Basis Problems and Expansions

Stevo Todorcevic

The Fields Institute, March 15, 2023

What is a basis problem?

Definition

Given a pre-ordered class (\mathcal{K}, \leq) of mathematical structures of the same type, we say that $\mathcal{K}_{0} \subseteq \mathcal{K}$ is a basis of \mathcal{K} if for every $K \in \mathcal{K}$ there is $K_{0} \in \mathcal{K}_{0}$ such that $K_{0} \leq K$.

What is a basis problem?

Definition

Given a pre-ordered class (\mathcal{K}, \leq) of mathematical structures of the same type, we say that $\mathcal{K}_{0} \subseteq \mathcal{K}$ is a basis of \mathcal{K} if for every $K \in \mathcal{K}$ there is $K_{0} \in \mathcal{K}_{0}$ such that $K_{0} \leq K$.

Problem

Given a class (\mathcal{K}, \leq) of mathematical structures, does it have a finite basis?

What is a basis problem?

Definition

Given a pre-ordered class (\mathcal{K}, \leq) of mathematical structures of the same type, we say that $\mathcal{K}_{0} \subseteq \mathcal{K}$ is a basis of \mathcal{K} if for every $K \in \mathcal{K}$ there is $K_{0} \in \mathcal{K}_{0}$ such that $K_{0} \leq K$.

Problem

Given a class (\mathcal{K}, \leq) of mathematical structures, does it have a finite basis?

Problem

Suppose \mathcal{K}_{0} is a downwards closed subclass of a given pre-ordered class (\mathcal{K}, \leq) of mathematical structures.

What is a basis problem?

Definition

Given a pre-ordered class (\mathcal{K}, \leq) of mathematical structures of the same type, we say that $\mathcal{K}_{0} \subseteq \mathcal{K}$ is a basis of \mathcal{K} if for every $K \in \mathcal{K}$ there is $K_{0} \in \mathcal{K}_{0}$ such that $K_{0} \leq K$.

Problem

Given a class (\mathcal{K}, \leq) of mathematical structures, does it have a finite basis?

Problem

Suppose \mathcal{K}_{0} is a downwards closed subclass of a given pre-ordered class (\mathcal{K}, \leq) of mathematical structures.
Can one characterize \mathcal{K}_{0} by forbidding finitely many members of \mathcal{K} ?

Examples of basis problems

- Can one characterize in this way the class of all finite linear orderings in the class of all linear orderings?

Examples of basis problems

- Can one characterize in this way the class of all finite linear orderings in the class of all linear orderings?
- Can one characterize in this way the class of countable linear orderings in the class of all linear orderings?

Examples of basis problems

- Can one characterize in this way the class of all finite linear orderings in the class of all linear orderings?
- Can one characterize in this way the class of countable linear orderings in the class of all linear orderings?
- Can one characterize in this way the class of metrizable compact spaces in the class of all compact spaces?

On a Problem of Formal Logic

Problem

Given a finite relational signature \mathcal{L}, is there a procedure that test the validity of universal \mathcal{L}-sentences ? More generally, is there a procedure that tests consistency of sets of universal \mathcal{L}-sentences?

On a Problem of Formal Logic

Problem

Given a finite relational signature \mathcal{L}, is there a procedure that test the validity of universal \mathcal{L}-sentences ? More generally, is there a procedure that tests consistency of sets of universal \mathcal{L}-sentences?

Definition

A k-ary relation $R \subseteq \mathbb{N}^{k}$ is canonical if the validity of $R\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ depends only on the way the usual ordering \leqslant of \mathbb{N} acts on x_{i} 's.

On a Problem of Formal Logic

Problem

Given a finite relational signature \mathcal{L}, is there a procedure that test the validity of universal \mathcal{L}-sentences ? More generally, is there a procedure that tests consistency of sets of universal \mathcal{L}-sentences?

Definition

A k-ary relation $R \subseteq \mathbb{N}^{k}$ is canonical if the validity of $R\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ depends only on the way the usual ordering \leqslant of \mathbb{N} acts on x_{i} 's.

Theorem (F.P. Ramsey 1930, Th. Skolem 1933)

Given a finite set T of universal relational sentences, for every positive integer m there is a positive integer n (that depends only on m and the number of relations and variables appearing in formulas of T) such that if T has a model of cardinality n or more then T has a canonical model on the domain $\{1,2, \ldots, m\}$.

The expansion problem for $\mathcal{A}=\left(A, R_{i}, f_{j}\right)_{i \in I, j \in J}$

Given a structure

$$
\mathcal{A}=\left(A, R_{i}, f_{j}\right)_{i \in I, j \in J}
$$

and positive integer k,
is there a finite expansion

$$
\mathcal{A}^{*}=\left(A, R_{i}, f_{j} ; S_{1}, \ldots, S_{n}\right)_{i \in I, j \in J}
$$

that captures arbitrary relation $S \subseteq A^{k}$ on a large subset B of A, i.e.,

$$
S \cap B^{k}=S^{*} \cap B
$$

for $S^{*} \subseteq A^{k}$ simply definable in \mathcal{A}^{*} ?

The expansion problem for $(\mathbb{N},=)$

The expansion problem for $(\mathbb{N},=)$

Expand $(\mathbb{N},=)$ to (\mathbb{N}, \leqslant), where \leqslant is the usual ordering of \mathbb{N}.

The expansion problem for $(\mathbb{N},=)$

Expand $(\mathbb{N},=)$ to (\mathbb{N}, \leqslant), where \leqslant is the usual ordering of \mathbb{N}.
For $\left(x_{i}: i<k\right)$ and $\left(y_{i}: i<k\right)$ in \mathbb{N}^{k} put

$$
\left(x_{i}: i<k\right) \sim_{(\mathbb{N}, \leqslant)}\left(y_{i}: i<k\right)
$$

if for all $i, j<k$:
$x_{i} \leqslant x_{j} \Leftrightarrow y_{i} \leqslant y_{j}$.

