathbb{Q}^{[2]}$ with **open equivalence** classes has 26-element Ramsey basis.

▲□▶ ▲□▶ ▲国▶ ▲国▶ 三国 - のへで

Theorem (Sierpinski, 1933)

Let \leq be the usual lexicographic ordering of $2^{\mathbb{N}}$, let <' be a well-ordering of $2^{\mathbb{N}}$ and let \mathbb{S} denote the expanded structure $(2^{\mathbb{N}}, \Delta, \leq, <')$. Then for every positive integer k the finest \mathbb{S} -canonical equivalence relation $\sim_{\mathbb{S}}^{k}$ on $(2^{\mathbb{N}})^{[k]}$ that has k!(k-1)! many classes has the property that every $X \subseteq 2^{\mathbb{N}}$ homeomorphic to \mathbb{Q} realizes all the classes.

(日) (同) (三) (三) (三) (○) (○)

Theorem (Sierpinski, 1933)

Let \leq be the usual lexicographic ordering of $2^{\mathbb{N}}$, let <' be a well-ordering of $2^{\mathbb{N}}$ and let \mathbb{S} denote the expanded structure $(2^{\mathbb{N}}, \Delta, \leq, <')$. Then for every positive integer k the finest \mathbb{S} -canonical equivalence relation $\sim_{\mathbb{S}}^{k}$ on $(2^{\mathbb{N}})^{[k]}$ that has k!(k-1)! many classes has the property that every $X \subseteq 2^{\mathbb{N}}$ homeomorphic to \mathbb{Q} realizes all the classes.

Conjecture (Galvin, 1970)

For every positive integer k every equivalence relation on $\mathbb{R}^{[k]}$ with finitely many classes is S-canonical when restricted to some **uncountable set** $X \subseteq \mathbb{R}$.

Theorem (Sierpinski, 1933)

Let \leq be the usual lexicographic ordering of $2^{\mathbb{N}}$, let <' be a well-ordering of $2^{\mathbb{N}}$ and let \mathbb{S} denote the expanded structure $(2^{\mathbb{N}}, \Delta, \leq, <')$. Then for every positive integer k the finest \mathbb{S} -canonical equivalence relation $\sim_{\mathbb{S}}^{k}$ on $(2^{\mathbb{N}})^{[k]}$ that has k!(k-1)! many classes has the property that every $X \subseteq 2^{\mathbb{N}}$ homeomorphic to \mathbb{Q} realizes all the classes.

Conjecture (Galvin, 1970)

For every positive integer k every equivalence relation on $\mathbb{R}^{[k]}$ with finitely many classes is S-canonical when restricted to some **uncountable set** $X \subseteq \mathbb{R}$.

Theorem (Shelah, 2000)

For k = 2 the Galvin conjecture is **consistent** with rather large continuum.

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 → の Q @

Theorem (T., 1987, 1994) For every positive integer k there is

$$f:[\omega_k]^{k+1}\to\omega$$

such that $f([X]^{k+1}) = \omega$ for every uncountable $X \subseteq \omega_k$.

Theorem (T., 1987, 1994) For every positive integer k there is

$$f:[\omega_k]^{k+1}\to\omega$$

such that $f([X]^{k+1}) = \omega$ for every uncountable $X \subseteq \omega_k$.

Corollary

Galvin's Conjecture implies $2^{\aleph_0} > \aleph_{\omega}$.

Theorem (T., 1987, 1994) For every positive integer k there is

$$f:[\omega_k]^{k+1}\to\omega$$

such that $f([X]^{k+1}) = \omega$ for every uncountable $X \subseteq \omega_k$.

Corollary

Galvin's Conjecture implies $2^{\aleph_0} > \aleph_{\omega}$.

Question

Is Galvin's Conjecture consistent with $2^{\aleph_0} = \aleph_{\omega+1}$?

