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What is a basis problem?

Definition

Given a quasi-ordered class (K, <) of mathematical structures of
the same type, we say that Ko C K is a basis of IC if for every
K € IC there is Ky € Kg such that Ky < K.

Problem

Suppose Ky is a downwards closed subclass of a given
quasi-ordered class (IC, <). Can one characterize Ko by forbidding
finitely many members of K?
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Basis problem for gaps in P(w)/Fin

Notation:
Fix a countable index set N. For a,b C N, set

a C* biff a\ b is finite,

a_l biff an b is finite.
For A, B C P(N), set

AL Biff (Vae A)(Vbe B) aL b.

At ={b:(Yae A) bnais finite}.
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Gaps of preideals

Definition
A preideal on a countable set N is a family / of subsets of N such
that if x € [ and y C x is infinite, then y € /.

Definition
Let ' = {I; : i € n} be a n-sequence of preideals on the set N and
let X be a family of subsets of n ={0,1,...,n—1}.

1. We say that I is separated if there exist ag,...,a,-1 C N
such that (V;c,a; =0 and x C* a; for all x € T;, i € n.

2. We say that I' is an X-gap if it is not separated, but
Nicaxi =" 0 whenever x; € T}, A€ X.

Definition
When X = [n]? an X-gap will be called an n-gap.
When X = {{1,2,...,n—1}} an X-gap will be called an n.-gap.
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Hausdorff gaps

Theorem (Hausdorff, 1909, 1934; Luzin, 1947)
There is an X;-generated 2-gap in P(w)/Fin.

Theorem (Aviles-T., 2011)

For k > 2, assuming Martin's axiom, there are no < c-generated
k-gaps in P(w)/FIN.

Definition

A 2-gap (A, B) for which A and B are o-directed under the

inclusion modulo finite is called a Hausdorff gap.

Theorem (T. 1996)

There are no analytic Hausdorff gaps.
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Some applications of analytic gaps

Theorem (T., 1999)

The class of non-metrizable separable compact spaces of
Baire-class-1 functions defined on a Polish space has the
3-element basis {S, D, P}, where S is the split-interval, D the
(separable version of the) Alexandrov duplicate of the Cantor set,
and P the one-point compactification of the Cantor tree space.

Theorem (T., 1999)

If x is a non-Gg point of some compact set K of Baire-class-1
functions then K contains a topological copy of P where x plays
the role of point at infinity.

Theorem (Argyros-Dodos-Kanellopoulos, 2008)

Every infinite-dimensional dual Banach space has an
infinite-dimensional quotient with a Schauder basis.
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Ordering gaps

Definition

The orthogonal of the gap INis [+ = (U,-En F,-)l. The gap Iis
called dense if It is just the family of finite subsets of N.
Definition

For I and A two n.-gaps on countable sets N and M, respectively,
we say that

r<A
if there exists a one-to-one map ¢ : N — M such that for i < n,
1. if x € T; then ¢(x) € A,.
2. If x € T} then ¢(x) € AF.
Two n,-gaps I and I are called equivalent if [ < T’ and if [" <T.
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Remark

>

When I is a n-gap, the second condition can be substituted
by saying that if x € T+ then ¢(x) € A™L.

Notice also that if A is a n-gap, [ is a ny-gap, and I < A,
then I' is an n-gap.

Another observation is that the above definition implies that
¢(x) € A+ if and only if x € T+, and

#(x) € AL if and only if x € T+.

Therefore the gaps {T+1 : i < n} and {A+L [ ¢“N :i < n}
are completely identified under the bijection ¢ : N — ¢"“N.
There are other variants of the order < between gaps but all
lead essentially to the same theory.

Definition
An analytic n,-gap I is said to be a minimal analytic n,-gap if
for every other analytic n.-gap A, if A <T, then [ < A.
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Corollary

Let U be a countable family of pairwise disjoint analytic open
subsets of BN\ N, and let {Uy, U1, Ua} C U be pairwise distinct
such that Uy N Uy N Uy # 0.