The expansion problem for $(\mathbb{N},=)$

Expand $(\mathbb{N},=)$ to (\mathbb{N}, \leqslant), where \leqslant is the usual ordering of \mathbb{N}.
For $\left(x_{i}: i<k\right)$ and $\left(y_{i}: i<k\right)$ in \mathbb{N}^{k} put

$$
\left(x_{i}: i<k\right) \sim_{(\mathbb{N}, \leqslant)}\left(y_{i}: i<k\right)
$$

if for all $i, j<k$:
$x_{i} \leqslant x_{j} \Leftrightarrow y_{i} \leqslant y_{j}$.
Remark
For fixed k, the equivalence relation $\sim_{(\mathbb{N}, \leqslant)}$ has finitely many equivalence classes on \mathbb{N}^{k} which we call atomic (\mathbb{N}, \leqslant)-canonical relations.

Canonical relations given by the expansion (\mathbb{N}, \leqslant)

Canonical relations given by the expansion (\mathbb{N}, \leqslant)

Definition
A relation $R \subseteq \mathbb{N}^{k}$ is (\mathbb{N}, \leqslant)-canonical (or simply canonical) if it is $\sim_{(\mathbb{N}, \leqslant)}$-invariant, i.e., if for $\left(x_{i}: i<k\right)$ and $\left(y_{i}: i<k\right)$ in \mathbb{N}^{k},
$\left(x_{0}, \ldots, x_{k-1}\right) \sim_{(\mathbb{N}, \leqslant)}\left(y_{0}, \ldots, y_{k-1}\right)$ implies $R\left(x_{0}, \ldots, x_{k-1}\right) \Leftrightarrow R\left(y_{0}, \ldots, y_{k-1}\right)$

Canonical relations given by the expansion (\mathbb{N}, \leqslant)

Definition

A relation $R \subseteq \mathbb{N}^{k}$ is (\mathbb{N}, \leqslant)-canonical (or simply canonical) if it is $\sim_{(\mathbb{N}, \leqslant)}$-invariant, i.e., if for $\left(x_{i}: i<k\right)$ and $\left(y_{i}: i<k\right)$ in \mathbb{N}^{k},
$\left(x_{0}, \ldots, x_{k-1}\right) \sim_{(\mathbb{N}, \leqslant)}\left(y_{0}, \ldots, y_{k-1}\right)$ implies
$R\left(x_{0}, \ldots, x_{k-1}\right) \Leftrightarrow R\left(y_{0}, \ldots, y_{k-1}\right)$

Remark

There is only finitely many canonical relation of a given arity k that can be easily identified and enumerated.
For example, there is only eight canonical binary relations on \mathbb{N} :
$\top, \perp,=, \neq<,>, \leqslant, \geqslant$.
\top and $=$ are the only equivalence relations on \mathbb{N} in this list.

Atomic relations have the Ramsey property

Atomic relations have the Ramsey property

Notation: $\mathbb{N}^{[k]}=\left\{\left(x_{i}: i<k\right) \in \mathbb{N}^{k}: x_{0}<x_{1}<\cdots<x_{k-1}\right\}$
Theorem (F.P. Ramsey 1930)
For every positive integer k and every relation $S \subseteq \mathbb{N}^{k}$ there is infinite subset M of \mathbb{N} such that $S \cap M^{[k]}=M^{[k]}$ or $S \cap M^{[k]}=\emptyset$.

Atomic relations have the Ramsey property

Notation: $\mathbb{N}^{[k]}=\left\{\left(x_{i}: i<k\right) \in \mathbb{N}^{k}: x_{0}<x_{1}<\cdots<x_{k-1}\right\}$
Theorem (F.P. Ramsey 1930)
For every positive integer k and every relation $S \subseteq \mathbb{N}^{k}$ there is infinite subset M of \mathbb{N} such that $S \cap M^{[k]}=M^{[k]}$ or $S \cap M^{[k]}=\emptyset$.

Corollary (F.P. Ramsey 1930, Th. Skolem 1933)

For every positive integer k, every equivalence class $\Theta \subseteq \mathbb{N}^{k}$ of $\sim_{(\mathbb{N}, \leqslant)}$ and every relation $S \subseteq \mathbb{N}^{k}$ there is infinite subset M of \mathbb{N} such that $S \cap M^{k}=\Theta \cap M^{k}$ or $S \cap \Theta \cap M^{k}=\emptyset$.

Atomic relations have the Ramsey property

Notation: $\mathbb{N}^{[k]}=\left\{\left(x_{i}: i<k\right) \in \mathbb{N}^{k}: x_{0}<x_{1}<\cdots<x_{k-1}\right\}$
Theorem (F.P. Ramsey 1930)
For every positive integer k and every relation $S \subseteq \mathbb{N}^{k}$ there is infinite subset M of \mathbb{N} such that $S \cap M^{[k]}=M^{[k]}$ or $S \cap M^{[k]}=\emptyset$.

Corollary (F.P. Ramsey 1930, Th. Skolem 1933)

For every positive integer k, every equivalence class $\Theta \subseteq \mathbb{N}^{k}$ of $\sim_{(\mathbb{N}, \leqslant)}$ and every relation $S \subseteq \mathbb{N}^{k}$ there is infinite subset M of \mathbb{N} such that $S \cap M^{k}=\Theta \cap M^{k}$ or $S \cap \Theta \cap M^{k}=\emptyset$.