Borel version of the expansion problem for $\ensuremath{\mathbb{R}}$

<□▶ < @▶ < @▶ < @▶ < @▶ < @ > @ < の < @</p>

Borel version of the expansion problem for $\ensuremath{\mathbb{R}}$

The Cantor space $2^{\mathbb{N}}$ as the Borel structure:

 $(2^{\mathbb{N}},\leqslant,\Delta)$

where \leqslant is the lexicographical ordering and Δ the distance function:

$$\Delta(x,y) = \min\{n : x(n) \neq y(n)\}.$$

・ロト・日本・モート モー うへぐ

Borel version of the expansion problem for ${\mathbb R}$

The Cantor space $2^{\mathbb{N}}$ as the Borel structure:

 $(2^{\mathbb{N}},\leqslant,\Delta)$

where \leqslant is the lexicographical ordering and Δ the distance function:

$$\Delta(x,y) = \min\{n : x(n) \neq y(n)\}.$$

Theorem (Galvin, 1968, Blass 1981)

- ► For every positive integer k every Borel set $R \subseteq (2^{\mathbb{N}})^k$ is $(2^{\mathbb{N}}, \leq, \Delta)$ -canonical on some perfect set $P \subseteq 2^{\mathbb{N}}$.
- Among (2^N, ≤, Δ)-canonical Borel equivalence relation on a given finite symmetric power (2^N)^[k] with finitely many classes there is the finest one which has exactly (k − 1)! many classes.

Theorem (Taylor 1979, Lefmann 1983, Vuksanovic 2008, Vlitas 2014)

There is exactly two (2^N, ≤, Δ)-canonical Borel equivalence relations on (2^N)^[2] with countably many classes: ⊤ and E_Δ.

Theorem (Taylor 1979, Lefmann 1983, Vuksanovic 2008, Vlitas 2014)

- There is exactly two (2^N, ≤, Δ)-canonical Borel equivalence relations on (2^N)^[2] with countably many classes: ⊤ and E_Δ.
- There is exactly seven (2^N, ≤, Δ)-canonical Borel equivalence relations on (2^N)^[2] given by the following seven conditions on given two pairs x₀ < x₁ and y₀ < y₁:

1.
$$x_0 = x_0$$
,
2. $x_0 = y_0$,
3. $x_1 = y_1$,
4. $x_0 = y_0$ and $x_1 = y_1$,
5. $\Delta(x_0, x_1) = \Delta(y_0, y_1)$ and $x_0 = x_0$,
6. $\Delta(x_0, x_1) = \Delta(y_0, y_1)$ and $x_0 = y_0$,
7. $\Delta(x_0, x_1) = \Delta(y_0, y_1)$ and $x_1 = y_1$.

Theorem (Taylor 1979, Lefmann 1983, Vuksanovic 2008, Vlitas 2014)

- There is exactly two (2^N, ≤, Δ)-canonical Borel equivalence relations on (2^N)^[2] with countably many classes: ⊤ and E_Δ.
- There is exactly seven (2^N, ≤, Δ)-canonical Borel equivalence relations on (2^N)^[2] given by the following seven conditions on given two pairs x₀ < x₁ and y₀ < y₁:
 - 1. $x_0 = x_0$, 2. $x_0 = y_0$, 3. $x_1 = y_1$, 4. $x_0 = y_0$ and $x_1 = y_1$, 5. $\Delta(x_0, x_1) = \Delta(y_0, y_1)$ and $x_0 = x_0$, 6. $\Delta(x_0, x_1) = \Delta(y_0, y_1)$ and $x_0 = y_0$, 7. $\Delta(x_0, x_1) = \Delta(y_0, y_1)$ and $x_1 = y_1$.
- ► There is exactly twenty five (2^N, ≤, Δ)-canonical Borel equivalence relations on (2^N)^[3]

The arrow-notation

The arrow-notation

For two structures \boldsymbol{A} and \boldsymbol{B} of the same type, set

$$\begin{pmatrix} \boldsymbol{B} \\ \boldsymbol{A} \end{pmatrix} = \{ \boldsymbol{A}' : \boldsymbol{A}' \text{ is a substructure of } \boldsymbol{B} \text{ isomorphic to } \boldsymbol{A} \}.$$

For $\boldsymbol{A}, \boldsymbol{B}$ and \boldsymbol{C} of the same type and cardinals λ and τ , let

$$oldsymbol{\mathcal{C}} o (oldsymbol{B})^{oldsymbol{\mathcal{A}}}_{\lambda, au}$$

denote the statement that for every coloring $\chi : \begin{pmatrix} \boldsymbol{C} \\ \boldsymbol{A} \end{pmatrix} \to \lambda$ there is $\boldsymbol{B}' \in \begin{pmatrix} \boldsymbol{C} \\ \boldsymbol{B} \end{pmatrix}$ such that χ on $\begin{pmatrix} \boldsymbol{B}' \\ \boldsymbol{A} \end{pmatrix}$ has $\leq \tau$ values.