Then, there exists a point x € Uy N Uy N U, such that

HUeU:xe U} <61,

Moreover, 61 is optimal in this result.

For a positive integer n, let J(n) be the minimal for which the
conclusion of this Corollary is true with 3 replaced with n. Then we
have the following:

n [1/2] 3] 4 5 6 7
J(n)|1|8|61]|480 3881 |31976 | 266981
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Definition

Fix an integer n > 2 and consider n<~% as a tree ordered by
end-extension <. For i < n, a chain of type [i] is a chain C of the
tree with the property that if s < t are two consequtive nodes of C
then
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» s < t,
» t(k) < i for all k € dom(t)\ dom(s).



The expansion

Definition

Fix an integer n > 2 and consider n<% as a tree ordered by
end-extension <. For i < n, a chain of type [i] is a chain C of the
tree with the property that if s < t are two consequtive nodes of C
then

» s < t,
» t(k) < i for all k € dom(t)\ dom(s).

Theorem (Aviles-T., 2014)

IfT ={I;:i € n} are analytic preideals on a countable index set
N which are not separated, then there exists a permutation
€:n— n and a one-to-one map u : n~* — N such that

u(x) € I'(jy whenever x is a chain of type [i], i < n.
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A partition theorem for trees

For a fixed natural number k, we denote by W) the set of all finite
sequences of natural numbers from {0, ..., k} that start by k, that
is

Wi ={ (to, t1,...,tp) : to=k, t;€{0,...,k}, i=1,...,p}

Definition
We will say that a subset F C m<% is closed if it satisfies:
1. Ifs,t€ F,thensAteF

2. fs=t"r - T newitht,se F,neW,,...,nne W,
i1 <ip<---<g then t7r € F (therefore also t~r{"r € F,
etc.)

Given F C m<¥, let (F) be the closed set generated by F.
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an equivalence if it is the restriction of a bijection g : (X) — (Y)
satisfying the following for all s, t € (X)
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Definition
Consider sets X C m<¥, Y C n<“. A function f : X — Y is called
an equivalence if it is the restriction of a bijection g : (X) — (Y)
satisfying the following for all s, t € (X)

1 g(tns)=g(t) Ag(s),

2. g(t) < g(s)iff t <s,

3. If t < s then for every k, s\ t € W iff g(s) \ g(t) € Wi

where < is the notation of the lexicographical orderings on m<¥
and n<¥.

Definition
A sequence {wp, wy, ...} C Wy is called basic if

wil > |wj]
Jj<i

for every i.



Define T : Wk — Wk,1 by

T(w)(i) = max{0, w(i) — 1}.

Let
TO) : W, — W be the identity map,
TO =T,

TU) . Wy — Wi_; be the j-th iterate of T.
Let Tj = T*,=) . W, — W; using the same subindex for T; as for
the range space W;.



Define T : Wk — Wk,1 by

T(w)(i) = max{0, w(i) — 1}.

Let
TO) : W, — W be the identity map,
TO =T,

TU) . Wy — Wi_; be the j-th iterate of T.

Let T, = Tk . Wy — W, using the same subindex for T; as for
the range space W;.

Definition

Let m < n < w. A function

P msY — p<v

will be called a basic embedding if there exists a basic sequence
{ws : s € m<¥} C W,,_1 such that for every t € m<“ and for
every i € m, we have that
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If . m<¥ — n<Y s a basic embedding, then X is equivalent to
W(X) for every set X C m<¥.



Proposition
If . m<¥ — n<Y s a basic embedding, then X is equivalent to
W(X) for every set X C m<¥

Definition

A basic subtree of m<“ is the range of a basic embedding

U :m<Y — m<Y,

For a fixed set Xo C m<¥, let us say that Y is an Xp-set if Y is
equivalent to Xp.