Corollary (F.P. Ramsey 1930, Th. Skolem 1933)

For every positive integer k relation $S \subseteq \mathbb{N}^{k}$ there is infinite subset M of \mathbb{N} such that $S \cap M^{k}$ is canonical, i.e., equal to a union of a set of equivalence classes of $\sim_{(\mathbb{N}, \leqslant)}$ restricted to M^{k}.

Canonical equivalence relation on $\mathbb{N}^{[k]}$.

Canonical equivalence relation on $\mathbb{N}^{[k]}$.

Theorem (P. Erdös and R. Rado 1950)
For every positive integer k there is exactly 2^{k} canonical equivalence relations on $\mathbb{N}^{[k]}$, one for each subset $I \subseteq\{0, \ldots, k-1\}:$
$\left(x_{i}: i<k\right) \sim_{I}\left(y_{i}: i<k\right) \Leftrightarrow\left(x_{i}: i \in I\right)=\left(y_{i}: i \in I\right)$,

Canonical equivalence relation on $\mathbb{N}^{[k]}$.

Theorem (P. Erdös and R. Rado 1950)
For every positive integer k there is exactly 2^{k} canonical equivalence relations on $\mathbb{N}^{[k]}$, one for each subset $I \subseteq\{0, \ldots, k-1\}:$
$\left(x_{i}: i<k\right) \sim_{I}\left(y_{i}: i<k\right) \Leftrightarrow\left(x_{i}: i \in I\right)=\left(y_{i}: i \in I\right)$,
In other words,
for every equivalence relation E on $\mathbb{N}^{[k]}$ there is infinite $M \subseteq \mathbb{N}$ and $I \subseteq\{0, \ldots, k-1\}$ such that

$$
E\left|M^{[k]}=\sim_{1}\right| M^{[k]}
$$

A corollary of the Erdös-Rado theorem

A corollary of the Erdös-Rado theorem

Fix a positive integer k. A mapping

$$
f: \mathbb{N}^{[k]} \rightarrow \mathbb{N}
$$

is regressive if

$$
f\left(x_{0}, x_{1}, \ldots, x_{k-1}\right)<x_{0} \text { for all }\left(x_{0}, x_{1}, \ldots, x_{k-1}\right) \in \mathbb{N}^{[k]} \text { with } x_{0}>0
$$

A corollary of the Erdös-Rado theorem

Fix a positive integer k. A mapping

$$
f: \mathbb{N}^{[k]} \rightarrow \mathbb{N}
$$

is regressive if

$$
f\left(x_{0}, x_{1}, \ldots, x_{k-1}\right)<x_{0} \text { for all }\left(x_{0}, x_{1}, \ldots, x_{k-1}\right) \in \mathbb{N}^{[k]} \text { with } x_{0}>0
$$

Corollary

For every positive integer k and regressive $f: \mathbb{N}^{[k]} \rightarrow \mathbb{N}$ there is infinite $M \subseteq \mathbb{N}$ such that the restriction of f to $M^{[k]}$ is min-constant i.e., for $\left(x_{0}, x_{1}, \ldots, x_{k-1}\right),\left(y_{0}, y_{1}, \ldots, y_{k-1}\right) \in M^{[k]}$,

$$
f\left(x_{0}, x_{1}, \ldots, x_{k-1}\right)=f\left(y_{0}, y_{1}, \ldots, y_{k-1}\right) \text { whenever } x_{0}=y_{0}
$$

The expansion problem for (\mathbb{Q}, \leqslant)

The expansion problem for (\mathbb{Q}, \leqslant)

Fix a sequence $\left(q_{n}\right)_{n \in \mathbb{N}}$ which enumerates the set \mathbb{Q}.
For $x, y \in \mathbb{Q}$ put

$$
x<^{\prime} y \text { iff } x=q_{m}, y=q_{n} \text { and } m<n
$$

The expansion problem for (\mathbb{Q}, \leqslant)

Fix a sequence $\left(q_{n}\right)_{n \in \mathbb{N}}$ which enumerates the set \mathbb{Q}.
For $x, y \in \mathbb{Q}$ put

$$
x<^{\prime} y \text { iff } x=q_{m}, y=q_{n} \text { and } m<n
$$

This gives us the expansion $\left(\mathbb{Q}, \leqslant,<^{\prime}\right)$ which generates the following equivalence relation on any finite power \mathbb{Q}^{k} :

$$
\left(x_{i}: i<k\right) \sim_{\left(\mathbb{Q}, \leqslant,<^{\prime}\right)}\left(y_{i}: i<k\right)
$$

if for all $i, j<k$ and $\rho \in\left\{\leqslant,<^{\prime}\right\}$ we have: $x_{i} \rho x_{j} \Leftrightarrow y_{i} \rho y_{j}$.

The expansion problem for (\mathbb{Q}, \leqslant)

Fix a sequence $\left(q_{n}\right)_{n \in \mathbb{N}}$ which enumerates the set \mathbb{Q}.
For $x, y \in \mathbb{Q}$ put

$$
x<^{\prime} y \text { iff } x=q_{m}, y=q_{n} \text { and } m<n
$$

This gives us the expansion $\left(\mathbb{Q}, \leqslant,<^{\prime}\right)$ which generates the following equivalence relation on any finite power \mathbb{Q}^{k} :

$$
\left(x_{i}: i<k\right) \sim_{\left(\mathbb{Q}, \leqslant,<^{\prime}\right)}\left(y_{i}: i<k\right)
$$

if for all $i, j<k$ and $\rho \in\left\{\leqslant,<^{\prime}\right\}$ we have: $x_{i} \rho x_{j} \Leftrightarrow y_{i} \rho y_{j}$.
Definition
$R \subseteq \mathbb{Q}^{k}$ is canonical on $M \subseteq \mathbb{Q}$ if it is $\sim_{\left(\mathbb{Q}, \leqslant,<^{\prime}\right)}$-invariant, i.e., if for all $\left(x_{i}: i<k\right)$ and $\left(y_{i}: i<k\right)$ in \mathbb{N}^{k},
$\left(x_{0}, \ldots, x_{k-1}\right) \sim_{\left(\mathbb{Q}, \leq,<^{\prime}\right)}\left(y_{0}, \ldots, y_{k-1}\right)$ implies $R\left(x_{0}, \ldots, x_{k-1}\right) \Leftrightarrow R\left(y_{0}, \ldots, y_{k-1}\right)$

