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What is a basis problem?

Definition
Given a quasi-ordered class (K,≤) of mathematical structures of
the same type, we say that K0 ⊆ K is a basis of K if for every
K ∈ K there is K0 ∈ K0 such that K0 ≤ K .

Problem
Suppose K0 is a downwards closed subclass of a given
quasi-ordered class (K,≤). Can one characterize K0 by forbidding
finitely many members of K?



Basis problem for gaps in P(ω)/Fin

Notation:
Fix a countable index set N. For a, b ⊆ N, set

a ⊆∗ b iff a \ b is finite,

a ⊥ b iff a ∩ b is finite.

For A,B ⊆ P(N), set

A ⊥ B iff (∀a ∈ A) (∀b ∈ B) a ⊥ b.

A⊥ = {b : (∀a ∈ A) b ∩ a is finite}.
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Gaps of preideals

Definition
A preideal on a countable set N is a family I of subsets of N such
that if x ∈ I and y ⊆ x is infinite, then y ∈ I .

Definition
Let Γ = {Γi : i ∈ n} be a n-sequence of preideals on the set N and
let X be a family of subsets of n = {0, 1, ..., n − 1}.

1. We say that Γ is separated if there exist a0, . . . , an−1 ⊆ N
such that

⋂
i∈n ai = ∅ and x ⊆∗ ai for all x ∈ Γi , i ∈ n.

2. We say that Γ is an X-gap if it is not separated, but⋂
i∈A xi =∗ ∅ whenever xi ∈ Γi , A ∈ X.

Definition
When X = [n]2 an X-gap will be called an n-gap.
When X = {{1, 2, ..., n − 1}} an X-gap will be called an n∗-gap.
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Hausdorff gaps

Theorem (Hausdorff, 1909, 1934; Luzin, 1947)

There is an ℵ1-generated 2-gap in P(ω)/Fin.

Theorem (Aviles-T., 2011)

For k > 2, assuming Martin’s axiom, there are no < c-generated
k-gaps in P(ω)/FIN.

Definition
A 2-gap (A,B) for which A and B are σ-directed under the
inclusion modulo finite is called a Hausdorff gap.

Theorem (T. 1996)

There are no analytic Hausdorff gaps.
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Some applications of analytic gaps

Theorem (T., 1999)

The class of non-metrizable separable compact spaces of
Baire-class-1 functions defined on a Polish space has the
3-element basis {S ,D,P}, where S is the split-interval, D the
(separable version of the) Alexandrov duplicate of the Cantor set,
and P the one-point compactification of the Cantor tree space.

Theorem (T., 1999)

If x is a non-Gδ point of some compact set K of Baire-class-1
functions then K contains a topological copy of P where x plays
the role of point at infinity.

Theorem (Argyros-Dodos-Kanellopoulos, 2008)

Every infinite-dimensional dual Banach space has an
infinite-dimensional quotient with a Schauder basis.
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Ordering gaps

Definition
The orthogonal of the gap Γ is Γ⊥ =

(⋃
i∈n Γi

)⊥
. The gap Γ is

called dense if Γ⊥ is just the family of finite subsets of N.

Definition
For Γ and ∆ two n∗-gaps on countable sets N and M, respectively,
we say that

Γ ≤ ∆

if there exists a one-to-one map φ : N → M such that for i < n,

1. if x ∈ Γi then φ(x) ∈ ∆i .

2. If x ∈ Γ⊥i then φ(x) ∈ ∆⊥i .

Two n∗-gaps Γ and Γ′ are called equivalent if Γ ≤ Γ′ and if Γ′ ≤ Γ.
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Remark

I When Γ is a n-gap, the second condition can be substituted
by saying that if x ∈ Γ⊥ then φ(x) ∈ ∆⊥.

I Notice also that if ∆ is a n-gap, Γ is a n∗-gap, and Γ ≤ ∆,
then Γ is an n-gap.

I Another observation is that the above definition implies that
φ(x) ∈ ∆⊥⊥i if and only if x ∈ Γ⊥⊥i , and
φ(x) ∈ ∆⊥ if and only if x ∈ Γ⊥.

