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What is a basis problem?

Definition
Given a pre-ordered class (K,≤) of mathematical structures of the
same type, we say that K0 ⊆ K is a basis of K if for every K ∈ K
there is K0 ∈ K0 such that K0 ≤ K .

Problem
Given a class (K,≤) of mathematical structures, does it have a
finite basis?

Problem
Suppose K0 is a downwards closed subclass of a given pre-ordered
class (K,≤) of mathematical structures.
Can one characterize K0 by forbidding finitely many members of
K?
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Examples of basis problems

I Can one characterize in this way the class of all finite linear
orderings in the class of all linear orderings?

I Can one characterize in this way the class of countable linear
orderings in the class of all linear orderings?

I Can one characterize in this way the class of metrizable
compact spaces in the class of all compact spaces?
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On a Problem of Formal Logic

Problem
Given a finite relational signature L, is there a procedure that test
the validity of universal L-sentences ? More generally, is there a
procedure that tests consistency of sets of universal L-sentences?

Definition
A k-ary relation R ⊆ Nk is canonical if the validity of
R(x1, x2, ..., xk) depends only on the way the usual ordering 6 of
N acts on xi ’s.

Theorem (F.P. Ramsey 1930, Th. Skolem 1933)

Given a finite set T of universal relational sentences, for every
positive integer m there is a positive integer n (that depends only
on m and the number of relations and variables appearing in
formulas of T ) such that if T has a model of cardinality n or more
then T has a canonical model on the domain {1, 2, ...,m}.
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The expansion problem for A = (A,Ri , fj)i∈I ,j∈J

Given a structure
A = (A,Ri , fj)i∈I ,j∈J

and positive integer k,

is there a finite expansion

A∗ = (A,Ri , fj ;S1, ...,Sn)i∈I ,j∈J

that captures arbitrary relation S ⊆ Ak on a large subset B of
A, i.e.,

S ∩ Bk = S∗ ∩ B

for S∗ ⊆ Ak simply definable in A∗?



The expansion problem for (N,=)

Expand (N,=) to (N,6), where 6 is the usual ordering of N.

For (xi : i < k) and (yi : i < k) in Nk put

(xi : i < k) ∼(N,6) (yi : i < k)

if for all i , j < k :

xi 6 xj ⇔ yi 6 yj .

Remark
For fixed k, the equivalence relation ∼(N,6) has finitely many

equivalence classes on Nk which we call atomic (N,6)-canonical
relations.
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Canonical relations given by the expansion (N,6)

Definition
A relation R ⊆ Nk is (N,6)-canonical (or simply canonical) if it
is ∼(N,6)-invariant, i.e., if for (xi : i < k) and (yi : i < k) in Nk ,

(x0, ..., xk−1) ∼(N,6) (y0, ..., yk−1) implies
R(x0, ..., xk−1)⇔ R(y0, ..., yk−1)

Remark
There is only finitely many canonical relation of a given arity k
that can be easily identified and enumerated.
For example, there is only eight canonical binary relations on N :

>, ⊥, =, 6= <, >, 6, > .

> and = are the only equivalence relations on N in this list.
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Atomic relations have the Ramsey property

Notation: N[k] = {(xi : i < k) ∈ Nk : x0 < x1 < · · · < xk−1}

Theorem (F.P. Ramsey 1930)

For every positive integer k and every relation S ⊆ Nk there is
infinite subset M of N such that S ∩M [k] = M [k] or S ∩M [k] = ∅.

Corollary (F.P. Ramsey 1930, Th. Skolem 1933)

For every positive integer k , every equivalence class Θ ⊆ Nk of
∼(N,6) and every relation S ⊆ Nk there is infinite subset M of N
such that S ∩Mk = Θ ∩Mk or S ∩Θ ∩Mk = ∅.

Corollary (F.P. Ramsey 1930, Th. Skolem 1933)

For every positive integer k relation S ⊆ Nk there is infinite subset
M of N such that S ∩Mk is canonical, i.e., equal to a union of a
set of equivalence classes of ∼(N,6) restricted to Mk .
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Canonical equivalence relation on N[k].

Theorem (P. Erdös and R. Rado 1950)

For every positive integer k there is exactly 2k canonical
equivalence relations on N[k], one for each subset
I ⊆ {0, ..., k − 1} :

(xi : i < k) ∼I (yi : i < k)⇔ (xi : i ∈ I ) = (yi : i ∈ I ),

In other words,
for every equivalence relation E on N[k] there is infinite M ⊆ N
and I ⊆ {0, ..., k − 1} such that

E |M [k] = ∼I |M [k].
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A corollary of the Erdös-Rado theorem

Fix a positive integer k. A mapping

f : N[k] → N

is regressive if

f (x0, x1, ..., xk−1) < x0 for all (x0, x1, ..., xk−1) ∈ N[k] with x0 > 0.