Atomic canonical relations are Ramsey

Atomic canonical relations are Ramsey

Theorem (R. Laver 1970)
For every positive integer k, every equivalence class Θ of $\sim_{\left(\mathbb{Q}, \leqslant,<^{\prime}\right)}$ and every $S \subseteq \mathbb{Q}^{k}$ there is $M \subseteq \mathbb{Q}$ such that

$$
(M, \leqslant) \cong(\mathbb{Q}, \leqslant)
$$

and such that $S \cap M^{k}=\Theta \cap M^{k}$ or $S \cap \Theta \cap M^{k}=\emptyset$.

Atomic canonical relations are Ramsey

Theorem (R. Laver 1970)
For every positive integer k, every equivalence class Θ of $\sim_{\left(\mathbb{Q}, \leqslant,<^{\prime}\right)}$ and every $S \subseteq \mathbb{Q}^{k}$ there is $M \subseteq \mathbb{Q}$ such that

$$
(M, \leqslant) \cong(\mathbb{Q}, \leqslant)
$$

and such that $S \cap M^{k}=\Theta \cap M^{k}$ or $S \cap \Theta \cap M^{k}=\emptyset$.
Corollary
For every positive integer k and every $S \subseteq \mathbb{Q}^{k}$ there is $M \subseteq \mathbb{Q}$ such that

$$
(M, \leqslant) \cong(\mathbb{Q}, \leqslant)
$$

and such that $S \cap M^{k}$ is $\left(\mathbb{Q}, \leqslant,<^{\prime}\right)$-canonical, i.e., a union of equivalence classes of $\sim_{\left(\mathbb{Q}, \leqslant,<^{\prime}\right)}$.

Which classes of $\sim_{\left(\mathbb{Q}, \leqslant,<^{\prime}\right)}$ are essential?

Which classes of $\sim_{\left(\mathbb{Q}, \leqslant,<^{\prime}\right)}$ are essential?

Definition
A class Θ of $\sim\left(\mathbb{Q}, \leq,<^{\prime}\right)$ on some power \mathbb{Q}^{k} is essential if
$\Theta \cap M^{k} \neq \emptyset$ for all $M \subseteq \mathbb{Q}$ such that $(M, \leqslant) \cong(\mathbb{Q}, \leqslant)$.

Which classes of $\sim_{\left(\mathbb{Q}, \leqslant,<^{\prime}\right)}$ are essential?

Definition

A class Θ of $\sim_{\left(\mathbb{Q}, \leq,<^{\prime}\right)}$ on some power \mathbb{Q}^{k} is essential if
$\Theta \cap M^{k} \neq \emptyset$ for all $M \subseteq \mathbb{Q}$ such that $(M, \leqslant) \cong(\mathbb{Q}, \leqslant)$.
Problem
For every positive integer k, classify the essential equivalence classes of $\sim_{\left(\mathbb{Q}, \leqslant,<^{\prime}\right)}$ on \mathbb{Q}^{k} or, equivalently, on $\mathbb{Q}^{[k]}$.

Notation: $\mathbb{Q}^{[k]}=\left\{\left(x_{i}: i<k\right) \in \mathbb{Q}^{k}: x_{0}<x_{1}<\cdots<x_{k-1}\right\}$.

A classification of essential classes of $\sim_{\left(\mathbb{Q}, \leqslant,<^{\prime}\right)}$

A classification of essential classes of $\sim_{\left(\mathbb{Q}, \leqslant,<^{\prime}\right)}$

Theorem (D. Devlin 1979)
For every positive integer k there exist exactly $t_{k}=\tan ^{2 k-1}(0)$ essential equivalence classes of $\sim_{\left(\mathbb{Q}, \leqslant,<^{\prime}\right)}$ on $\mathbb{Q}^{[k]}$.

Here $\left(t_{k}\right)$ is the well-known sequence of tangent numbers which starts as $t_{1}=1, t_{2}=2, t_{3}=16, t_{4}=272, \ldots$.

A classification of essential classes of $\sim_{\left(\mathbb{Q}, \leqslant,<^{\prime}\right)}$

Theorem (D. Devlin 1979)
For every positive integer k there exist exactly $t_{k}=\tan ^{2 k-1}(0)$ essential equivalence classes of $\sim_{\left(\mathbb{Q}, \leqslant,<^{\prime}\right)}$ on $\mathbb{Q}^{[k]}$.

Here $\left(t_{k}\right)$ is the well-known sequence of tangent numbers which starts as $t_{1}=1, t_{2}=2, t_{3}=16, t_{4}=272, \ldots$.

For each positive integer k let D_{k} be the equivalence relation on $\mathbb{Q}^{[k]}$ whose equivalence classes are the equivalence classes of $\sim_{\left(\mathbb{Q}, \leqslant,<^{\prime}\right)}$ on $\mathbb{Q}^{[k]}$.

A classification of essential classes of $\sim_{\left(\mathbb{Q}, \leqslant,<^{\prime}\right)}$

Theorem (D. Devlin 1979)
For every positive integer k there exist exactly $t_{k}=\tan ^{2 k-1}(0)$ essential equivalence classes of $\sim_{\left(\mathbb{Q}, \leqslant,<^{\prime}\right)}$ on $\mathbb{Q}^{[k]}$.