I Therefore the gaps {Γ⊥⊥i : i < n} and {∆⊥⊥i � φ“N : i < n}
are completely identified under the bijection φ : N → φ“N.

I There are other variants of the order ≤ between gaps but all
lead essentially to the same theory.

Definition
An analytic n∗-gap Γ is said to be a minimal analytic n∗-gap if
for every other analytic n∗-gap ∆, if ∆ ≤ Γ, then Γ ≤ ∆.
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Finite Basis Theorem for Gaps

Theorem (Aviles-T., 2014)

Fix a positive integers n.

I For every analytic n∗-gap Γ there exists a minimal analytic
n∗-gap ∆ such that ∆ ≤ Γ.

I Up to equivalence, there exist only finitely many minimal
analytic n∗-gaps.

Remark
Up to permutations there is exactly 5 minimal analytic 2-gaps.
Most of them already show up in the literature.
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Corollary

Let U be a countable family of pairwise disjoint analytic open
subsets of βN \ N, and let {U0,U1,U2} ⊆ U be pairwise distinct
such that U0 ∩ U1 ∩ U2 6= ∅.
Then, there exists a point x ∈ U0 ∩ U1 ∩ U2 such that

|{U ∈ U : x ∈ U}| ≤ 61.

Moreover, 61 is optimal in this result.

For a positive integer n, let J(n) be the minimal for which the
conclusion of this Corollary is true with 3 replaced with n. Then we
have the following:

n 1 2 3 4 5 6 7 · · ·
J(n) 1 8 61 480 3881 31976 266981 · · ·



The expansion

Definition
Fix an integer n ≥ 2 and consider n<ω as a tree ordered by
end-extension ≤. For i < n, a chain of type [i ] is a chain C of the
tree with the property that if s < t are two consequtive nodes of C
then

I s_i ≤ t,

I t(k) ≤ i for all k ∈ dom(t) \ dom(s).

Theorem (Aviles-T., 2014)

If Γ = {Γi : i ∈ n} are analytic preideals on a countable index set
N which are not separated, then there exists a permutation
ε : n→ n and a one-to-one map u : n<ω → N such that
u(x) ∈ Γε(i) whenever x is a chain of type [i ], i < n.
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A partition theorem for trees

For a fixed natural number k , we denote by Wk the set of all finite
sequences of natural numbers from {0, . . . , k} that start by k , that
is

Wk = { (t0, t1, . . . , tp) : t0 = k, ti ∈ {0, . . . , k}, i = 1, . . . , p }

Definition
We will say that a subset F ⊂ m<ω is closed if it satisfies:

1. If s, t ∈ F , then s ∧ t ∈ F

2. If s = t_r_1 · · ·_ rk with t, s ∈ F , r1 ∈Wi1 , . . . , rk ∈Wik ,
i1 < i2 < · · · < ik , then t_r1 ∈ F (therefore also t_r_1 r2 ∈ F ,
etc.)

Given F ⊂ m<ω, let 〈F 〉 be the closed set generated by F .
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Definition
Consider sets X ⊂ m<ω, Y ⊂ n<ω. A function f : X → Y is called
an equivalence if it is the restriction of a bijection g : 〈X 〉 → 〈Y 〉
satisfying the following for all s, t ∈ 〈X 〉

1. g(t ∧ s) = g(t) ∧ g(s),

2. g(t) ≺ g(s) iff t ≺ s,

3. If t ≤ s then for every k , s \ t ∈Wk iff g(s) \ g(t) ∈Wk

where ≺ is the notation of the lexicographical orderings on m<ω

and n<ω.

Definition
A sequence {w0,w1, . . .} ⊂Wk is called basic if

|wi | >
∑
j<i

|wj |

for every i .
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Define T : Wk →Wk−1 by

T (w)(i) = max{0,w(i)− 1}.
Let
T (0) : Wk →Wk be the identity map,
T (1) = T ,
T (j) : Wk →Wk−j be the j-th iterate of T .
Let Ti = T (k−i) : Wk →Wi using the same subindex for Ti as for
the range space Wi .