Corollary

For every positive integer k and regressive f : N[k] → N there is
infinite M ⊆ N such that the restriction of f to M [k] is
min-constant i.e., for (x0, x1, ..., xk−1), (y0, y1, ..., yk−1) ∈ M [k],

f (x0, x1, ..., xk−1) = f (y0, y1, ..., yk−1) whenever x0 = y0.
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The expansion problem for (Q,6)

Fix a sequence (qn)n∈N which enumerates the set Q.
For x , y ∈ Q put

x <′ y iff x = qm, y = qn and m < n.

This gives us the expansion(Q,6, <′) which generates the
following equivalence relation on any finite power Qk :

(xi : i < k) ∼(Q,6,<′) (yi : i < k)

if for all i , j < k and ρ ∈ {6, <′} we have: xiρxj ⇔ yiρyj .

Definition
R ⊆ Qk is canonical on M ⊆ Q if it is ∼(Q,6,<′)-invariant, i.e.,

if for all (xi : i < k) and (yi : i < k) in Nk ,

(x0, ..., xk−1) ∼(Q,6,<′) (y0, ..., yk−1) implies
R(x0, ..., xk−1)⇔ R(y0, ..., yk−1)
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Atomic canonical relations are Ramsey

Theorem (R. Laver 1970)

For every positive integer k , every equivalence class Θ of ∼(Q,6,<′)

and every S ⊆ Qk there is M ⊆ Q such that

(M,6) ∼= (Q,6)

and such that S ∩Mk = Θ ∩Mk or S ∩Θ ∩Mk = ∅.

Corollary

For every positive integer k and every S ⊆ Qk there is M ⊆ Q
such that

(M,6) ∼= (Q,6)

and such that S ∩Mk is (Q,6, <′)-canonical, i.e., a union of
equivalence classes of ∼(Q,6,<′) .
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Which classes of ∼(Q,6,<′) are essential?

Definition
A class Θ of ∼(Q,6,<′) on some power Qk is essential if

Θ ∩Mk 6= ∅ for all M ⊆ Q such that (M,6) ∼= (Q,6).

Problem
For every positive integer k , classify the essential equivalence
classes of ∼(Q,6,<′) on Qk or, equivalently, on Q[k].

Notation: Q[k] = {(xi : i < k) ∈ Qk : x0 < x1 < · · · < xk−1}.
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A classification of essential classes of ∼(Q,6,<′)

Theorem (D. Devlin 1979)

For every positive integer k there exist exactly tk = tan2k−1(0)
essential equivalence classes of ∼(Q,6,<′) on Q[k].

Here (tk) is the well-known sequence of tangent numbers which
starts as t1 = 1, t2 = 2, t3 = 16, t4 = 272, .... .

For each positive integer k let Dk be the equivalence relation on
Q[k] whose equivalence classes are the equivalence classes of
∼(Q,6,<′) on Q[k].

Theorem (R. Laver 1970, D. Devlin 1979)

For every positive integer k and every equivalence relation E on
Q[k] with finitely many classes there is M ⊆ Q such that
(M,6) ∼= (Q,6) and such that E |M [k] is coarser than Dk |M [k],
and so in particular has no more than tk classes.
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(M,6) ∼= (Q,6) and such that E |M [k] is coarser than Dk |M [k],
and so in particular has no more than tk classes.



A ’Problem of Formal Logic’ behind

Let L = {∈}. The Zermelo-Fraenkel axiomatic system, ZF, is the
set of L-sentences that express the familiar axioms about sets:

1. Axiom of Estensionality,

2. Empty Set Axiom,

3. Axiom of Foundation,

4. Pairing Axiom,

5. Union Axiom,

6. Power-set Axiom,

7. Axiom Schema of Separation,

8. Axiom Schema of Replacement,

9. Axiom of Infinity

If we add to ZF the Axiom of Choice, AC, we get the ZFC
axiomatic system.
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Consequences of AC

I (∀x)(∃f : x →
⋃
x)(∀y ∈ x)(y 6= ∅ → f (y) ∈ y).

I Every set can be well-ordered.

I Zorn’s Lemma.

I The Hahn-Banach Theorem.

I The Boolean Prime Ideal Theorem.

Theorem (Gödel, 1938)

If ZF is consistent then so is ZFC.

Problem
Is AC a theorem of ZF?