Example
A basic subtree of 3<%:




Theorem (Partition Theorem for Trees)

Fix a set Xy C m<¥. Then for every finite partition of the
Xo-subsets of m=Y“ into Souslin-measurable subsets, there exists a
basic subtree T C m=<% all of whose Xy-subsets lie in the same
piece of the partition.



Theorem (Partition Theorem for Trees)

Fix a set Xy C m<¥. Then for every finite partition of the
Xo-subsets of m=Y“ into Souslin-measurable subsets, there exists a
basic subtree T C m=<% all of whose Xy-subsets lie in the same
piece of the partition.

Theorem (Finite Partition Theorem for Trees)

For every positive integers m,

every finite Xo € m<%,

and every positive integer k

there is a positive integer | such that

for every 2-coloring of the family of all Xy-subsets of m<'
there is Y C m<! equivalent to m<k such that

the family of all Xp-subsets of Y is monochromatic.
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For every natural number k and every set R C QK there is M C Q
order-isomorphic to Q such that RN M* is (Q, <, <')-canonical
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is a well-order of Q of order-type w.



Expansion problem for Q

Theorem (Laver 1970)

For every natural number k and every set R C QK there is M C Q
order-isomorphic to Q such that RN M* is (Q, <, <')-canonical
relation on M, where < is the usual ordering on Q and where <’
is a well-order of Q of order-type w.

Theorem (Laver 1970, Devlin 1979)

For every positive integer k there is an relations Dy on Q¥ that
has exactly t; = tan®=1(0) classes such that for every equivalence
relation E on QUK with finitely many classes there is M C Q
order-isomorphic to Q such that the restriction of E on Ml js
coarser that the restriction of Dy on MIKI.
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Other homogeneous structures

Problem
Let A be a countable ultrahomogeneous structure.

» Under which condition on A we can find an expansion A* with
finitely many relations such that every subset R of some finite
power A¥ is A*-canonical when restricted to some
substructure of A isomorphic to A7

» Under which additional assumptions (if any) can we conclude
that on any finite symmetric power AlK! there is the finest
canonical equivalence relation with finitely many classes?
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There is a mapping f : Q1 — N such that f” X[ =N for every
X C Q homeomorphic to Q.



The expansion problem for top(Q)

We now consider Q as a topological space.

Theorem (Baumgartner, 1986)

There is a mapping f : Q1 — N such that f” X[ =N for every
X C Q homeomorphic to Q.

Theorem (T., 1994)

There is an equivalence relation Ens on Q2 with infinitely many
classes €1, €, ..., €, ... such that if for some positive integer k the
closure X of some subset X of Q has its kth Cantor-Bendixson
derivative nonempty then

XPlne £0 forall2 <i<2k.

Moreover, if X is not a discrete subspace of Q then X 2N e # .
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Continuous version of the expansion problem

Theorem (T., 1994)
For every positive integer p and every continuous mapping

f:Q = {0,1,....p—1}

there is X C Q homeomorphic to Q such that f is constant on
X,

Theorem (T., 1994)

There is a continuous map f : QB! — Q such that f(XBl) = Q for
every X C QQ homeomorphic to Q.

Theorem (T., 1994)

The class of equivalence relations on Q[ with open equivalence
classes has 26-element Ramsey basis.
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S-canonical equivalence relation ~k on (2¥)Il that has k!(k — 1)!
many classes has the property that every X C 2 homeomorphic
to Q realizes all the classes.
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Basis problems for R

Theorem (Sierpinski, 1933)

Let < be the usual lexicographic ordering of 2V, let <’ be a
well-ordering of 2 and let S denote the expanded structure

(2N A, <, <'). Then for every positive integer k the finest
S-canonical equivalence relation ~k on (2¥)Il that has k!(k — 1)!
many classes has the property that every X C 2 homeomorphic
to Q realizes all the classes.

Conjecture (Galvin, 1970)

For every positive integer k every equivalence relation on RIK with
finitely many classes is S-canonical when restricted to some
uncountable set X C R.