Here $\left(t_{k}\right)$ is the well-known sequence of tangent numbers which starts as $t_{1}=1, t_{2}=2, t_{3}=16, t_{4}=272, \ldots$.

For each positive integer k let D_{k} be the equivalence relation on $\mathbb{Q}^{[k]}$ whose equivalence classes are the equivalence classes of $\sim_{\left(\mathbb{Q}, \leqslant,<^{\prime}\right)}$ on $\mathbb{Q}^{[k]}$.
Theorem (R. Laver 1970, D. Devlin 1979)
For every positive integer k and every equivalence relation E on $\mathbb{Q}^{[k]}$ with finitely many classes there is $M \subseteq \mathbb{Q}$ such that $(M, \leqslant) \cong(\mathbb{Q}, \leqslant)$ and such that $E \mid M^{[k]}$ is coarser than $D_{k} \mid M^{[k]}$, and so in particular has no more than t_{k} classes.

A 'Problem of Formal Logic' behind

A 'Problem of Formal Logic' behind

Let $\mathcal{L}=\{\in\}$. The Zermelo-Fraenkel axiomatic system, ZF, is the set of \mathcal{L}-sentences that express the familiar axioms about sets:

1. Axiom of Estensionality,
2. Empty Set Axiom,
3. Axiom of Foundation,
4. Pairing Axiom,
5. Union Axiom,
6. Power-set Axiom,
7. Axiom Schema of Separation,
8. Axiom Schema of Replacement,
9. Axiom of Infinity

If we add to ZF the Axiom of Choice, AC, we get the ZFC axiomatic system.

Consequences of AC

- $(\forall x)(\exists f: x \rightarrow \bigcup x)(\forall y \in x)(y \neq \emptyset \rightarrow f(y) \in y)$.
- Every set can be well-ordered.
- Zorn's Lemma.
- The Hahn-Banach Theorem.
- The Boolean Prime Ideal Theorem.

Consequences of AC

- $(\forall x)(\exists f: x \rightarrow \bigcup x)(\forall y \in x)(y \neq \emptyset \rightarrow f(y) \in y)$.
- Every set can be well-ordered.
- Zorn's Lemma.
- The Hahn-Banach Theorem.
- The Boolean Prime Ideal Theorem.

Theorem (Gödel, 1938)
If ZF is consistent then so is ZFC.

Consequences of AC

- $(\forall x)(\exists f: x \rightarrow \bigcup x)(\forall y \in x)(y \neq \emptyset \rightarrow f(y) \in y)$.
- Every set can be well-ordered.
- Zorn's Lemma.
- The Hahn-Banach Theorem.
- The Boolean Prime Ideal Theorem.

Theorem (Gödel, 1938)
If ZF is consistent then so is ZFC.
Problem
Is AC a theorem of ZF?

Consequences of AC

- $(\forall x)(\exists f: x \rightarrow \bigcup x)(\forall y \in x)(y \neq \emptyset \rightarrow f(y) \in y)$.
- Every set can be well-ordered.
- Zorn's Lemma.
- The Hahn-Banach Theorem.
- The Boolean Prime Ideal Theorem.

Theorem (Gödel, 1938)
If ZF is consistent then so is ZFC.
Problem
Is AC a theorem of ZF?
Problem
Does BPI imply AC?

Cohen's Symmetric Model

Cohen's Symmetric Model

Start with a countable transitive model M of ZF and going to a submodel assume that every element of M is Gödel-constructible.

Cohen's Symmetric Model

Start with a countable transitive model M of ZF and going to a submodel assume that every element of M is Gödel-constructible. Then ω, the first infinite ordinal, belongs to M and therefore the version $\{0,1\}^{\omega \times \omega}$ of the Cantor space.

Cohen's Symmetric Model

Start with a countable transitive model M of ZF and going to a submodel assume that every element of M is Gödel-constructible. Then ω, the first infinite ordinal, belongs to M and therefore the version $\{0,1\}^{\omega \times \omega}$ of the Cantor space.
A code of a basic open set of $\{0,1\}^{\omega \times \omega}$ is a finite partial function $p: \omega \times \omega \rightarrow\{0,1\}$. Thus, the basic-open set coded with p is the set $[p]=\left\{x \in\{0,1\}^{\omega \times \omega}: x \mid \operatorname{dom}(p)=p\right\}$.

Cohen's Symmetric Model

Start with a countable transitive model M of ZF and going to a submodel assume that every element of M is Gödel-constructible. Then ω, the first infinite ordinal, belongs to M and therefore the version $\{0,1\}^{\omega \times \omega}$ of the Cantor space.
A code of a basic open set of $\{0,1\}^{\omega \times \omega}$ is a finite partial function $p: \omega \times \omega \rightarrow\{0,1\}$. Thus, the basic-open set coded with p is the set $[p]=\left\{x \in\{0,1\}^{\omega \times \omega}: x \upharpoonright \operatorname{dom}(p)=p\right\}$.
A collection \mathcal{D} of finite partial functions from $\omega \times \omega$ into $\{0,1\}$ codes the open set $[\mathcal{D}]=\bigcup_{p \in \mathcal{D}}[p]$.

Cohen's Symmetric Model

Start with a countable transitive model M of ZF and going to a submodel assume that every element of M is Gödel-constructible. Then ω, the first infinite ordinal, belongs to M and therefore the version $\{0,1\}^{\omega \times \omega}$ of the Cantor space.
A code of a basic open set of $\{0,1\}^{\omega \times \omega}$ is a finite partial function $p: \omega \times \omega \rightarrow\{0,1\}$. Thus, the basic-open set coded with p is the set $[p]=\left\{x \in\{0,1\}^{\omega \times \omega}: x \upharpoonright \operatorname{dom}(p)=p\right\}$.
A collection \mathcal{D} of finite partial functions from $\omega \times \omega$ into $\{0,1\}$ codes the open set $[\mathcal{D}]=\bigcup_{p \in \mathcal{D}}[p]$.
Since there is only countably many dense open subsets of $\{0,1\}^{\omega \times \omega}$ coded in M their intersection is not empty.

