Basis Problems and Expansions, II

Stevo Todorcevic

The Fields Institute, March 16, 2023

(ロ)、(型)、(E)、(E)、 E) の(の)

What is a basis problem?

Definition

Given a quasi-ordered class (\mathcal{K}, \leq) of mathematical structures of the same type, we say that $\mathcal{K}_0 \subseteq \mathcal{K}$ is a **basis** of \mathcal{K} if for every $\mathcal{K} \in \mathcal{K}$ there is $\mathcal{K}_0 \in \mathcal{K}_0$ such that $\mathcal{K}_0 \leq \mathcal{K}$.

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 → の Q @

Problem

Suppose \mathcal{K}_0 is a downwards closed subclass of a given quasi-ordered class (\mathcal{K}, \leq). Can one characterize \mathcal{K}_0 by forbidding finitely many members of \mathcal{K} ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Problem

Suppose \mathcal{K}_0 is a downwards closed subclass of a given quasi-ordered class (\mathcal{K}, \leq). Can one characterize \mathcal{K}_0 by forbidding finitely many members of \mathcal{K} ?

Example

Can one characterize in this way the class of all finite linear orderings in the class of all linear orderings?

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Problem

Suppose \mathcal{K}_0 is a downwards closed subclass of a given quasi-ordered class (\mathcal{K}, \leq). Can one characterize \mathcal{K}_0 by forbidding finitely many members of \mathcal{K} ?

Example

- Can one characterize in this way the class of all finite linear orderings in the class of all linear orderings?
- Can one characterize in this way the class of countable linear orderings in the class of all linear orderings?

Problem

Suppose \mathcal{K}_0 is a downwards closed subclass of a given quasi-ordered class (\mathcal{K}, \leq). Can one characterize \mathcal{K}_0 by forbidding finitely many members of \mathcal{K} ?

Example

- Can one characterize in this way the class of all finite linear orderings in the class of all linear orderings?
- Can one characterize in this way the class of countable linear orderings in the class of all linear orderings?
- Can one characterize in this way the class of metrizable compact spaces in the class of all compact spaces?

Proposition

The class of infinite linear orderings has basis $\{\omega^*, \omega\}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proposition The class of infinite linear orderings has basis $\{\omega^*, \omega\}$.

Corollary

The class of finite linear orderings is equal to $\{\omega^*, \omega\}^{\perp}$.

Proposition

The class of infinite linear orderings has basis $\{\omega^*, \omega\}$.

Corollary

The class of finite linear orderings is equal to $\{\omega^*, \omega\}^{\perp}$.

Problem

Does the class of **uncountable linear orderings have a finite basis?**

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proposition

The class of infinite linear orderings has basis $\{\omega^*, \omega\}$.

Corollary

The class of finite linear orderings is equal to $\{\omega^*, \omega\}^{\perp}$.

Problem

Does the class of uncountable linear orderings have a finite basis?

Problem

If there a finite list $\{L_1, L_2, ..., L_n\}$ of uncountable linear orderings such that $\{L_1, L_2, ..., L_n\}^{\perp}$ is the class of countable linear orderings.

<ロ> <@> < E> < E> E のQの

Definition

A quasi-ordered set (Q, \leq) is well-quasi-ordered, wqo, if for every sequence $(q_i : i < \omega)$ of elements of Q there exist i < j such that $q_i \leq q_j$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Definition

A quasi-ordered set (Q, \leq) is well-quasi-ordered, wqo, if for every sequence $(q_i : i < \omega)$ of elements of Q there exist i < j such that $q_i \leq q_j$.

Conjecture (Fraïssée 1948)

The class of countable linear orderings is well-quasi-ordered.

Definition

A quasi-ordered set (Q, \leq) is well-quasi-ordered, wqo, if for every sequence $(q_i : i < \omega)$ of elements of Q there exist i < j such that $q_i \leq q_j$.

Conjecture (Fraïssée 1948)

The class of countable linear orderings is well-quasi-ordered.

Theorem (Laver 1971)

The class of σ -scattered linear orderings is better-quasi-ordered.

Definition

A quasi-ordered set (Q, \leq) is well-quasi-ordered, wqo, if for every sequence $(q_i : i < \omega)$ of elements of Q there exist i < j such that $q_i \leq q_j$.

Conjecture (Fraïssée 1948)

The class of countable linear orderings is well-quasi-ordered.

Theorem (Laver 1971)

The class of σ -scattered linear orderings is better-quasi-ordered.

Corollary (Laver, 1971)

Every class of σ -scattered linear orderings has a finite basis.

▲□▶ ▲圖▶ ★園▶ ★園▶ - 園 - のへで

Definition (Nash-Williams 1965)

A collection \mathcal{F} of finite subsets of \mathbb{N} is a **barrier** if every infinite subset of \mathbb{N} has an initial segment in \mathcal{F} and if no two distinct elements of \mathcal{F} are comparable under inclusion.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition (Nash-Williams 1965)

A collection \mathcal{F} of finite subsets of \mathbb{N} is a **barrier** if every infinite subset of \mathbb{N} has an initial segment in \mathcal{F} and if no two distinct elements of \mathcal{F} are comparable under inclusion.

Example

For every positive integer k, the set [N]^k = {F ⊆ N : |F| = k} is a barrier.

The family S = {F ⊆ N : |F| = min(F) + 1} is a barrier of infinite rank.

Definition (Nash-Williams 1965)

A collection \mathcal{F} of finite subsets of \mathbb{N} is a **barrier** if every infinite subset of \mathbb{N} has an initial segment in \mathcal{F} and if no two distinct elements of \mathcal{F} are comparable under inclusion.

Example

- For every positive integer k, the set [N]^k = {F ⊆ N : |F| = k} is a barrier.
- The family S = {F ⊆ N : |F| = min(F) + 1} is a barrier of infinite rank.

Theorem (Nash-Williams, 1965)

For every barrier ${\mathcal F}$ on ${\mathbb N}$ and every positive integer p, every

$$f: \mathcal{F} \to \{0, 1, \dots p-1\}$$

is constant on $\mathcal{F} \upharpoonright M$ for some infinite $M \subseteq \mathbb{N}$.