Problem
Does BPI imply AC?
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Cohen’s Symmetric Model

Start with a countable transitive model M of ZF and going to a
submodel assume that every element of M is Gödel-constructible.
Then ω, the first infinite ordinal, belongs to M and therefore the
version {0, 1}ω×ω of the Cantor space.
A code of a basic open set of {0, 1}ω×ω is a finite partial function
p : ω × ω → {0, 1}. Thus, the basic-open set coded with p is the
set [p] = {x ∈ {0, 1}ω×ω : x � dom(p) = p}.
A collection D of finite partial functions from ω × ω into {0, 1}
codes the open set [D] =

⋃
p∈D[p].

Since there is only countably many dense open subsets of
{0, 1}ω×ω coded in M their intersection is not empty.
Pick c : ω × ω → {0, 1} from this intersection.
Form the corresponding generic extension M[c] of M.
The Cohen Symmetric Model is the model N is formed by
elements of M[c] that are invariant under a natural filter of
groups of permutations of the first coordinate of the set
ω × ω.Thus, M ⊆ N ⊆ M[c].
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Then ω, the first infinite ordinal, belongs to M and therefore the
version {0, 1}ω×ω of the Cantor space.
A code of a basic open set of {0, 1}ω×ω is a finite partial function
p : ω × ω → {0, 1}. Thus, the basic-open set coded with p is the
set [p] = {x ∈ {0, 1}ω×ω : x � dom(p) = p}.
A collection D of finite partial functions from ω × ω into {0, 1}
codes the open set [D] =

⋃
p∈D[p].

Since there is only countably many dense open subsets of
{0, 1}ω×ω coded in M their intersection is not empty.
Pick c : ω × ω → {0, 1} from this intersection.
Form the corresponding generic extension M[c] of M.

The Cohen Symmetric Model is the model N is formed by
elements of M[c] that are invariant under a natural filter of
groups of permutations of the first coordinate of the set
ω × ω.Thus, M ⊆ N ⊆ M[c].



Cohen’s Symmetric Model

Start with a countable transitive model M of ZF and going to a
submodel assume that every element of M is Gödel-constructible.
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Properties of the Cohen Symmetric Model

For n ∈ ω, let cn : ω → {0, 1} be defined by cn(m) = c(n,m).
Let C = {cn : n ∈ ω}.

Then N = Lα(C ∪ {C}) for α = Ord ∩M.

Theorem (P.J. Cohen, 1964)

The Cohen Symmetric Model N is a model of ZF but AC fails in N.

Theorem (A. Levy and J. D. Halpern 1967)

The Cohen Symmetric Model N satisfies the Boolean Prime Ideal
Theorem.

The proof of this result relies on a deep combinatorial theorem of
Halpern-Läuchli that is also the key ingredient of the solution to
the expansion problem for (Q,6) discussed above.
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The Halpern-Läuchli theorem

Fix a rooted finitely branching tree T of height ω with no terminal
nodes.
For n ∈ ω, the nth level T (n) is the set of all nodes of T that are
on distance n from the root.
For x ∈ T , let

T [x ] = {s ∈ T : x ≤ s or s ≤ t}.

Definition
For k ∈ ω, a subset X of T is k-dense if it dominates every node
of T of height k .
For k ∈ ω and x ∈ T , a subset X of T is k-x-dense if it
dominates every node of T [x ] of height k .
A subset X of T is somewhere dense if it is k-x-dense for some
x ∈ T and some k above the height of x .
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Figure: A k-dense set and a k-x-dense set



Fix now a finite sequence T0,T1, ...,Td−1 of rooted finitely
branching trees of height ω with no terminal nodes.

The product
∏

i<d Ti is taken with the coordinatewise ordering.

A grid is a subset of
∏

i<d Ti of the form
∏

i<d Xi such that
Xi ⊆ Ti for i < d .

A grid
∏

i<d Xi is a k-dense-grid if for every i < d the set Xi is
k-dense in Ti .

For k ∈ ω and x̄ = (xi : i < d) ∈
∏

i<d Ti a grid
∏

i<d Xi is a
k-x̄-dense-grid if for every i < d the set Xi is k-xi -dense in Ti .

A grid
∏

i<d Xi is somewhere dense if it is k-x̄-dense for some
x̄ ∈

∏
i<d Ti and k above the height of xi for all i < d .
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Figure: A k-dense grid
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Figure: A k-x̄-dense grid



The Halpern-Läuchli Theorem

Theorem (J.D. Halpern and H. Läuchli, 1966)

For every finite sequence T0,T1, ...,Td−1 of rooted finitely
branching trees of height ω with no terminal nodes and for every
positive integer p there is a positive integer n such that for every
n-dense grid

∏
i<d Xi of

∏
i<d Ti and every

f :
∏
i<d

Xi → {0, 1, ..., p − 1}

there is a somewhere dense sub-grid
∏

i<d Yi ⊆
∏

i<d Xi on which
the function f is constant.