Cohen's Symmetric Model

Start with a countable transitive model M of ZF and going to a submodel assume that every element of M is Gödel-constructible. Then ω, the first infinite ordinal, belongs to M and therefore the version $\{0,1\}^{\omega \times \omega}$ of the Cantor space.
A code of a basic open set of $\{0,1\}^{\omega \times \omega}$ is a finite partial function $p: \omega \times \omega \rightarrow\{0,1\}$. Thus, the basic-open set coded with p is the set $[p]=\left\{x \in\{0,1\}^{\omega \times \omega}: x \upharpoonright \operatorname{dom}(p)=p\right\}$.
A collection \mathcal{D} of finite partial functions from $\omega \times \omega$ into $\{0,1\}$ codes the open set $[\mathcal{D}]=\bigcup_{p \in \mathcal{D}}[p]$.
Since there is only countably many dense open subsets of $\{0,1\}^{\omega \times \omega}$ coded in M their intersection is not empty.
Pick $c: \omega \times \omega \rightarrow\{0,1\}$ from this intersection.

Cohen's Symmetric Model

Start with a countable transitive model M of ZF and going to a submodel assume that every element of M is Gödel-constructible. Then ω, the first infinite ordinal, belongs to M and therefore the version $\{0,1\}^{\omega \times \omega}$ of the Cantor space.
A code of a basic open set of $\{0,1\}^{\omega \times \omega}$ is a finite partial function $p: \omega \times \omega \rightarrow\{0,1\}$. Thus, the basic-open set coded with p is the set $[p]=\left\{x \in\{0,1\}^{\omega \times \omega}: x \upharpoonright \operatorname{dom}(p)=p\right\}$.
A collection \mathcal{D} of finite partial functions from $\omega \times \omega$ into $\{0,1\}$ codes the open set $[\mathcal{D}]=\bigcup_{p \in \mathcal{D}}[p]$.
Since there is only countably many dense open subsets of $\{0,1\}^{\omega \times \omega}$ coded in M their intersection is not empty.
Pick $c: \omega \times \omega \rightarrow\{0,1\}$ from this intersection.
Form the corresponding generic extension $M[c]$ of M.

Cohen's Symmetric Model

Start with a countable transitive model M of ZF and going to a submodel assume that every element of M is Gödel-constructible. Then ω, the first infinite ordinal, belongs to M and therefore the version $\{0,1\}^{\omega \times \omega}$ of the Cantor space.
A code of a basic open set of $\{0,1\}^{\omega \times \omega}$ is a finite partial function $p: \omega \times \omega \rightarrow\{0,1\}$. Thus, the basic-open set coded with p is the set $[p]=\left\{x \in\{0,1\}^{\omega \times \omega}: x \upharpoonright \operatorname{dom}(p)=p\right\}$.
A collection \mathcal{D} of finite partial functions from $\omega \times \omega$ into $\{0,1\}$
codes the open set $[\mathcal{D}]=\bigcup_{p \in \mathcal{D}}[p]$.
Since there is only countably many dense open subsets of $\{0,1\}^{\omega \times \omega}$ coded in M their intersection is not empty.
Pick $c: \omega \times \omega \rightarrow\{0,1\}$ from this intersection.
Form the corresponding generic extension $M[c]$ of M.
The Cohen Symmetric Model is the model N is formed by elements of $M[c]$ that are invariant under a natural filter of groups of permutations of the first coordinate of the set
$\omega \times \omega$.

Cohen's Symmetric Model

Start with a countable transitive model M of ZF and going to a submodel assume that every element of M is Gödel-constructible. Then ω, the first infinite ordinal, belongs to M and therefore the version $\{0,1\}^{\omega \times \omega}$ of the Cantor space.
A code of a basic open set of $\{0,1\}^{\omega \times \omega}$ is a finite partial function $p: \omega \times \omega \rightarrow\{0,1\}$. Thus, the basic-open set coded with p is the set $[p]=\left\{x \in\{0,1\}^{\omega \times \omega}: x \upharpoonright \operatorname{dom}(p)=p\right\}$.
A collection \mathcal{D} of finite partial functions from $\omega \times \omega$ into $\{0,1\}$
codes the open set $[\mathcal{D}]=\bigcup_{p \in \mathcal{D}}[p]$.
Since there is only countably many dense open subsets of $\{0,1\}^{\omega \times \omega}$ coded in M their intersection is not empty.
Pick $c: \omega \times \omega \rightarrow\{0,1\}$ from this intersection.
Form the corresponding generic extension $M[c]$ of M.
The Cohen Symmetric Model is the model N is formed by elements of $M[c]$ that are invariant under a natural filter of groups of permutations of the first coordinate of the set $\omega \times \omega$. Thus, $M \subseteq N \subseteq M[c]$.

Properties of the Cohen Symmetric Model

For $n \in \omega$, let $c_{n}: \omega \rightarrow\{0,1\}$ be defined by $c_{n}(m)=c(n, m)$.
Let $C=\left\{c_{n}: n \in \omega\right\}$.

Properties of the Cohen Symmetric Model

For $n \in \omega$, let $c_{n}: \omega \rightarrow\{0,1\}$ be defined by $c_{n}(m)=c(n, m)$.
Let $C=\left\{c_{n}: n \in \omega\right\}$. Then $N=L_{\alpha}(C \cup\{C\})$ for $\alpha=\operatorname{Ord} \cap M$.
Theorem (P.J. Cohen, 1964)
The Cohen Symmetric Model N is a model of ZF but AC fails in N.