Definition (Nash-Williams 1965)

A quasi-ordered set (Q, \leq) is better quasi-ordered if for every barrier ${\cal F}$ on ${\mathbb N}$ and

$$f:\mathcal{F}\to Q$$

there exist $s, t \in \mathcal{F}$ such that $s \triangleleft t$ and $f(s) \leq f(t)$.

Notation: $s \triangleleft t$ means that s is an initial segment of $u = s \cup t$ and that $t = u \setminus {\min(u)}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition (Nash-Williams 1965)

A quasi-ordered set (Q, \leq) is better quasi-ordered if for every barrier \mathcal{F} on \mathbb{N} and

$$f:\mathcal{F}\to Q$$

there exist $s, t \in \mathcal{F}$ such that $s \triangleleft t$ and $f(s) \leq f(t)$.

Notation: $s \triangleleft t$ means that s is an initial segment of $u = s \cup t$ and that $t = u \setminus {\min(u)}$.

Remark

Note that restricting this definition to mappings $f : [\mathbb{N}]^1 \to Q$ we get the notion of well-quasi-ordered.

Definition (Nash-Williams 1965)

A quasi-ordered set (Q, \leq) is better quasi-ordered if for every barrier ${\cal F}$ on ${\mathbb N}$ and

$$f:\mathcal{F}\to Q$$

there exist $s, t \in \mathcal{F}$ such that $s \triangleleft t$ and $f(s) \leq f(t)$.

Notation: $s \triangleleft t$ means that s is an initial segment of $u = s \cup t$ and that $t = u \setminus {\min(u)}$.

Remark

Note that restricting this definition to mappings $f : [\mathbb{N}]^1 \to Q$ we get the notion of well-quasi-ordered.

Theorem (Simpson 1985)

A quasi-ordered set (Q, \leq) is better quasi-ordered iff for every Borel map

$$f:\mathbb{N}^{[\infty]} o Q$$

there exists $M \in \mathbb{N}^{[\infty]}$ such that $f(M) \leq f(M \setminus \{\min(M)\})$.

For a given quasi-ordered set Q let $Q^{\text{Ord}} = \bigcup_{\alpha \in \text{Ord}} Q^{\alpha}$. We quasi-order Q^{Ord} by letting

$$(x_{\xi}: \xi < \alpha) \leq_1 (y_{\eta}: \eta < \beta)$$

if there is a strictly increasing sequence ($\eta_\xi:\xi<\alpha)$ of ordinals $<\beta$ such that

$$x_{\xi} \leq y_{\eta_{\xi}}$$
 for all $\xi < \alpha$.

For a given quasi-ordered set Q let $Q^{\text{Ord}} = \bigcup_{\alpha \in \text{Ord}} Q^{\alpha}$. We quasi-order Q^{Ord} by letting

$$(x_{\xi}: \xi < \alpha) \leq_1 (y_{\eta}: \eta < \beta)$$

if there is a strictly increasing sequence ($\eta_\xi:\xi<\alpha)$ of ordinals $<\beta$ such that

$$x_{\xi} \leq y_{\eta_{\xi}}$$
 for all $\xi < \alpha$.

Theorem (Rado 1954)

There is a wqo Q such that Q^{ω} is not wqo.

For a given quasi-ordered set Q let $Q^{\text{Ord}} = \bigcup_{\alpha \in \text{Ord}} Q^{\alpha}$. We quasi-order Q^{Ord} by letting

$$(x_{\xi}: \xi < \alpha) \leq_1 (y_{\eta}: \eta < \beta)$$

if there is a strictly increasing sequence ($\eta_\xi:\xi<\alpha)$ of ordinals $<\beta$ such that

$$x_{\xi} \leq y_{\eta_{\xi}}$$
 for all $\xi < \alpha$.

Theorem (Rado 1954)

There is a wqo Q such that Q^{ω} is not wqo.

Theorem (Nash-Williams 1968) If Q is bgo then so is Q^{Ord} .

Definition

A linearly ordered set (L, \leq_L) is **separable** if there is countable $D \subseteq L$ such that for all $x <_L y$ there exist $d \in D$ such that $x <_L d \leq_L y$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

A linearly ordered set (L, \leq_L) is **separable** if there is countable $D \subseteq L$ such that for all $x <_L y$ there exist $d \in D$ such that $x \leq_L d \leq_L y$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Dushnik-Miller 1940)

The class of separable linearly ordered sets of cardinality continuum is not well-quasi-ordered.

Definition

A linearly ordered set (L, \leq_L) is **separable** if there is countable $D \subseteq L$ such that for all $x <_L y$ there exist $d \in D$ such that $x \leq_L d \leq_L y$.

Theorem (Dushnik-Miller 1940)

The class of separable linearly ordered sets of cardinality continuum is not well-quasi-ordered.

Question

What is the minimal cardinal θ such that the class $\text{Sep}(\theta)$ of separable linear ordering of cardinality $< \theta$ is well-quasi-ordered?

Remark

This cardinal falls into the interval $[\aleph_1, 2^{\aleph_0}]$.

Definition

A linearly ordered set (L, \leq_L) is **separable** if there is countable $D \subseteq L$ such that for all $x <_L y$ there exist $d \in D$ such that $x <_L d \leq_L y$.

Theorem (Dushnik-Miller 1940)

The class of separable linearly ordered sets of cardinality continuum is not well-quasi-ordered.

Question

What is the minimal cardinal θ such that the class $\text{Sep}(\theta)$ of separable linear ordering of cardinality $< \theta$ is well-quasi-ordered?

Remark

This cardinal falls into the interval $[\aleph_1, 2^{\aleph_0}]$.

Theorem (Baugartner 1973)

PFA implies that the class of separable linear orderings of cardinality smaller than continuum is well-quasi-ordered.

()

Sac

Definition

An **Aronszajn ordering** is an uncountable linearly ordered set L such that

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ► $\omega_1 \not\leq L$,
- $\blacktriangleright \ \omega_1^* \nleq L,$
- ▶ $S \leq L$ for any uncountable separable linear ordering.