Definition
Let m ≤ n < ω. A function

ψ : m<ω → n<ω

will be called a basic embedding if there exists a basic sequence
{ws : s ∈ m<ω} ⊂Wm−1 such that for every t ∈ m<ω and for
every i ∈ m, we have that

ψ(t_i) = ψ(t)_Ti (wt_i ).
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Proposition

If ψ : m<ω → n<ω is a basic embedding, then X is equivalent to
ψ(X ) for every set X ⊂ m<ω.

Definition
A basic subtree of m<ω is the range of a basic embedding
ψ : m<ω → m<ω.
For a fixed set X0 ⊂ m<ω, let us say that Y is an X0-set if Y is
equivalent to X0.
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Example

A basic subtree of 3<ω:

2≤ 0

≤ 1

1

≤ 2



Theorem (Partition Theorem for Trees)

Fix a set X0 ⊂ m<ω. Then for every finite partition of the
X0-subsets of m<ω into Souslin-measurable subsets, there exists a
basic subtree T ⊂ m<ω all of whose X0-subsets lie in the same
piece of the partition.

Theorem (Finite Partition Theorem for Trees)

For every positive integers m,
every finite X0 ⊆ m<ω,
and every positive integer k
there is a positive integer l such that
for every 2-coloring of the family of all X0-subsets of m<l

there is Y ⊆ m<l equivalent to m<k such that
the family of all X0-subsets of Y is monochromatic.
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Expansion problem for Q

Theorem (Laver 1970)

For every natural number k and every set R ⊆ Qk there is M ⊆ Q
order-isomorphic to Q such that R ∩Mk is (Q,6, <′)-canonical
relation on M, where 6 is the usual ordering on Q and where <′

is a well-order of Q of order-type ω.

Theorem (Laver 1970, Devlin 1979)

For every positive integer k there is an relations Dk on Q[k] that
has exactly tk = tan2k−1(0) classes such that for every equivalence
relation E on Q[k] with finitely many classes there is M ⊆ Q
order-isomorphic to Q such that the restriction of E on M [k] is
coarser that the restriction of Dk on M [k].
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Other homogeneous structures

Problem
Let A be a countable ultrahomogeneous structure.

I Under which condition on A we can find an expansion A∗ with
finitely many relations such that every subset R of some finite
power Ak is A∗-canonical when restricted to some
substructure of A isomorphic to A?

I Under which additional assumptions (if any) can we conclude
that on any finite symmetric power A[k] there is the finest
canonical equivalence relation with finitely many classes?
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The expansion problem for top(Q)

We now consider Q as a topological space.

Theorem (Baumgartner, 1986)

There is a mapping f : Q[2] → N such that f ′′X [2] = N for every
X ⊆ Q homeomorphic to Q.

Theorem (T., 1994)

There is an equivalence relation Eosc on Q[2] with infinitely many
classes e1, e2, ..., ek , ... such that if for some positive integer k the
closure X of some subset X of Q has its kth Cantor-Bendixson
derivative nonempty then

X [2] ∩ ei 6= ∅ for all 2 ≤ i ≤ 2k .

Moreover, if X is not a discrete subspace of Q then X [2] ∩ e1 6= ∅.
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Continuous version of the expansion problem

Theorem (T., 1994)

For every positive integer p and every continuous mapping

f : Q[2] → {0, 1, ..., p − 1}

there is X ⊆ Q homeomorphic to Q such that f is constant on
X [2].

Theorem (T., 1994)

There is a continuous map f : Q[3] → Q such that f (X [3]) = Q for
every X ⊆ Q homeomorphic to Q.

Theorem (T., 1994)

The class of equivalence relations on Q[2] with open equivalence
classes has 26-element Ramsey basis.
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Basis problems for R

Theorem (Sierpinski, 1933)

Let 6 be the usual lexicographic ordering of 2N, let <′ be a
well-ordering of 2N and let S denote the expanded structure
(2N,∆,6, <′). Then for every positive integer k the finest
S-canonical equivalence relation ∼k

S on (2N)[k] that has k!(k − 1)!
many classes has the property that every X ⊆ 2N homeomorphic
to Q realizes all the classes.

Conjecture (Galvin, 1970)

For every positive integer k every equivalence relation on R[k] with
finitely many classes is S-canonical when restricted to some
uncountable set X ⊆ R.