Properties of the Cohen Symmetric Model

For $n \in \omega$, let $c_{n}: \omega \rightarrow\{0,1\}$ be defined by $c_{n}(m)=c(n, m)$.
Let $C=\left\{c_{n}: n \in \omega\right\}$. Then $N=L_{\alpha}(C \cup\{C\})$ for $\alpha=\operatorname{Ord} \cap M$.
Theorem (P.J. Cohen, 1964)
The Cohen Symmetric Model N is a model of ZF but AC fails in N.

Theorem (A. Levy and J. D. Halpern 1967)
The Cohen Symmetric Model N satisfies the Boolean Prime Ideal Theorem.

Properties of the Cohen Symmetric Model

For $n \in \omega$, let $c_{n}: \omega \rightarrow\{0,1\}$ be defined by $c_{n}(m)=c(n, m)$.
Let $C=\left\{c_{n}: n \in \omega\right\}$. Then $N=L_{\alpha}(C \cup\{C\})$ for $\alpha=\operatorname{Ord} \cap M$.
Theorem (P.J. Cohen, 1964)
The Cohen Symmetric Model N is a model of ZF but AC fails in N.

Theorem (A. Levy and J. D. Halpern 1967)
The Cohen Symmetric Model N satisfies the Boolean Prime Ideal Theorem.

The proof of this result relies on a deep combinatorial theorem of Halpern-Läuchli that is also the key ingredient of the solution to the expansion problem for (\mathbb{Q}, \leqslant) discussed above.

The Halpern-Läuchli theorem

The Halpern-Läuchli theorem

Fix a rooted finitely branching tree T of height ω with no terminal nodes.

The Halpern-Läuchli theorem

Fix a rooted finitely branching tree T of height ω with no terminal nodes.
For $n \in \omega$, the nth level $T(n)$ is the set of all nodes of T that are on distance n from the root.

The Halpern-Läuchli theorem

Fix a rooted finitely branching tree T of height ω with no terminal nodes.
For $n \in \omega$, the nth level $T(n)$ is the set of all nodes of T that are on distance n from the root.
For $x \in T$, let

$$
T[x]=\{s \in T: x \leq s \text { or } s \leq t\} .
$$

The Halpern-Läuchli theorem

Fix a rooted finitely branching tree T of height ω with no terminal nodes.
For $n \in \omega$, the nth level $T(n)$ is the set of all nodes of T that are on distance n from the root.
For $x \in T$, let

$$
T[x]=\{s \in T: x \leq s \text { or } s \leq t\} .
$$

Definition
For $k \in \omega$, a subset X of T is k-dense if it dominates every node of T of height k.

The Halpern-Läuchli theorem

Fix a rooted finitely branching tree T of height ω with no terminal nodes.
For $n \in \omega$, the nth level $T(n)$ is the set of all nodes of T that are on distance n from the root.
For $x \in T$, let

$$
T[x]=\{s \in T: x \leq s \text { or } s \leq t\} .
$$

Definition

For $k \in \omega$, a subset X of T is k-dense if it dominates every node of T of height k.
For $k \in \omega$ and $x \in T$, a subset X of T is k - x-dense if it dominates every node of $T[x]$ of height k.

The Halpern-Läuchli theorem

Fix a rooted finitely branching tree T of height ω with no terminal nodes.
For $n \in \omega$, the nth level $T(n)$ is the set of all nodes of T that are on distance n from the root.
For $x \in T$, let

$$
T[x]=\{s \in T: x \leq s \text { or } s \leq t\} .
$$

Definition

For $k \in \omega$, a subset X of T is k-dense if it dominates every node of T of height k.
For $k \in \omega$ and $x \in T$, a subset X of T is k - x-dense if it dominates every node of $T[x]$ of height k.
A subset X of T is somewhere dense if it is k - x-dense for some $x \in T$ and some k above the height of x.

Figure: A k-dense set and a k - x-dense set

Fix now a finite sequence $T_{0}, T_{1}, \ldots, T_{d-1}$ of rooted finitely branching trees of height ω with no terminal nodes.

Fix now a finite sequence $T_{0}, T_{1}, \ldots, T_{d-1}$ of rooted finitely branching trees of height ω with no terminal nodes.

The product $\prod_{i<d} T_{i}$ is taken with the coordinatewise ordering.

Fix now a finite sequence $T_{0}, T_{1}, \ldots, T_{d-1}$ of rooted finitely branching trees of height ω with no terminal nodes.

The product $\prod_{i<d} T_{i}$ is taken with the coordinatewise ordering. A grid is a subset of $\prod_{i<d} T_{i}$ of the form $\prod_{i<d} X_{i}$ such that $X_{i} \subseteq T_{i}$ for $i<d$.

Fix now a finite sequence $T_{0}, T_{1}, \ldots, T_{d-1}$ of rooted finitely branching trees of height ω with no terminal nodes.

The product $\prod_{i<d} T_{i}$ is taken with the coordinatewise ordering. A grid is a subset of $\prod_{i<d} T_{i}$ of the form $\prod_{i<d} X_{i}$ such that $X_{i} \subseteq T_{i}$ for $i<d$.

A grid $\prod_{i<d} X_{i}$ is a k-dense-grid if for every $i<d$ the set X_{i} is k-dense in T_{i}.

Fix now a finite sequence $T_{0}, T_{1}, \ldots, T_{d-1}$ of rooted finitely branching trees of height ω with no terminal nodes.

The product $\prod_{i<d} T_{i}$ is taken with the coordinatewise ordering.
A grid is a subset of $\prod_{i<d} T_{i}$ of the form $\prod_{i<d} X_{i}$ such that $X_{i} \subseteq T_{i}$ for $i<d$.