Definition

An **Aronszajn ordering** is an uncountable linearly ordered set L such that

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- $\omega_1 \nleq L$,
- $\blacktriangleright \ \omega_1^* \nleq L,$
- $S \nleq L$ for any uncountable separable linear ordering.

Theorem (Aronszajn-Kurepa 1935, Specker 1949) There is an Aronszajn ordering.

Definition

An **Aronszajn ordering** is an uncountable linearly ordered set L such that

- ► $\omega_1 \not\leq L$,
- $\blacktriangleright \ \omega_1^* \nleq L,$
- $S \nleq L$ for any uncountable separable linear ordering.

Theorem (Aronszajn-Kurepa 1935, Specker 1949) *There is an Aronszajn ordering.*

Theorem (Martinez-Ranero, 2011)

PFA implies that the class of **Aronszajn orderings** is well-quasi-ordered.

Corollary (Martinez-Ranero, 2011)

PFA implies that **every** *class of* **Aronszajn orderings** *has a finite basis.*

Theorem (Baumgartner, 1973)

PFA implies that the class of **uncountable separable orderings** *has a* **one-element basis***.*

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem (Baumgartner, 1973)

PFA implies that the class of **uncountable separable orderings** *has a* **one-element basis**.

Theorem (Moore, 2005)

PFA implies that the class of **Aronszajn orderings** has basis $\{C^*, C\}$, where C is any uncountable linear ordering whose cartesian square is the union of countably many chains.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <
Corollary (Baumgartner 1973, Moore 2005)

PFA implies that the class of **uncountable linear orderings** *has basis*

$$\{\omega_1^*, \omega_1, B, C^*, C\}$$

where B is any set of reals of cardinality \aleph_1 and where C is any uncountable linear ordering whose cartesian square is the union of countably many chains.

Corollary (Baumgartner 1973, Moore 2005)

PFA implies that the class of **uncountable linear orderings** *has basis*

$$\{\omega_1^*, \omega_1, B, C^*, C\}$$

where B is any set of reals of cardinality \aleph_1 and where C is any uncountable linear ordering whose cartesian square is the union of countably many chains.

Corollary (Baumgartner 1973, Moore 2005)

PFA implies that the class of **countable linear orderings** *is equal* to $\{\omega_1^*, \omega_1, B, C^*, C\}^{\perp}$.

▲□▶▲圖▶▲≣▶▲≣▶ ▲□▶

Definition

For two trees S and T, by $S \leq_1 T$ we denote the fact that S can be **topologically embedded** into T, i.e., that there is $f : S \rightarrow T$ which is **strictly increasing** and \land -preserving.

Definition

For two trees *S* and *T*, by $S \leq_1 T$ we denote the fact that *S* can be **topologically embedded** into *T*, i.e., that there is $f : S \rightarrow T$ which is strictly increasing and \land -preserving.

Theorem (Kruskal 1956)

The class of finite trees is well-quasi-ordered by the relation \leq_1 .

Definition

For two trees *S* and *T*, by $S \leq_1 T$ we denote the fact that *S* can be **topologically embedded** into *T*, i.e., that there is $f : S \rightarrow T$ which is strictly increasing and \land -preserving.

Theorem (Kruskal 1956)

The class of finite trees is well-quasi-ordered by the relation \leq_1 .

Theorem (Nash-Williams 1965)

The class of all trees is well-quasi-ordered by the relation \leq_1 .

Definition

For two trees *S* and *T*, by $S \leq_1 T$ we denote the fact that *S* can be **topologically embedded** into *T*, i.e., that there is $f : S \rightarrow T$ which is strictly increasing and \land -preserving.

Theorem (Kruskal 1956)

The class of finite trees is well-quasi-ordered by the relation \leq_1 .

Theorem (Nash-Williams 1965)

The class of all trees is well-quasi-ordered by the relation \leq_1 .

Theorem (Laver, 1978)

The class of $\sigma\text{-scattered trees}$ is well-quasi-ordered by the relation \leq_1 .

Corollary (Laver, 1978)

Every class of σ -scattered trees quasi-ordered by the relation \leq_1 has a finite basis.

An **Aronszajn tree** is a tree T of height ω_1 with all levels countable and with no uncountable chains.

An **Aronszajn tree** is a tree T of height ω_1 with all levels countable and with no uncountable chains.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Aronszajn 1935)

There is an Aronszajn tree.

An **Aronszajn tree** is a tree T of height ω_1 with all levels countable and with no uncountable chains.

Theorem (Aronszajn 1935)

There is an Aronszajn tree.

Question (Laver 1978)

Is the class of Aronszajn trees well-quasi-ordered under \leq_1 ?

An **Aronszajn tree** is a tree T of height ω_1 with all levels countable and with no uncountable chains.

Theorem (Aronszajn 1935)

There is an Aronszajn tree.

```
Question (Laver 1978)
```

Is the class of Aronszajn trees well-quasi-ordered under \leq_1 ?

Definition

For two trees S and T let $S \leq T$ if there is strictly increasing map $f : S \rightarrow T$.

Theorem (T. 2000)

The class A of Aronszajn trees is not well-quasi-ordered even under the weaker relation \leq .

Theory of Lipschitz trees

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 → のへで

Theory of Lipschitz trees

Definition

A partial map g from a tree S into a tree T is Lipschitz, if g is level preserving and

 $\Delta(g(x),g(y)) \ge \Delta(x,y)$ for all $x,y \in \operatorname{dom}(g)$.

Figure: Lipschitz map on a tree

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

A **Lipschitz tree** is an Aronszajn tree with the property that every level-preserving map from an uncountable subset of T into T is Lipschitz on an uncountable subset of its domain.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

A **Lipschitz tree** is an Aronszajn tree with the property that every level-preserving map from an uncountable subset of T into T is Lipschitz on an uncountable subset of its domain.

Remark

Lipschitz trees do exist. For example any of the trees $T(\rho_0)$, $T(\rho_1)$, and $T(\rho_2)$ is Lipschitz, where ρ_0 , ρ_1 and ρ_2 are the standards characteristics of walks on ω_1 .