The arrow-notation

For two structures \boldsymbol{A} and \boldsymbol{B} of the same type, set

$$\begin{pmatrix} \boldsymbol{B} \\ \boldsymbol{A} \end{pmatrix} = \{ \boldsymbol{A}' : \boldsymbol{A}' \text{ is a substructure of } \boldsymbol{B} \text{ isomorphic to } \boldsymbol{A} \}.$$

For $\boldsymbol{A}, \boldsymbol{B}$ and \boldsymbol{C} of the same type and cardinals λ and τ , let

$$oldsymbol{\mathcal{C}} o (oldsymbol{B})^{oldsymbol{\mathcal{A}}}_{\lambda, au}$$

denote the statement that for every coloring $\chi : \begin{pmatrix} \boldsymbol{C} \\ \boldsymbol{A} \end{pmatrix} \to \lambda$ there is $\boldsymbol{B}' \in \begin{pmatrix} \boldsymbol{C} \\ \boldsymbol{B} \end{pmatrix}$ such that χ on $\begin{pmatrix} \boldsymbol{B}' \\ \boldsymbol{A} \end{pmatrix}$ has $\leq \tau$ values. Let $\boldsymbol{C} \to (\boldsymbol{B})^{\boldsymbol{A}}_{\lambda}$ iff $\boldsymbol{C} \to (\boldsymbol{B})^{\boldsymbol{A}}_{\lambda,1}$, $\boldsymbol{C} \to [\boldsymbol{B}]^{\boldsymbol{A}}_{\lambda}$ iff $\boldsymbol{C} \to (\boldsymbol{B})^{\boldsymbol{A}}_{\lambda,\lambda-1}$.

Theorem (Galvin 1970) 9 $\not\rightarrow$ [4]²₄ but 10 \rightarrow [4]²₄.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem (Galvin 1970) $9 \not\rightarrow [4]_4^2 \text{ but } 10 \rightarrow [4]_4^2.$

Theorem (Laver 1970, Devlin, 1979)

Fix a positive integer k and let $t_k = tan^{(2k-1)}(0)$ and consider the rationals \mathbb{Q} as ordered set.

•
$$\mathbb{Q} \to (\mathbb{Q})_{l,t_k}^k$$
 for all $l < \omega$.

$$\blacktriangleright \mathbb{Q} \not\rightarrow [\mathbb{Q}]_{t_k}^k.$$

Theorem (Galvin 1970) 9 \Rightarrow [4]²₄ but 10 \rightarrow [4]²₄.

Theorem (Laver 1970, Devlin, 1979)

Fix a positive integer k and let $t_k = tan^{(2k-1)}(0)$ and consider the rationals \mathbb{Q} as ordered set.

•
$$\mathbb{Q} \to (\mathbb{Q})_{l,t_k}^k$$
 for all $l < \omega$.

 $\blacktriangleright \mathbb{Q} \not\rightarrow [\mathbb{Q}]_{t_k}^k.$

Conjecture (Sierpiski 1933, Galvin 1970)

For every positive integer k,

►
$$2^{\aleph_0} \rightarrow (\aleph_1)_{l,k!(k-1)!}^k$$
 for all $l < \omega$,
► $2^{\aleph_0} \not\rightarrow [\aleph_1]_{k!(k-1)!}^k$.

<ロ> <@> < E> < E> E のQの

Theorem (Galvin-Shelah 1973) $2^{\aleph_0} \neq [2^{\aleph_0}]^2_{\aleph_0}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem (Galvin-Shelah 1973) $2^{\aleph_0} \neq [2^{\aleph_0}]^2_{\aleph_0}.$ Theorem (T., 1987, 1994) $\aleph_k \neq [\aleph_1]^{k+1}_{\aleph_0}$ for all positive integers k.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (Galvin-Shelah 1973) $2^{\aleph_0} \not\rightarrow [2^{\aleph_0}]^2_{\aleph_0}.$ Theorem (T., 1987, 1994) $\aleph_k \not\rightarrow [\aleph_1]^{k+1}_{\aleph_0}$ for all positive integers k.