Theorem (Shelah, 2000)

For k = 2 the Galvin conjecture is consistent with rather large
continuum.
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Theorem (T., 1987, 1994)

For every positive integer k there is
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Basis problems for wy, wo, ...

Theorem (T., 1987, 1994)

For every positive integer k there is
f: [wk]k+1 —w
such that f([X]¥*1) = w for every uncountable X C wy.

Corollary
Galvin's Conjecture implies 250 > X,.

Question
Is Galvin's Conjecture consistent with 280 = Ny17?
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function:

A(x.y) = min{n: x(n) # y(n)}.



Borel version of the expansion problem for R

The Cantor space 2 as the Borel structure:
(2",<,4)

where < is the lexicographical ordering and A the distance
function:

A(x,y) = min{n  x(n) # y(n)}.
Theorem (Galvin, 1968, Blass 1981)

» For every positive integer k every Borel set R C (2M)¥ js
(2N, <, A)-canonical on some perfect set P C 2.

» Among (2, <, A)-canonical Borel equivalence relation on a
given finite symmetric power (2V)IX with finitely many
classes there is the finest one which has exactly (k — 1)!
many classes.



Theorem (Taylor 1979, Lefmann 1983, Vuksanovic 2008,
Vlitas 2014)

» There is exactly two (2, <, A)-canonical Borel equivalence
relations on (2V)1?l with countably many classes: T and Ea.



Theorem (Taylor 1979, Lefmann 1983, Vuksanovic 2008,
Vlitas 2014)

» There is exactly two (2, <, A)-canonical Borel equivalence
relations on (2V)1?l with countably many classes: T and Ea.

» There is exactly seven (ZN, <, A)-canonical Borel equivalence

relations on (2M)?! given by the following seven conditions
on given two pairs xp < x1 and yg < y1:

1. Xo = Xo,

2. xp = yo,

3. X1 :yl,

4. xo = yog and x; = y1,

5. A(xo,x1) = A(yo, ¥1) and xo = xo,
6. A(xo,x1) = A(yo, 1) and xo = yo,
7. A(Xo,Xl) = A(yo,yl) and X1 = Y1



Theorem (Taylor 1979, Lefmann 1983, Vuksanovic 2008,
Vlitas 2014)

» There is exactly two (2, <, A)-canonical Borel equivalence
relations on (2V)1?l with countably many classes: T and Ea.

» There is exactly seven (ZN, <, A)-canonical Borel equivalence

relations on (2M)?! given by the following seven conditions
on given two pairs xp < x1 and yg < y1:

1. Xo = Xo,

2. xp = yo,

3. X1 = yl,

4. xo = yog and x; = y1,

5. A(xo,x1) = A(yo, ¥1) and xo = xo,
6. A(xo,x1) = A(yo, 1) and xo = yo,

7. A(Xo,Xl) = A(yo,yl) and X1 = Y1
» There is exactly twenty five (2, <, A)-canonical Borel
equivalence relations on (2V)!
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For two structures A and B of the same type, set

<i) = {A": A is a substructure of B isomorphic to A}.

For A,B and C of the same type and cardinals A and 7, let

c (B,

: o
denote the statement that for every coloring x : Al A
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there is B’ ¢ <g> such that x on (i) has < 7 values. Let

C—(B)Y iff C—(B)}y,

C—[B]} iff C— (B
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Examples

Theorem (Galvin 1970)
9 4 [4]3 but 10 — [4]3.

Theorem (Laver 1970, Devlin, 1979)

Fix a positive integer k and let t;, = tan(®~1)(0) and consider the
rationals Q as ordered set.

» Q — (Q)f, forall | < w.

Itk

> Q4 [Q]f.