A **Lipschitz tree** is an Aronszajn tree with the property that every level-preserving map from an uncountable subset of T into T is Lipschitz on an uncountable subset of its domain.

Remark

Lipschitz trees do exist. For example any of the trees $T(\rho_0)$, $T(\rho_1)$, and $T(\rho_2)$ is Lipschitz, where ρ_0 , ρ_1 and ρ_2 are the standards characteristics of walks on ω_1 .

Theorem (T. 2000)

Assuming PFA the class (\mathcal{A}, \leq) of Aronszajn trees is generated by a discrete chain \mathcal{L} of **Lipschitz trees** such that $(\mathcal{L}/\mathbb{Z}, \leq)$ is the \aleph_2 -saturated linear ordering of cardinality $\aleph_2 = 2^{\aleph_1}$.

An invariant of a Lipschitz tree

An invariant of a Lipschitz tree

Definition For a given tree T of height ω_1 , let

 $\mathcal{U}(T) = \{A \subseteq \omega_1 : A \supseteq \Delta(X) \text{ for some uncountable } X \subseteq T\}.$

An invariant of a Lipschitz tree

Definition For a given tree T of height ω_1 , let

 $\mathcal{U}(T) = \{A \subseteq \omega_1 : A \supseteq \Delta(X) \text{ for some uncountable } X \subseteq T\}.$

Theorem (T. 2000)

Let S and T be Lipschitz trees.

- $\mathcal{U}(S)$ and $\mathcal{U}(T)$ are uniform filters on ω_1 .
- ► If the countable chain condition is productive U(S) and U(T) are uniform ultrafilters.

• MA_{ω_1} implies that $S \equiv T$ iff $\mathcal{U}(S) = \mathcal{U}(T)$.

Notation: $S \equiv T$ iff $S \leq T$ and $T \leq S$.

The shift of a Lipschitz tree

Definition

Suppose g is a partial map from ω_1 into ω_1 and that T is a downward closed subtree of the tree

$$\{t: \alpha \to \omega: \alpha < \omega_1\}.$$

Then the g-shift of T, denoted by $T^{(g)}$, is the downward closure of

$$\{t^{(g)}:t\in T\upharpoonright C_g\}$$

where $C_g = \{\delta < \omega_1 : g'' \delta \subseteq \delta\}$ and where $t^{(g)}$ is defined by

$$t^{(g)}(\xi) = t(g(\xi))$$

if $\xi \in \operatorname{dom}(g)$; otherwise $t^{(g)}(\xi) = 0$.

When $g(\xi) = \xi + 1$ for all $\xi \in \text{dom}(g)$, we denote $T^{(g)}$ by $T^{(1)}$.

Theorem (T., 2000)

If T is a Lipschitz tree and if g is a partial strictly increasing map from ω₁ to ω₁ such that range(g) ∈ U(T), then the g-shift T^(g) is also a Lipschitz tree.

Theorem (T., 2000)

- If T is a Lipschitz tree and if g is a partial strictly increasing map from ω₁ to ω₁ such that range(g) ∈ U(T), then the g-shift T^(g) is also a Lipschitz tree.
- Suppose T is a Lipschitz tree and g is a partial strictly increasing map from ω₁ to ω₁ such that range(g) ∈ U(T).

Theorem (T., 2000)

- If T is a Lipschitz tree and if g is a partial strictly increasing map from ω₁ to ω₁ such that range(g) ∈ U(T), then the g-shift T^(g) is also a Lipschitz tree.
- Suppose T is a Lipschitz tree and g is a partial strictly increasing map from ω₁ to ω₁ such that range(g) ∈ U(T). If g is regressive, then T ≤ T^(g).

Theorem (T., 2000)

- If T is a Lipschitz tree and if g is a partial strictly increasing map from ω₁ to ω₁ such that range(g) ∈ U(T), then the g-shift T^(g) is also a Lipschitz tree.
- Suppose T is a Lipschitz tree and g is a partial strictly increasing map from ω₁ to ω₁ such that range(g) ∈ U(T). If g is regressive, then T ≤ T^(g). If g is expanding then T^(g) ≤ T.

Theorem (T., 2000)

- If T is a Lipschitz tree and if g is a partial strictly increasing map from ω₁ to ω₁ such that range(g) ∈ U(T), then the g-shift T^(g) is also a Lipschitz tree.
- Suppose T is a Lipschitz tree and g is a partial strictly increasing map from ω₁ to ω₁ such that range(g) ∈ U(T). If g is regressive, then T ≤ T^(g). If g is expanding then T^(g) ≤ T.

Theorem (T. 2000)

PFA implies that for every pair S and T of Lipschitz trees there is a partial strictly increasing map g on ω_1 such that $S \equiv T^{(g)}$.

Theorem (T., 2000)

- If T is a Lipschitz tree and if g is a partial strictly increasing map from ω₁ to ω₁ such that range(g) ∈ U(T), then the g-shift T^(g) is also a Lipschitz tree.
- Suppose T is a Lipschitz tree and g is a partial strictly increasing map from ω₁ to ω₁ such that range(g) ∈ U(T). If g is regressive, then T ≤ T^(g). If g is expanding then T^(g) ≤ T.

Theorem (T. 2000)

PFA implies that for every pair S and T of Lipschitz trees there is a partial strictly increasing map g on ω_1 such that $S \equiv T^{(g)}$.

Corollary (T. 2000)

PFA implies that for every pair S and T of Lipschitz trees the ultrafilters $\mathcal{U}(S)$ and $\mathcal{U}(T)$ are Rudin-Keisler equivalent.

Theorem (T. 2000)

 MA_{ω_1} implies that every two Lipschitz trees S and T are comparable , i.e., $S \leq T$ or $T \leq S$.

Theorem (T. 2000)

 MA_{ω_1} implies that every two Lipschitz trees S and T are comparable , i.e., $S \leq T$ or $T \leq S$.

Theorem (T. 2000, 2007)

PFA implies that every Lipschitz tree is \leq -comparable to every Aronszajn tree.