Theorem (Laver 1970, Devlin 1979)

Fix a positive integer k and let $t_k = \tan^{(2k-1)}(0)$. Let \mathcal{R} denote the random graph and let K_k denote the complete graph on k vertices.

• $\mathcal{R} \to (\mathcal{R})_{l,t_k}^{K_k}$ for all $l < \omega$. • $\mathcal{R} \not\to [\mathcal{R}]_{t_k}^{K_k}$.

Theorem (Galvin-Shelah 1973) $2^{\aleph_0} \neq [2^{\aleph_0}]^2_{\aleph_0}.$ Theorem (T., 1987, 1994) $\aleph_k \neq [\aleph_1]^{k+1}_{\aleph_0}$ for all positive integers k.

Theorem (Laver 1970, Devlin 1979)

Fix a positive integer k and let $t_k = \tan^{(2k-1)}(0)$. Let \mathcal{R} denote the random graph and let K_k denote the complete graph on k vertices.

$$\mathcal{R} \to (\mathcal{R})_{l,t_k}^{K_k} \text{ for all } l < \omega.$$
$$\mathcal{R} \not\to [\mathcal{R}]_{t_k}^{K_k}.$$

Theorem (Sierpinski 1933, Raghavan-T. 2020)

$$\blacktriangleright \mathbb{R} \not\to (\operatorname{top}(\mathbb{Q}))_2^2.$$

•
$$\mathbb{R} \to (\operatorname{top}(\mathbb{Q}))_{l,2}^2$$
 for all $l < \omega$.

Theorem (Raghavan-T., 2022)

For every $k < \omega$ and every Hausdorff space X of cardinality \aleph_k ,

 $X \not\rightarrow [\operatorname{top}(\mathbb{Q})]^{k+2}_{\aleph_0}.$

Theorem (Raghavan-T., 2022) For every $k < \omega$ and every Hausdorff space X of cardinality \aleph_k ,

 $X
eq [\operatorname{top}(\mathbb{Q})]_{\aleph_0}^{k+2}.$

Corollary (Raghavan - T., 2022) If for some integer $k \ge 1$, $\mathbb{R} \to (\operatorname{top}(\mathbb{Q}))_{I,k!(k-1)!}^{k}$ for all $I < \omega$, then $|\mathbb{R}| \ge \aleph_{k-1}$.

Theorem (Raghavan-T., 2022) For every $k < \omega$ and every Hausdorff space X of cardinality \aleph_k ,

 $X
eq [\operatorname{top}(\mathbb{Q})]_{\aleph_0}^{k+2}.$

Corollary (Raghavan - T., 2022) If for some integer $k \ge 1$, $\mathbb{R} \to (\operatorname{top}(\mathbb{Q}))_{l,k!(k-1)!}^{k}$ for all $l < \omega$, then $|\mathbb{R}| \ge \aleph_{k-1}$. Corollary (Raghavan - T., 2022) If $\mathbb{R} \to (\operatorname{top}(\mathbb{Q}))_{13,12}^{3}$ then $|\mathbb{R}| \ge \aleph_{2}$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Definition

Let \mathcal{K} be a given class of finite L-structures.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition

Let \mathcal{K} be a given class of finite L-structures. For $\mathbf{A} \in \mathcal{K}$, let $t(\mathbf{A}, \mathcal{K})$ be the minimal number t (if it exists) such that for every \mathbf{B} in \mathcal{K} and $l < \omega$ there exists \mathbf{C} in \mathcal{K} such that

$$\boldsymbol{C}
ightarrow (\boldsymbol{B})_{l,t}^{\boldsymbol{A}}.$$

Definition

Let \mathcal{K} be a given class of finite L-structures. For $\mathbf{A} \in \mathcal{K}$, let $t(\mathbf{A}, \mathcal{K})$ be the minimal number t (if it exists) such that for every \mathbf{B} in \mathcal{K} and $l < \omega$ there exists \mathbf{C} in \mathcal{K} such that

$$\boldsymbol{C}
ightarrow (\boldsymbol{B})_{l,t}^{\boldsymbol{A}}.$$

Otherwise, put $t(\mathbf{A}, \mathcal{K}) = \infty$.