Theorem (Shelah, 2000)

For k = 2 the Galvin conjecture is consistent with rather large
continuum.
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Basis problems for ω1, ω2, ...

Theorem (T., 1987, 1994)

For every positive integer k there is

f : [ωk ]k+1 → ω

such that f ([X ]k+1) = ω for every uncountable X ⊆ ωk .

Corollary

Galvin’s Conjecture implies 2ℵ0 > ℵω.

Question
Is Galvin’s Conjecture consistent with 2ℵ0 = ℵω+1?
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Borel version of the expansion problem for R

The Cantor space 2N as the Borel structure:

(2N,6,∆)

where 6 is the lexicographical ordering and ∆ the distance
function:

∆(x , y) = min{n : x(n) 6= y(n)}.

Theorem (Galvin, 1968, Blass 1981)

I For every positive integer k every Borel set R ⊆ (2N)k is
(2N,6,∆)-canonical on some perfect set P ⊆ 2N.

I Among (2N,6,∆)-canonical Borel equivalence relation on a
given finite symmetric power (2N)[k] with finitely many
classes there is the finest one which has exactly (k − 1)!
many classes.
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Theorem (Taylor 1979, Lefmann 1983, Vuksanovic 2008,
Vlitas 2014)

I There is exactly two (2N,6,∆)-canonical Borel equivalence
relations on (2N)[2] with countably many classes: > and E∆.

I There is exactly seven (2N,6,∆)-canonical Borel equivalence
relations on (2N)[2] given by the following seven conditions
on given two pairs x0 < x1 and y0 < y1:

1. x0 = x0,
2. x0 = y0,
3. x1 = y1,
4. x0 = y0 and x1 = y1,
5. ∆(x0, x1) = ∆(y0, y1) and x0 = x0,
6. ∆(x0, x1) = ∆(y0, y1) and x0 = y0,
7. ∆(x0, x1) = ∆(y0, y1) and x1 = y1.

I There is exactly twenty five (2N,6,∆)-canonical Borel
equivalence relations on (2N)[3]
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The arrow-notation

For two structures A and B of the same type, set(
B
A

)
= {A′ : A′ is a substructure of B isomorphic to A}.

For A,B and C of the same type and cardinals λ and τ , let

C → (B)Aλ,τ

denote the statement that for every coloring χ :

(
C
A

)
→ λ

there is B ′ ∈
(

C
B

)
such that χ on

(
B ′

A

)
has ≤ τ values. Let

C → (B)Aλ iff C → (B)Aλ,1,

C → [B]Aλ iff C → (B)Aλ,λ−1.
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Examples

Theorem (Galvin 1970)

9 6→ [4]24 but 10→ [4]24.

Theorem (Laver 1970, Devlin, 1979)

Fix a positive integer k and let tk = tan(2k−1)(0) and consider the
rationals Q as ordered set.

I Q→ (Q)kl ,tk for all l < ω.

I Q 6→ [Q]ktk .

Conjecture (Sierpiski 1933, Galvin 1970)

For every positive integer k ,

I 2ℵ0 → (ℵ1)kl ,k!(k−1)! for all l < ω,

I 2ℵ0 6→ [ℵ1]kk!(k−1)!.
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More examples

Theorem (Galvin-Shelah 1973)

2ℵ0 6→ [2ℵ0 ]2ℵ0
.

Theorem (T., 1987, 1994)

ℵk 6→ [ℵ1]k+1
ℵ0

for all positive integers k .

Theorem (Laver 1970, Devlin 1979)

Fix a positive integer k and let tk = tan(2k−1)(0). Let R denote
the random graph and let Kk denote the complete graph on k
vertices.

I R → (R)Kk
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I R 6→ [R]Kk
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Theorem (Sierpinski 1933, Raghavan-T. 2020)

I R 6→ (top(Q))2
2.

I R→ (top(Q))2
l ,2 for all l < ω.
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The 3-dimensional expansion problem for top(Q)

Theorem (Raghavan-T., 2022)

For every k < ω and every Hausdorff space X of cardinality ℵk ,

X 6→ [top(Q)]k+2
ℵ0

.

Corollary (Raghavan - T., 2022)

If for some integer k ≥ 1,

R→ (top(Q))kl ,k!(k−1)! for all l < ω,

then |R| ≥ ℵk−1.