Theorem (T. 2000)

 MA_{ω_1} implies that every two Lipschitz trees S and T are comparable, i.e., $S \leq T$ or $T \leq S$.

Theorem (T. 2000, 2007)

PFA implies that every Lipschitz tree is \leq -comparable to every Aronszajn tree.

Theorem (T. 2000, 2007)

PFA implies that no tree lies strictly between a Lipschitz tree T and its shift $T^{(1)}$.

Theorem (T. 2000)

 MA_{ω_1} implies that every two Lipschitz trees S and T are comparable, i.e., $S \leq T$ or $T \leq S$.

Theorem (T. 2000, 2007)

PFA implies that every Lipschitz tree is \leq -comparable to every Aronszajn tree.

Theorem (T. 2000, 2007)

PFA implies that no tree lies strictly between a Lipschitz tree T and its shift $T^{(1)}$.

Theorem (Moore 2005)

PFA implies that for every Aronszajn tree T and every $C \subseteq T$ there is uncountable $X \subseteq T$ such that either

$$\{s \land t : s, t \in X, s \neq t\} \subseteq C \text{ or } \{s \land t : s, t \in X, s \neq t\} \subseteq T \setminus C.$$

For a Lipschitz tree T fix a $\mathcal{U}(T)$ -nowhere constant map $f: \omega_1 \to \omega$, and let

 $\mathcal{U}^{f}_{\omega}(T) = \{ M \subseteq \omega : M \supseteq f''X \text{ for some } X \in \mathcal{U}(T) \}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

For a Lipschitz tree T fix a $\mathcal{U}(T)$ -nowhere constant map $f: \omega_1 \to \omega$, and let

 $\mathcal{U}^{f}_{\omega}(T) = \{ M \subseteq \omega : M \supseteq f''X \text{ for some } X \in \mathcal{U}(T) \}.$

Theorem (T. 2000)

 MA_{ω_1} implies that $\mathcal{U}^f_{\omega}(T)$ is a selective ultrafilter on ω whose Rudin-Keisler class does not depend on T nor f.

For a Lipschitz tree T fix a $\mathcal{U}(T)$ -nowhere constant map $f: \omega_1 \to \omega$, and let

 $\mathcal{U}^{f}_{\omega}(T) = \{ M \subseteq \omega : M \supseteq f''X \text{ for some } X \in \mathcal{U}(T) \}.$

Theorem (T. 2000)

 MA_{ω_1} implies that $\mathcal{U}^f_{\omega}(T)$ is a selective ultrafilter on ω whose Rudin-Keisler class does not depend on T nor f.

Corollary (T. 2000)

If $\mathfrak{m} > \omega_1$ then there is a selective ultrafilter on ω .

For a Lipschitz tree T fix a $\mathcal{U}(T)$ -nowhere constant map $f: \omega_1 \to \omega$, and let

 $\mathcal{U}^{f}_{\omega}(T) = \{ M \subseteq \omega : M \supseteq f''X \text{ for some } X \in \mathcal{U}(T) \}.$

Theorem (T. 2000)

 MA_{ω_1} implies that $\mathcal{U}^f_{\omega}(T)$ is a selective ultrafilter on ω whose Rudin-Keisler class does not depend on T nor f.

Corollary (T. 2000)

If $\mathfrak{m} > \omega_1$ then there is a selective ultrafilter on ω .

Definition (Choquet 1968)

An ultrafilter \mathcal{V} on ω is selective (Ramsey) if it is non-principal and if for every $f : \omega \to \omega$ there is $M \in \mathcal{V}$ such that the restriction of f on M is either constant or one-to-one.
Tukey reductions

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 → りへぐ

Tukey reductions

Definition

A partially ordered set P is **Tukey reducible** to a partially ordered set Q, in notation $P \leq_T Q$, if there is a map $f : P \rightarrow Q$ that maps unbounded subsets of P to unbounded subsets of Q, or equivalently, a map $g : Q \rightarrow P$ which maps cofinal subsets of Q to cofinal subsets of P.

When $P \leq_T Q$ and $Q \leq_T P$ we write $P \equiv_T Q$ and say that P and Q are **Tukey equivalent** or cofinally similar.

Tukey reductions

Definition

A partially ordered set P is **Tukey reducible** to a partially ordered set Q, in notation $P \leq_T Q$, if there is a map $f : P \rightarrow Q$ that maps unbounded subsets of P to unbounded subsets of Q, or equivalently, a map $g : Q \rightarrow P$ which maps cofinal subsets of Q to cofinal subsets of P.

When $P \leq_T Q$ and $Q \leq_T P$ we write $P \equiv_T Q$ and say that P and Q are **Tukey equivalent** or cofinaly similar.

Remark

In the class of (upwards) **directed** posets $P \equiv_T Q$ is equivalent to saying that P and Q are **isomorphic** to cofinal subsets of a single directed poset R.

Proposition

The directed set $[\theta]^{<\omega}$ of finite subsets of some infinite cardinal θ realizes the **maximal Tukey type** among directed posets of cardinality at most θ .

Proposition

The directed set $[\theta]^{<\omega}$ of finite subsets of some infinite cardinal θ realizes the **maximal Tukey type** among directed posets of cardinality at most θ .

Theorem (Isbell 1964)

There is an ulltrafilter U_{max} on ω that realizes the maximal Tukey type for directed sets of cardinality continuum.

Proposition

The directed set $[\theta]^{<\omega}$ of finite subsets of some infinite cardinal θ realizes the **maximal Tukey type** among directed posets of cardinality at most θ .

Theorem (Isbell 1964)

There is an ulltrafilter U_{max} on ω that realizes the maximal Tukey type for directed sets of cardinality continuum.

Question (Isbell, 1964)

Is there any other Tukey type of nonprincipal ultrafilters on ω ?

Proposition

The directed set $[\theta]^{<\omega}$ of finite subsets of some infinite cardinal θ realizes the **maximal Tukey type** among directed posets of cardinality at most θ .