Conjecture (Sierpiski 1933, Galvin 1970)
For every positive integer k,
» %o (Nl);(k!(kfl)! for all | < w,

> 2% A [Nl]il(k—l)!'
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More examples
Theorem (Galvin-Shelah 1973)
2% 5 [2R.
Theorem (T., 1987, 1994)
Ny A [Nl]kﬁ:'l for all positive integers k.
Theorem (Laver 1970, Devlin 1979)

Fix a positive integer k and let t;, = tan(?~1)(0). Let R denote
the random graph and let Ky denote the complete graph on k
vertices.

> R— (R)[* forall | <w.
> R A [RIE
Theorem (Sierpinski 1933, Raghavan-T. 2020)

> R # (top(Q))3-
» R — (top(Q) %2 for all | < w.
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The 3-dimensional expansion problem for top(Q)

Theorem (Raghavan-T., 2022)
For every k < w and every Hausdorff space X of cardinality ¥,

X [top(Q)IE2.

Corollary (Raghavan - T., 2022)
If for some integer k > 1,

R— (top(Q))ﬁk!(kfl)! for all | < w,
then |R| > Ny_1.

Corollary (Raghavan - T., 2022)
IFR — (top(Q))33,15 then [R| > R,.
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Ramsey degrees in Fraissé classes

Definition

Let K be a given class of finite L-structures.

For A € K, let t(A,K) be the minimal number t (if it exists)
such that for every B in K and | < w there exists C in K such that

C — (B)..

Otherwise, put t(A, K) = cc.
We call t(A, K) the Ramsey degree of A in the class K. We say
that K has the Ramsey property if t(A,K) =1 for all A € K.

Example

> Finite linearly ordered sets have Ramsey degree 1 in the class
of all finite linear orderings, i.e., Q — (n)f for all k,I,n < w.
» Complete graphs have Ramsey degree 1 in the class of all
finite graphs, ie, R — (G)fk for all finite graphs G and
kI <w.
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Ramsey degrees via expansions

Fix a countable homogeneous (countable, infinite, locally finite)
L-structure F.

Let F* be an ultrahomogeneous L*-expansion of F, where [* adds
to L finitely many, say n, relational symbols {R; : i < n}.

For A € Age(F), set

XA ={(Rr-i<n)e ]2 : (AR ... Ri,) € Age(F*)}.

i<n

| XA
J(A) = ZCEL
7 (A) = TAw(a)]

Proposition
If Age(F*) has the Ramsey property , then

t(A, Age(F)) < te«(A) for all A € Age(F),

and so, in particular t(A, Age(F)) < oo for all A € Age(F).
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Definition
For F and F* as above, we say that F* has the expansion
property relative to F whenever

VA* € Age(F*) 3B € Age(F) VB* € Age(F™)

[B*|L=B = A* < B

Proposition

If the expansion F* has both the Ramsey property and the
expansion property relative to F, then

t(A, Age(F)) = tg=(A) for all A € Age(F).
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The reverse
Definition
An expansion F* = (F,(R; : i <w)) of F is precompact if its age
restricted to every finite substructure of F is finite.

Remark
The point of this definition (among other things) is that the
corresponding version of tg«(A) is still finite.

Proposition
The following are equivalent for a given countably infinite
homogeneous structure F:

> t(A,Age(F)) < oo for every A€ F.

» There is a Ramsey precompact expansion F* of F.

Proposition
If there is a Ramsey precompact expansion of F then there is
one that also has the expansion property.
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Topological dynamics reformulation

Theorem (Kechris-Pestov-T., 2005, Nguyen Van Thé 2013)

Let F be a countable relational ultrahomogeneous structure and
let F* be its precompact relational expansion. The following are
equivalent:

» The action of Aut(F) on the space Xg+ of all F*-admissible
L* \ L-relations on F is the universal minimal flow of the
group Aut(F).

» F* has the Ramsey property as well as the expansion
property relative to F.

Theorem (Zucker 2014)

Let F be a countable locally finite ultrahomogeneous structure. If
the group Aut(F) has metrizable universal minimal flow then
t(A, Age(F)) < oo for all A € Age(F).
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