Corollary (Raghavan - T., 2022)

If R→ (top(Q))3
13,12 then |R| ≥ ℵ2.
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Ramsey degrees in Fräıssé classes

Definition
Let K be a given class of finite L-structures.
For A ∈ K, let t(A,K) be the minimal number t (if it exists)
such that for every B in K and l < ω there exists C in K such that

C → (B)Al ,t .

Otherwise, put t(A,K) =∞.
We call t(A,K) the Ramsey degree of A in the class K. We say
that K has the Ramsey property if t(A,K) = 1 for all A ∈ K.

Example

I Finite linearly ordered sets have Ramsey degree 1 in the class
of all finite linear orderings, i.e., Q→ (n)kl for all k , l , n < ω.

I Complete graphs have Ramsey degree 1 in the class of all
finite graphs, i.e., R → (G)Kk

l for all finite graphs G and
k, l < ω.
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Definition
Let K be a given class of finite L-structures.
For A ∈ K, let t(A,K) be the minimal number t (if it exists)
such that for every B in K and l < ω there exists C in K such that

C → (B)Al ,t .

Otherwise, put t(A,K) =∞.
We call t(A,K) the Ramsey degree of A in the class K. We say
that K has the Ramsey property if t(A,K) = 1 for all A ∈ K.

Example

I Finite linearly ordered sets have Ramsey degree 1 in the class
of all finite linear orderings, i.e., Q→ (n)kl for all k , l , n < ω.

I Complete graphs have Ramsey degree 1 in the class of all
finite graphs, i.e., R → (G)Kk

l for all finite graphs G and
k, l < ω.



Ramsey degrees via expansions

Fix a countable homogeneous (countable, infinite, locally finite)
L-structure F .
Let F ∗ be an ultrahomogeneous L∗-expansion of F , where L∗ adds
to L finitely many, say n, relational symbols {Ri : i < n}.
For A ∈ Age(F ), set

XA
F∗ = {(R∗i : i < n) ∈

∏
i<n

2Aki
: (A,R∗0 , ...,R

∗
n−1) ∈ Age(F ∗)}.

tF∗(A) =
|XA

F∗ |
|Aut(A)|

.

Proposition

If Age(F ∗) has the Ramsey property , then

t(A,Age(F )) ≤ tF∗(A) for all A ∈ Age(F ),

and so, in particular t(A,Age(F )) <∞ for all A ∈ Age(F ).
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Definition
For F and F ∗ as above, we say that F ∗ has the expansion
property relative to F whenever

∀A∗ ∈ Age(F ∗) ∃B ∈ Age(F ) ∀B∗ ∈ Age(F ∗)

[B∗ � L = B =⇒ A∗ ≤ B∗].

Proposition

If the expansion F ∗ has both the Ramsey property and the
expansion property relative to F , then

t(A,Age(F )) = tF∗(A) for all A ∈ Age(F ).
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The reverse

Definition
An expansion F ∗ = (F , (Ri : i < ω)) of F is precompact if its age
restricted to every finite substructure of F is finite.

Remark
The point of this definition (among other things) is that the
corresponding version of tF∗(A) is still finite.

Proposition

The following are equivalent for a given countably infinite
homogeneous structure F :

I t(A,Age(F )) <∞ for every A ∈ F .
I There is a Ramsey precompact expansion F ∗ of F .

Proposition

If there is a Ramsey precompact expansion of F then there is
one that also has the expansion property.
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Topological dynamics reformulation

Theorem (Kechris-Pestov-T., 2005, Nguyen Van Thé 2013)

Let F be a countable relational ultrahomogeneous structure and
let F ∗ be its precompact relational expansion. The following are
equivalent:

I The action of Aut(F ) on the space XF∗ of all F ∗-admissible
L∗ \ L-relations on F is the universal minimal flow of the
group Aut(F ).

I F ∗ has the Ramsey property as well as the expansion
property relative to F .

Theorem (Zucker 2014)

Let F be a countable locally finite ultrahomogeneous structure. If
the group Aut(F ) has metrizable universal minimal flow then
t(A,Age(F )) <∞ for all A ∈ Age(F ).
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