Theorem (Isbell 1964)

There is an ulltrafilter U_{max} on ω that realizes the maximal Tukey type for directed sets of cardinality continuum.

Question (Isbell, 1964)

Is there any other Tukey type of nonprincipal ultrafilters on ω ?

Definition (W. Rudin, 1956)

An ultrafilter \mathcal{U} on ω is a *P*-point if for every sequence $(A_n : n < \omega)$ of elements of \mathcal{U} there is $B \in \mathcal{U}$ such that $B \setminus A_n$ is finite for all $n < \omega$.

Proposition

The directed set $[\theta]^{<\omega}$ of finite subsets of some infinite cardinal θ realizes the **maximal Tukey type** among directed posets of cardinality at most θ .

Theorem (Isbell 1964)

There is an ulltrafilter U_{max} on ω that realizes the maximal Tukey type for directed sets of cardinality continuum.

Question (Isbell, 1964)

Is there any other Tukey type of nonprincipal ultrafilters on ω ?

Definition (W. Rudin, 1956)

An ultrafilter \mathcal{U} on ω is a P-point if for every sequence $(A_n : n < \omega)$ of elements of \mathcal{U} there is $B \in \mathcal{U}$ such that $B \setminus A_n$ is finite for all $n < \omega$.

Remark

If \mathcal{U} is a P-point ultrafiter on ω then $\mathcal{U} \not\equiv_{\mathcal{T}} \mathcal{U}_{\max}$.

Five cofinal types

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Five cofinal types

```
Theorem (T., 1985, 1996)
PFA implies that
```

```
1, \omega, \omega_1, \omega \times \omega_1 \text{ and } [\omega_1]^{<\omega}
```

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

are all Tukey types of directed sets of cardinality at most \aleph_1 .

Five cofinal types

Theorem (T., 1985, 1996) *PFA implies that*

$$1, \omega, \omega_1, \omega \times \omega_1$$
 and $[\omega_1]^{<\omega}$

are all Tukey types of directed sets of cardinality at most \aleph_1 .

Moreover, letting $D_0 = 1$, $D_1 = \omega$, $D_2 = \omega_1$, $D_3 = \omega \times \omega_1$, and $D_4 = [\omega_1]^{<\omega}$, every **partially ordered set** of cardinality at most \aleph_1 is Tukey equivalent to one of these:

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Definition (Solecki-T., 2004)

Let D be a separable metric space and let \leq be a partial order on D. We say that (D, \leq) is **basic** if

Definition (Solecki-T., 2004)

Let D be a separable metric space and let \leq be a partial order on D. We say that (D, \leq) is **basic** if

 for every x, y ∈ D the least upper bound x ∨ y exists and the map ∨ : D × D → D is continuous;

Definition (Solecki-T., 2004)

Let D be a separable metric space and let \leq be a partial order on D. We say that (D, \leq) is **basic** if

 for every x, y ∈ D the least upper bound x ∨ y exists and the map ∨ : D × D → D is continuous;

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

every bounded sequence has converging subsequence;

Definition (Solecki-T., 2004)

Let D be a separable metric space and let \leq be a partial order on D. We say that (D, \leq) is **basic** if

 for every x, y ∈ D the least upper bound x ∨ y exists and the map ∨ : D × D → D is continuous;

- every bounded sequence has converging subsequence;
- every converging sequence has bounded subsequence.

Definition (Solecki-T., 2004)

Let D be a separable metric space and let \leq be a partial order on D. We say that (D, \leq) is **basic** if

- for every x, y ∈ D the least upper bound x ∨ y exists and the map ∨ : D × D → D is continuous;
- every bounded sequence has converging subsequence;
- every converging sequence has bounded subsequence.

Remark

The topology of a basic order is uniquely determined by the order itself. It is the topology of sequential convergence where a sequence (x_n) is set to be convergent if $\limsup x_n = \liminf x_n$ and if all subsequences of (x_n) have further subsequences that are bounded.

Example

• *P-point ultrafilters are basic orders.*

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example

- *P-point ultrafilters are basic orders.*
- σ-deals of compact subsets of a separable metric space with the Vietoris topology.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

- *P-point ultrafilters are basic orders.*
- σ-deals of compact subsets of a separable metric space with the Vietoris topology.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Analytic P-ideas on ω are basic.

Example

- *P-point ultrafilters are basic orders.*
- σ-deals of compact subsets of a separable metric space with the Vietoris topology.

Analytic P-ideas on ω are basic.

Theorem (Solecki-T., 2004)

Analytic basic orders are in fact Polish.

Example

- *P-point ultrafilters are basic orders.*
- σ-deals of compact subsets of a separable metric space with the Vietoris topology.

Analytic P-ideas on ω are basic.

Theorem (Solecki-T., 2004)

Analytic basic orders are in fact Polish.

Proposition (Solecki-T., 2004)

Let D be a nonempty basic order.

Example

- *P-point ultrafilters are basic orders.*
- σ-deals of compact subsets of a separable metric space with the Vietoris topology.

Analytic P-ideas on ω are basic.

Theorem (Solecki-T., 2004)

Analytic basic orders are in fact Polish.

Proposition (Solecki-T., 2004)

Let D be a nonempty basic order.

• D is compact iff $D \equiv_T 1$.

Example

- *P-point ultrafilters are basic orders.*
- σ-deals of compact subsets of a separable metric space with the Vietoris topology.
- Analytic P-ideas on ω are basic.

Theorem (Solecki-T., 2004)

Analytic basic orders are in fact Polish.

Proposition (Solecki-T., 2004)

Let D be a nonempty basic order.

- D is compact iff $D \equiv_T 1$.
- If D is analytic and not locally compact then $\mathbb{N}^{\mathbb{N}} \leq_{T} D$.

<ロ> <@> < E> < E> E のQの

Theorem (Solecki-T., 2004)

Let D and E be basic orders. If $D \leq_T E$ then there is a Borel map $g : E \to D$ which witnesses this.

Theorem (Solecki-T., 2004)

Let D and E be basic orders. If $D \leq_T E$ then there is a **Borel** map $g: E \rightarrow D$ which witnesses this.