Definition

Let \mathcal{K} be a given class of finite L-structures. For $\mathbf{A} \in \mathcal{K}$, let $t(\mathbf{A}, \mathcal{K})$ be the minimal number t (if it exists) such that for every \mathbf{B} in \mathcal{K} and $l < \omega$ there exists \mathbf{C} in \mathcal{K} such that

$$m{C}
ightarrow (m{B})_{l,t}^{m{A}}.$$

Otherwise, put $t(\mathbf{A}, \mathcal{K}) = \infty$.

We call $t(\mathbf{A}, \mathcal{K})$ the Ramsey degree of \mathbf{A} in the class \mathcal{K} . We say that \mathcal{K} has the Ramsey property if $t(\mathbf{A}, \mathcal{K}) = 1$ for all $\mathbf{A} \in \mathcal{K}$.

Definition

Let \mathcal{K} be a given class of finite L-structures. For $\mathbf{A} \in \mathcal{K}$, let $t(\mathbf{A}, \mathcal{K})$ be the minimal number t (if it exists) such that for every \mathbf{B} in \mathcal{K} and $l < \omega$ there exists \mathbf{C} in \mathcal{K} such that

$$m{C}
ightarrow (m{B})_{l,t}^{m{A}}.$$

Otherwise, put $t(\mathbf{A}, \mathcal{K}) = \infty$. We call $t(\mathbf{A}, \mathcal{K})$ the Ramsey degree of \mathbf{A} in the class \mathcal{K} . We say that \mathcal{K} has the Ramsey property if $t(\mathbf{A}, \mathcal{K}) = 1$ for all $\mathbf{A} \in \mathcal{K}$. Example

Finite linearly ordered sets have Ramsey degree 1 in the class of all finite linear orderings, i.e., Q → (n)^k₁ for all k, l, n < ω.</p>

Definition

Let \mathcal{K} be a given class of finite L-structures. For $\mathbf{A} \in \mathcal{K}$, let $t(\mathbf{A}, \mathcal{K})$ be the minimal number t (if it exists) such that for every \mathbf{B} in \mathcal{K} and $l < \omega$ there exists \mathbf{C} in \mathcal{K} such that

$$m{C}
ightarrow (m{B})_{l,t}^{m{A}}.$$

Otherwise, put $t(m{A},\mathcal{K})=\infty$.

We call $t(\mathbf{A}, \mathcal{K})$ the Ramsey degree of \mathbf{A} in the class \mathcal{K} . We say that \mathcal{K} has the Ramsey property if $t(\mathbf{A}, \mathcal{K}) = 1$ for all $\mathbf{A} \in \mathcal{K}$.

Example

- Finite linearly ordered sets have Ramsey degree 1 in the class of all finite linear orderings, i.e., Q → (n)^k_l for all k, l, n < ω.</p>
- Complete graphs have Ramsey degree 1 in the class of all finite graphs, i.e., R → (G)^{K_k}_l for all finite graphs G and k, l < ω.</p>

<□▶ < @▶ < @▶ < @▶ < @▶ < @ > @ < の < @</p>

Fix a countable homogeneous (countable, infinite, locally finite) L-structure F.

(ロ)、(型)、(E)、(E)、 E) の(の)

Fix a countable homogeneous (countable, infinite, locally finite) L-structure F.

Let F^* be an ultrahomogeneous L^* -expansion of F, where L^* adds to L finitely many, say n, relational symbols $\{R_i : i < n\}$.

Fix a countable homogeneous (countable, infinite, locally finite) L-structure F.

Let \mathbf{F}^* be an ultrahomogeneous L^* -expansion of \mathbf{F} , where L^* adds to L finitely many, say n, relational symbols $\{R_i : i < n\}$. For $\mathbf{A} \in \text{Age}(\mathbf{F})$, set

$$X_{\boldsymbol{F}^*}^{\boldsymbol{A}} = \{ (R_i^* : i < n) \in \prod_{i < n} 2^{\boldsymbol{A}^{k_i}} : (\boldsymbol{A}, R_0^*, ..., R_{n-1}^*) \in \operatorname{Age}(\boldsymbol{F}^*) \}.$$

$$t_{\boldsymbol{F}^*}(\boldsymbol{A}) = rac{|X_{\boldsymbol{F}^*}^{\boldsymbol{A}}|}{|\operatorname{Aut}(\boldsymbol{A})|}.$$

Fix a countable homogeneous (countable, infinite, locally finite) *L*-structure **F**.