Strong subtrees

Fix a finitely branching rooted tree T of height ω with no terminal
nodes.

A strong subtree of T of height 1 ≤ k ≤ ω is a rooted subtree U
of height k for which we can find increasing sequence (ni )i<k of
non-negative integers such that

I U(i) ⊆ T (ni ) for all i < k ,

I for every i < k − 1, every s ∈ U(i), and every immediate
successors t of s in T there is exactly one u ∈ U(i + 1)
extending t.

For 1 ≤ k ≤ ω, let

Strk(T ) = {U : U a strong subtree of T of height k}.
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Figure: The tree T and one of its strong subtrees U of height 3.



The Milliken theorem

Theorem (K. Milliken, 1979)

For every rooted finitely branching tree T of height ω with no
terminal nodes, every positive integers k and p, and every mapping

f : Strk(T )→ {0, 1, 2, ..., p − 1}

there is a strong subtree U of T of height ω such that f is
constant on Strk(U).

Taking T equal to N with the usual ordering we get that
Strk(N) = N[k].

Corollary (F.P. Ramsey, 1930)

For every positive integers k and p and every

f : N[k] → {0, 1, 2, ..., p − 1}

there is infinite M ⊆ N such that f is constant on M [k].
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An expansion problem of the random graph

Fix a representation R = (N,R) of the random graph, i.e.,

I R is a symmetric irreflexive binary relation on N,
I every finite graph is isomorphic to an induced subgraph of R,
I every isomorphism between two induced subgraphs extends to

an automorphism of R.

Problem (Expansion problem)

Fix a positive integer k. Is there an expansion of the random graph
(N,R) that canonizes sub-relations of N(k) when restricted to a
copy of an arbitrarily large finite induced subgraph of R.?

Notation: N(k) = {(x0, x1, ..., xk−1) ∈ Nk : xi 6= xj for i 6= j}.
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The Nešeťril-Rödl expansion of the random graph

We explain the Nešeťril-Rödl expansion in the case of the random
graph R = (N,R) which however works for many other countable
homogeneous structures.

Definition
Fix a linear ordering 6∗ on N such that the expanded structure
(R,6∗) = (N,R,6∗) has the following properties

I every isomorphism between two finite substructures of
(R,6∗) extends to an automorphism of (R,6∗),

I every finite ordered graph is isomorphic to a substructure of
(R,6∗).
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Fix a finite graph graph A = (VA,EA) and assume that its
vertex-set VA is equal to {0, 1, ...k − 1} for some positive integer k .

The graph A naturally leads to the following atomic
R = (N,R)-canonical k-ary relation

CA = {x̄ ∈ N(k) : (∀i < j < k)[(i , j) ∈ EA ↔ (xi , xj) ∈ R]}.

Thus CA is simply the set of all embeddings of A into the random
graph R, i.e.,

CA = Emb(A,R) =

(
R
A

)

The Nešeťril-Rödl expansion (R,6∗) = (N,R,6∗) splits each CA

into its own atomic canonical relations

CσA = {x̄ ∈ CA : (∀i < j < k) xσ(i) <
∗ xσ(j)},

where σ is an arbitrary permutation of {0, 1, ...k − 1}.
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Theorem (F.G. Abramson and L. Harrington 1978, J. Nešeťril
and V. Rödl 1977)

I The Nešeťril-Rödl expansion (R,6∗) = (N,R,6∗) solves the
expansion problem for the random graph R = (N,R), i.e., for
every positive integer k for every relation S ⊆ N(k) there is an
arbitrarily large finite induced subgraph (B,R) of
R = (N,R) such that S ∩ B(k) is (R,6∗)-canonical.

I In particular, for every finite graph A = (VA,EA) such that
VA = {0, 1, ...k − 1} of some k and every permutation σ of
{0, 1, ...k − 1} the relation CσA ⊆ N(k) is Ramsey, i.e., for
every relation S ⊆ N(k) there is an arbitrarily large finite
induced subgraph (B,R) of R = (N,R) such that

S ∩ CσA ∩ B(k) = ∅ or S ∩ B(k) ⊇ CσA ∩ B(k).
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I The Nešeťril-Rödl expansion (R,6∗) = (N,R,6∗) solves the
expansion problem for the random graph R = (N,R), i.e., for
every positive integer k for every relation S ⊆ N(k) there is an
arbitrarily large finite induced subgraph (B,R) of
R = (N,R) such that S ∩ B(k) is (R,6∗)-canonical.