Corollary

Let D and E be basic orders such that $D \leq_T E$. If E is analytic then so is D.

Theorem (Solecki-T., 2004)

Let D and E be basic orders. If $D \leq_T E$ then there is a **Borel** map $g: E \to D$ which witnesses this.

Corollary

Let D and E be basic orders such that $D \leq_T E$. If E is analytic then so is D.

Corollary

Let \mathcal{U} and \mathcal{V} be ultrafilters on ω such that \mathcal{V} is a P-point . If $\mathcal{U} \leq \mathcal{V}$ then there is a continuous map $g : \mathcal{V} \to \mathcal{U}$ witnessing this.

Theorem (Solecki-T., 2004)

Let D and E be basic orders. If $D \leq_T E$ then there is a **Borel** map $g: E \to D$ which witnesses this.

Corollary

Let D and E be basic orders such that $D \leq_T E$. If E is analytic then so is D.

Corollary

Let \mathcal{U} and \mathcal{V} be ultrafilters on ω such that \mathcal{V} is a P-point. If $\mathcal{U} \leq \mathcal{V}$ then there is a continuous map $g : \mathcal{V} \to \mathcal{U}$ witnessing this.

Corollary

P-point ultrafilters have no more than continuum many Tukey-predecessors.

Ramsey expansion problem and Tukey reductions

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Ramsey expansion problem and Tukey reductions

Theorem (Ramsey 1930, Skolem 1933)

For every natural number k and every relation $R \subseteq \mathbb{N}^k$ there is an infinite set $M \subseteq \mathbb{N}$ such that $R \upharpoonright M$ is $(\mathbb{N}, <)$ -canonical.

Ramsey expansion problem and Tukey reductions

Theorem (Ramsey 1930, Skolem 1933)

For every natural number k and every relation $R \subseteq \mathbb{N}^k$ there is an infinite set $M \subseteq \mathbb{N}$ such that $R \upharpoonright M$ is $(\mathbb{N}, <)$ -canonical.

Definition

A relation $R \subseteq \mathbb{N}^k$ is $(\mathbb{N}, <)$ -canonical on a set $M \subseteq \mathbb{N}$ if it is $\sim_{(\mathbb{N}, <)}$ -invariant on M^k , i.e., if for $(x_i : i < k), (y_i : i < k) \in M^k$, $(x_0, ..., x_{k-1}) \sim_{(\mathbb{N}, <)} (y_0, ..., y_{k-1})$ implies $R(x_0, ..., x_{k-1}) \Leftrightarrow R(y_0, ..., y_{k-1})$ where we put

$$(x_i : i < k) \sim_{(\mathbb{N},<)} (y_i : i < k)$$

if of all i, j < k: $x_i < x_j \Leftrightarrow y_i < y_j$, $x_i = x_j \Leftrightarrow y_i = y_j$, $x_i > x_j \Leftrightarrow y_i > y_j$.

Recognizing canonical relations

Recognizing canonical relations

Proposition

There is exactly eight canonical binary relations on $\ensuremath{\mathbb{N}}$:

$$\top,\bot,=,\neq,<,>,\leqslant,\geqslant.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 \top and = are the only canonical equivalence relations on \mathbb{N} .
Canonical equivalence relations

Theorem (Erdös-Rado 1950)

There is exactly 2^k canonical equivalence relations on $\mathbb{N}^{[k]}$:

$$(x_i: i < k) \sim_I (y_i: i < k) \Leftrightarrow (x_i: i \in I) = (y_i: i \in I),$$

for $I \subseteq \{0, ..., k - 1\}$, i.e., for every equivalence relation E on

$$\mathbb{N}^{[k]} = \{ (x_i : i < k) \in \mathbb{N}^k : x_0 < x_1 < \cdots < x_{k-1} \}$$

there is an infinite set $M \subseteq \mathbb{N}$ and a set $I \subseteq \{0, ..., k-1\}$ such that

$$E|M^{[k]} = \sim_I |M^{[k]}.$$

Higher dimensions

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Higher dimensions

Definition (Nash-Williams 1965)

A collection \mathcal{F} of finite subsets of \mathbb{N} is a **barrier** if every infinite subset of \mathbb{N} has an initial segment in \mathcal{F} and if no two distinct elements of \mathcal{F} are comparable under inclusion.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Higher dimensions

Definition (Nash-Williams 1965)

A collection \mathcal{F} of finite subsets of \mathbb{N} is a **barrier** if every infinite subset of \mathbb{N} has an initial segment in \mathcal{F} and if no two distinct elements of \mathcal{F} are comparable under inclusion.

Example

For every positive integer k, the set [ℕ]^k = {F ⊆ ℕ : |F| = k} is a barrier.

The family S = {F ⊆ N : |F| = min(F) + 1} is a barrier of infinite rank.

Barriers are Ramsey

Theorem (Nash-Williams, 1965)

For every barrier \mathcal{F} on \mathbb{N} , every positive integer p, and every

$$f: \mathcal{F} \rightarrow \{0, 1, ... p - 1\}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

there is an infinite set $M \subseteq \mathbb{N}$ such that f is constant on the restriction $\mathcal{F} \upharpoonright M$.

Barriers are Ramsey

Theorem (Nash-Williams, 1965)

For every barrier \mathcal{F} on \mathbb{N} , every positive integer p, and every

$$f:\mathcal{F} \rightarrow \{0,1,...p-1\}$$

there is an infinite set $M \subseteq \mathbb{N}$ such that f is constant on the restriction $\mathcal{F} \upharpoonright M$.

Theorem (Pudlak-Rödl, 1982)

For every equivalence relation E on some **barrier** \mathcal{B} on \mathbb{N} there is an infinite set $M \subseteq \mathbb{N}$ and an **internal irreducible** mapping φ on $\mathcal{B} \upharpoonright M$ such that $E \upharpoonright (\mathcal{B}|M) = E_{\varphi}$.