Let F^* be an ultrahomogeneous L^* -expansion of F, where L^* adds to L finitely many, say n, relational symbols $\{R_i : i < n\}$. For $A \in Age(F)$, set

$$X_{\boldsymbol{F}^*}^{\boldsymbol{A}} = \{ (R_i^* : i < n) \in \prod_{i < n} 2^{\boldsymbol{A}^{k_i}} : (\boldsymbol{A}, R_0^*, ..., R_{n-1}^*) \in \operatorname{Age}(\boldsymbol{F}^*) \}.$$

$$t_{F^*}(\boldsymbol{A}) = rac{|X_{F^*}^{\boldsymbol{A}}|}{|\operatorname{Aut}(\boldsymbol{A})|}.$$

Proposition

If $\operatorname{Age}(\boldsymbol{F}^*)$ has the Ramsey property , then

$$t(\boldsymbol{A},\operatorname{Age}(\boldsymbol{F})) \leq t_{\boldsymbol{F}^*}(\boldsymbol{A})$$
 for all $\boldsymbol{A} \in \operatorname{Age}(\boldsymbol{F}),$

Fix a countable homogeneous (countable, infinite, locally finite) L-structure F.

Let F^* be an ultrahomogeneous L^* -expansion of F, where L^* adds to L finitely many, say n, relational symbols $\{R_i : i < n\}$. For $A \in Age(F)$, set

$$X_{\boldsymbol{F}^*}^{\boldsymbol{A}} = \{ (R_i^* : i < n) \in \prod_{i < n} 2^{\boldsymbol{A}^{k_i}} : (\boldsymbol{A}, R_0^*, ..., R_{n-1}^*) \in \operatorname{Age}(\boldsymbol{F}^*) \}.$$

$$t_{F^*}(\boldsymbol{A}) = rac{|X_{F^*}^{\boldsymbol{A}}|}{|\operatorname{Aut}(\boldsymbol{A})|}.$$

Proposition

If $\operatorname{Age}(\boldsymbol{F}^*)$ has the Ramsey property , then

$$t(\boldsymbol{A},\operatorname{Age}(\boldsymbol{F})) \leq t_{\boldsymbol{F}^*}(\boldsymbol{A})$$
 for all $\boldsymbol{A} \in \operatorname{Age}(\boldsymbol{F}),$

and so, in particular $t(\mathbf{A}, \operatorname{Age}(\mathbf{F})) < \infty$ for all $\mathbf{A} \in \operatorname{Age}(\mathbf{F})$.

Definition

For F and F^* as above, we say that F^* has the expansion property relative to F whenever

 $\forall \boldsymbol{A}^* \in \operatorname{Age}(\boldsymbol{F}^*) \;\; \exists \boldsymbol{B} \in \operatorname{Age}(\boldsymbol{F}) \;\; \forall \boldsymbol{B}^* \in \operatorname{Age}(\boldsymbol{F}^*)$

 $[\boldsymbol{B}^* \upharpoonright \boldsymbol{L} = \boldsymbol{B} \implies \boldsymbol{A}^* \leq \boldsymbol{B}^*].$

Definition

For **F** and **F**^{*} as above, we say that **F**^{*} has the **expansion property** relative to **F** whenever

 $\forall \mathbf{A}^* \in \operatorname{Age}(\mathbf{F}^*) \;\; \exists \mathbf{B} \in \operatorname{Age}(\mathbf{F}) \;\; \forall \mathbf{B}^* \in \operatorname{Age}(\mathbf{F}^*)$

$$[\boldsymbol{B}^* \upharpoonright \boldsymbol{L} = \boldsymbol{B} \implies \boldsymbol{A}^* \leq \boldsymbol{B}^*].$$

Proposition

If the expansion F^* has both the Ramsey property and the expansion property relative to F, then

$$t(\boldsymbol{A},\operatorname{Age}(\boldsymbol{F})) = t_{\boldsymbol{F}^*}(\boldsymbol{A})$$
 for all $\boldsymbol{A} \in \operatorname{Age}(\boldsymbol{F})$.