I In particular, for every finite graph A = (VA,EA) such that
VA = {0, 1, ...k − 1} of some k and every permutation σ of
{0, 1, ...k − 1} the relation CσA ⊆ N(k) is Ramsey, i.e., for
every relation S ⊆ N(k) there is an arbitrarily large finite
induced subgraph (B,R) of R = (N,R) such that

S ∩ CσA ∩ B(k) = ∅ or S ∩ B(k) ⊇ CσA ∩ B(k).



The Ordering Property

Theorem (J. Nešeťril and V. Rödl 1978)

The class of finite graphs has the ordering property, i.e., for every
finite graph (A,EA) there is a finite ordered graph (B,EB , <B)
such that for every linear ordering <′ on A there is an embedding
from (A,EA, <

′) into (B,EB , <B).

Corollary

For every finite graph A = (VA,EA) with VA = {0, 1, ...k − 1} for
some k and every permutation σ of {0, 1, ...k − 1} the relation
CσA ⊆ N(k) is essential, i.e, for every sufficiently large induced
subgraph (B,R) of the random graph R = (N,R) the intersection
CσA ∩ B(k) is not empty.
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Corollary

Fix a finite graph A = (VA,EA) with VA = {0, 1, ...k − 1} for some
k . Let EA be the equivalence relation on the set EAof all
embeddings from A into the random graph R whose classes are the
sets CσA where σ runs over all permutations of {0, 1, ...k − 1}. Then

I All k! classes of EA are realized on every sufficiently large
finite induced subgraph or the random graph R.

I For every equivalence relation E on CA with finitely many
equivalence classes there is an arbitrarily large induced
subgraph B of R such that the restriction E on the set
CA ∩ B(k) of all embeddings from A into (B,R) is coarser
then the restriction of the canonical equivalence relation EA

on the same set.
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Dynamics of the group Aut(R)

Theorem (A. Kechris, V. Pestov and S. T., 2005 )

Let LO(N) be the compact space of all linear orderings on N, the
vertex-set of the random graph R. Let G = Aut(R) and let
α : G × LO(N)→ LO(N) be the natural continuous action. Then:

I The action α is minimal, i.e., all of its orbits are dense in
LO(N).

I The action α is universal, i.e., for any other minimal
continuous action β : G × X → X on a compact space X
there is a continuous onto map π : LO(N)→ X that
commutes with the actions.



Dynamics of the group Aut(R)

Theorem (A. Kechris, V. Pestov and S. T., 2005 )

Let LO(N) be the compact space of all linear orderings on N, the
vertex-set of the random graph R. Let G = Aut(R) and let
α : G × LO(N)→ LO(N) be the natural continuous action. Then:

I The action α is minimal, i.e., all of its orbits are dense in
LO(N).

I The action α is universal, i.e., for any other minimal
continuous action β : G × X → X on a compact space X
there is a continuous onto map π : LO(N)→ X that
commutes with the actions.



Dynamics of the group Aut(R)

Theorem (A. Kechris, V. Pestov and S. T., 2005 )

Let LO(N) be the compact space of all linear orderings on N, the
vertex-set of the random graph R. Let G = Aut(R) and let
α : G × LO(N)→ LO(N) be the natural continuous action. Then:

I The action α is minimal, i.e., all of its orbits are dense in
LO(N).

I The action α is universal, i.e., for any other minimal
continuous action β : G × X → X on a compact space X
there is a continuous onto map π : LO(N)→ X that
commutes with the actions.



Dynamics of the group Aut(R)

Theorem (A. Kechris, V. Pestov and S. T., 2005 )

Let LO(N) be the compact space of all linear orderings on N, the
vertex-set of the random graph R. Let G = Aut(R) and let
α : G × LO(N)→ LO(N) be the natural continuous action. Then:

I The action α is minimal, i.e., all of its orbits are dense in
LO(N).

I The action α is universal, i.e., for any other minimal
continuous action β : G × X → X on a compact space X
there is a continuous onto map π : LO(N)→ X that
commutes with the actions.



References

I F.P. Ramsey, On a Problem of Formal Logic, Proc. London
Math. Soc. 30 (1930), 264-286.

I Th. Skolem, Ein Kombinatorische Satz mit Anwendung auf
ein Logisches Entscheidungsproblem, Fundamenta Math. 20
(1933), 254-261.

I P. Erdös and R. Rado, A combinatorial theorem, J. London
Math. Soc., 25 (1950), 249-255.
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