Theorem (T., 2012)

Let \mathcal{V} be a selective ultrafilter on \mathbb{N} and let \mathcal{U} be a non-principal ultrafilter on \mathbb{N} such that $\mathcal{U} \leq_T \mathcal{V}$. Then \mathcal{U} is Rudin-Keisler isomorphic to a countable Fubini power of \mathcal{V} .

Theorem (T., 2012)

Let \mathcal{V} be a selective ultrafilter on \mathbb{N} and let \mathcal{U} be a non-principal ultrafilter on \mathbb{N} such that $\mathcal{U} \leq_T \mathcal{V}$. Then \mathcal{U} is Rudin-Keisler isomorphic to a countable Fubini power of \mathcal{V} .

Corollary

Selective ultrafilters are **Tukey minimal** members of $\beta \mathbb{N} \setminus \mathbb{N}$.

Sketch of proof

Suppose $\mathcal{V} \geq_{\mathcal{T}} \mathcal{U}$ with \mathcal{V} selective and \mathcal{U} non-principal.

Sketch of proof

Suppose $\mathcal{V} \geq_{\mathcal{T}} \mathcal{U}$ with \mathcal{V} selective and \mathcal{U} non-principal. By the automatic continuity of Tukey connections in this context, there is a continuous monotone map

 $f: \mathbb{N}^{[\infty]} \to \mathbb{N}^{[\infty]}$

mapping ${\mathcal V}$ to a generating set of ${\mathcal U}.$

Sketch of proof

Suppose $\mathcal{V} \geq_T \mathcal{U}$ with \mathcal{V} selective and \mathcal{U} non-principal. By the automatic continuity of Tukey connections in this context, there is a continuous monotone map

 $f: \mathbb{N}^{[\infty]} \to \mathbb{N}^{[\infty]}$

mapping ${\mathcal V}$ to a generating set of ${\mathcal U}.Define$

$$f_1:\mathbb{N}^{[\infty]}\to\mathbb{N}$$

by $f_1(M) = \min f(M)$.

Then f_1 is also continuous so restricting f_1 we may assume that there is a barrier \mathcal{B} on \mathbb{N} such that for every $s \in \mathcal{B}$, the function f_1 is constant on the basic-open set [s] of all infinite sets that end-extend s.

$$f_2:\mathcal{B}\to\mathbb{N}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

by letting $f_2(s)$ equal to the constant value of f_1 on [s].

$$f_2:\mathcal{B}\to\mathbb{N}$$

by letting $f_2(s)$ equal to the constant value of f_1 on [s]. By the **selective version** of the Pudlak-Rödl theorem there is $M \in \mathcal{V}$ and $\varphi : \mathcal{B} \upharpoonright M \to M^{[<\infty]}$ such that $\varphi(s) \subseteq s$ and such that $\varphi(s) \neq \varphi(t)$ implies $\varphi(s) \not\subseteq \varphi(t)$ and $\varphi(t) \not\subseteq \varphi(s)$ and there is a one-to-one map $g : \operatorname{range}(\varphi) \to \mathbb{N}$ such that

$$(\forall s \in \mathcal{B} \upharpoonright M) g(\varphi(s) = f_2(s)).$$

$$f_2:\mathcal{B}\to\mathbb{N}$$

by letting $f_2(s)$ equal to the constant value of f_1 on [s]. By the **selective version** of the Pudlak-Rödl theorem there is $M \in \mathcal{V}$ and $\varphi : \mathcal{B} \upharpoonright M \to M^{[<\infty]}$ such that $\varphi(s) \subseteq s$ and such that $\varphi(s) \neq \varphi(t)$ implies $\varphi(s) \not\subseteq \varphi(t)$ and $\varphi(t) \not\subseteq \varphi(s)$ and there is a one-to-one map $g : \operatorname{range}(\varphi) \to \mathbb{N}$ such that

$$(\forall s \in \mathcal{B} \upharpoonright M) g(\varphi(s) = f_2(s)).$$

Let C be the range of φ .

$$f_2:\mathcal{B}\to\mathbb{N}$$

by letting $f_2(s)$ equal to the constant value of f_1 on [s]. By the **selective version** of the Pudlak-Rödl theorem there is $M \in \mathcal{V}$ and $\varphi : \mathcal{B} \upharpoonright M \to M^{[<\infty]}$ such that $\varphi(s) \subseteq s$ and such that $\varphi(s) \neq \varphi(t)$ implies $\varphi(s) \not\subseteq \varphi(t)$ and $\varphi(t) \not\subseteq \varphi(s)$ and there is a one-to-one map $g : \operatorname{range}(\varphi) \to \mathbb{N}$ such that

$$(\forall s \in \mathcal{B} \upharpoonright M) g(\varphi(s) = f_2(s)).$$

Let C be the range of φ .

The map g gives the Rudin-Keisler equivalence between the ultrafilter U and the **ultrafilter** on C generated by

 $\{\mathcal{C} \upharpoonright N : N \in \mathcal{V}\},\$

the **Fubini power** of the selective ultrafilter \mathcal{V} .

References:

- Nash-Williams, C. St. J. A. On well-quasi-ordering infinite trees. Proc. Cambridge Philos. Soc. 61 (1965), 697-720.
- Laver, Richard, On Frass's order type conjecture. Ann. of Math. (2) 93 (1971), 89-111.
- Laver, Richard, Better-quasi-orderings and a class of trees. pp. 31-48, Adv. in Math. Suppl. Stud., 1, Academic Press, New York-London, 1978.
- Todorcevic, Stevo, Lipschitz maps on trees, Mittag-Leffler Institute Preprint Series 2000.
- Solecki, Slawomir; Todorcevic, Stevo, Cofinal types of topological directed orders. Ann. Inst. Fourier (Grenoble) 54 (2004), no. 6, 1877-1911
- Moore, Justin Tatch, A five element basis for the uncountable linear orders. Ann. of Math. (2) 163 (2006), no. 2, 669-688.
- Todorcevic, Stevo, Lipschitz maps on trees. J. Inst. Math. Jussieu 6 (2007), no. 3, 527-556.
- Martinez-Ranero, Carlos, Well-quasi-ordering Aronszajn lines.
 Fund. Math. 213 (2011), no. 3, 197-211.