The reverse

Definition

An expansion $\mathbf{F}^* = (\mathbf{F}, (R_i : i < \omega))$ of \mathbf{F} is precompact if its age restricted to every finite substructure of \mathbf{F} is finite.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The reverse

Definition

An expansion $\mathbf{F}^* = (\mathbf{F}, (R_i : i < \omega))$ of \mathbf{F} is precompact if its age restricted to every finite substructure of \mathbf{F} is finite.

Remark

The point of this definition (among other things) is that the corresponding version of $t_{F^*}(A)$ is still finite.

The reverse

Definition

An expansion $\mathbf{F}^* = (\mathbf{F}, (R_i : i < \omega))$ of \mathbf{F} is precompact if its age restricted to every finite substructure of \mathbf{F} is finite.

Remark

The point of this definition (among other things) is that the corresponding version of $t_{F^*}(A)$ is still finite.

Proposition

The following are equivalent for a given countably infinite homogeneous structure F:

- $t(\mathbf{A}, \operatorname{Age}(\mathbf{F})) < \infty$ for every $\mathbf{A} \in \mathbf{F}$.
- ► There is a Ramsey precompact expansion F^{*} of F.

Proposition

If there is a Ramsey precompact expansion of F then there is one that also has the expansion property.

Theorem (Kechris-Pestov-T., 2005, Nguyen Van Thé 2013) Let F be a countable relational ultrahomogeneous structure and let F^* be its precompact relational expansion.

Theorem (Kechris-Pestov-T., 2005, Nguyen Van Thé 2013) Let \mathbf{F} be a countable relational ultrahomogeneous structure and let \mathbf{F}^* be its precompact relational expansion. The following are equivalent:

Theorem (Kechris-Pestov-T., 2005, Nguyen Van Thé 2013) Let \mathbf{F} be a countable relational ultrahomogeneous structure and let \mathbf{F}^* be its precompact relational expansion. The following are equivalent:

► The action of Aut(F) on the space X_{F*} of all F*-admissible L* \ L-relations on F is the universal minimal flow of the group Aut(F).

Theorem (Kechris-Pestov-T., 2005, Nguyen Van Thé 2013)

Let **F** be a countable relational ultrahomogeneous structure and let F^* be its precompact relational expansion. The following are equivalent:

► The action of Aut(F) on the space X_{F*} of all F*-admissible L* \ L-relations on F is the universal minimal flow of the group Aut(F).

► **F**^{*} has the **Ramsey property** as well as the **expansion property** relative to **F**.

Theorem (Kechris-Pestov-T., 2005, Nguyen Van Thé 2013)

Let **F** be a countable relational ultrahomogeneous structure and let F^* be its precompact relational expansion. The following are equivalent:

- ► The action of Aut(F) on the space X_{F*} of all F*-admissible L* \ L-relations on F is the universal minimal flow of the group Aut(F).
- ► **F**^{*} has the **Ramsey property** as well as the **expansion property** relative to **F**.

Theorem (Zucker 2014)

Let **F** be a countable locally finite ultrahomogeneous structure. If the group Aut(F) has metrizable universal minimal flow then $t(A, Age(F)) < \infty$ for all $A \in Age(F)$.

References:

- ► Hausdorff, Felix, Summen von ℵ₁ Mengen, Fund. Math. 26 (1936), 241-255.
- Todorcevic, Stevo, Analytic gaps. Fund. Math. 150 (1996), no. 1, 55-66.
- Todorcevic, Stevo, Compact subsets of the first Baire class. J. Amer. Math. Soc. 12 (1999), no. 4, 1179-1212.
- Aviles, Antonio; Todorcevic, Stevo, Finite basis for analytic multiple gaps. Publ. Math. Inst. Hautes Études Sci. 121 (2015), 57-79.
- Todorcevic, Stevo, Walks on ordinals and their characteristics.
 Progress in Mathematics, 263. Birkhuser 2007. vi+324 pp.
- Nguyen Van Thé, Lionel, More on the Kechris-Pestov-Todorcevic correspondence: precompact expansions. Fund. Math. 222 (2013), no. 1, 19-47.
- Raghavan, Dilip; Todorcevic, Stevo, Proof of a conjecture of Galvin. Forum Math. Pi 8 (2020), 1- 23.