A grid $\prod_{i<d} X_{i}$ is a k-dense-grid if for every $i<d$ the set X_{i} is k-dense in T_{i}.

For $k \in \omega$ and $\bar{x}=\left(x_{i}: i<d\right) \in \prod_{i<d} T_{i}$ a grid $\prod_{i<d} X_{i}$ is a k - \bar{x}-dense-grid if for every $i<d$ the set X_{i} is k - x_{i}-dense in T_{i}.

Fix now a finite sequence $T_{0}, T_{1}, \ldots, T_{d-1}$ of rooted finitely branching trees of height ω with no terminal nodes.

The product $\prod_{i<d} T_{i}$ is taken with the coordinatewise ordering.
A grid is a subset of $\prod_{i<d} T_{i}$ of the form $\prod_{i<d} X_{i}$ such that $X_{i} \subseteq T_{i}$ for $i<d$.

A grid $\prod_{i<d} X_{i}$ is a k-dense-grid if for every $i<d$ the set X_{i} is k-dense in T_{i}.

For $k \in \omega$ and $\bar{x}=\left(x_{i}: i<d\right) \in \prod_{i<d} T_{i}$ a grid $\prod_{i<d} X_{i}$ is a k - \bar{x}-dense-grid if for every $i<d$ the set X_{i} is k - x_{i}-dense in T_{i}.

A grid $\prod_{i<d} X_{i}$ is somewhere dense if it is $k-\bar{x}$-dense for some $\bar{x} \in \prod_{i<d} T_{i}$ and k above the height of x_{i} for all $i<d$.

Figure: A k-dense grid

Figure: A k - \bar{x}-dense grid

The Halpern-Läuchli Theorem

Theorem (J.D. Halpern and H. Läuchli, 1966)
For every finite sequence $T_{0}, T_{1}, \ldots, T_{d-1}$ of rooted finitely branching trees of height ω with no terminal nodes and for every positive integer p there is a positive integer n such that for every n-dense grid $\prod_{i<d} X_{i}$ of $\prod_{i<d} T_{i}$ and every

$$
f: \prod_{i<d} X_{i} \rightarrow\{0,1, \ldots, p-1\}
$$

there is a somewhere dense sub-grid $\prod_{i<d} Y_{i} \subseteq \prod_{i<d} X_{i}$ on which the function f is constant.

Strong subtrees

Strong subtrees

Fix a finitely branching rooted tree T of height ω with no terminal nodes.

Strong subtrees

Fix a finitely branching rooted tree T of height ω with no terminal nodes.

A strong subtree of T of height $1 \leq k \leq \omega$ is a rooted subtree U of height k for which we can find increasing sequence $\left(n_{i}\right)_{i<k}$ of non-negative integers such that

- $U(i) \subseteq T\left(n_{i}\right)$ for all $i<k$,
- for every $i<k-1$, every $s \in U(i)$, and every immediate successors t of s in T there is exactly one $u \in U(i+1)$ extending t.

Strong subtrees

Fix a finitely branching rooted tree T of height ω with no terminal nodes.

A strong subtree of T of height $1 \leq k \leq \omega$ is a rooted subtree U of height k for which we can find increasing sequence $\left(n_{i}\right)_{i<k}$ of non-negative integers such that

- $U(i) \subseteq T\left(n_{i}\right)$ for all $i<k$,
- for every $i<k-1$, every $s \in U(i)$, and every immediate successors t of s in T there is exactly one $u \in U(i+1)$ extending t.

For $1 \leq k \leq \omega$, let
$\operatorname{Str}^{k}(T)=\{U: U$ a strong subtree of T of height $k\}$.

Figure: The tree T and one of its strong subtrees U of height 3 .

The Milliken theorem

Theorem (K. Milliken, 1979)
For every rooted finitely branching tree T of height ω with no terminal nodes, every positive integers k and p, and every mapping

$$
f: \operatorname{Str}^{k}(T) \rightarrow\{0,1,2, \ldots, p-1\}
$$

there is a strong subtree U of T of height ω such that f is constant on $\operatorname{Str}^{k}(U)$.

The Milliken theorem

Theorem (K. Milliken, 1979)
For every rooted finitely branching tree T of height ω with no terminal nodes, every positive integers k and p, and every mapping

$$
f: \operatorname{Str}^{k}(T) \rightarrow\{0,1,2, \ldots, p-1\}
$$

there is a strong subtree U of T of height ω such that f is constant on $\operatorname{Str}^{k}(U)$.

Taking T equal to \mathbb{N} with the usual ordering we get that $\operatorname{Str}^{k}(\mathbb{N})=\mathbb{N}^{[k]}$.

The Milliken theorem

Theorem (K. Milliken, 1979)
For every rooted finitely branching tree T of height ω with no terminal nodes, every positive integers k and p, and every mapping

$$
f: \operatorname{Str}^{k}(T) \rightarrow\{0,1,2, \ldots, p-1\}
$$

there is a strong subtree U of T of height ω such that f is constant on $\operatorname{Str}^{k}(U)$.

Taking T equal to \mathbb{N} with the usual ordering we get that $\operatorname{Str}^{k}(\mathbb{N})=\mathbb{N}^{[k]}$.
Corollary (F.P. Ramsey, 1930)
For every positive integers k and p and every

$$
f: \mathbb{N}^{[k]} \rightarrow\{0,1,2, \ldots, p-1\}
$$

there is infinite $M \subseteq \mathbb{N}$ such that f is constant on $M^{[k]}$.

An expansion problem of the random graph

Fix a representation $\mathcal{R}=(\mathbb{N}, R)$ of the random graph, i.e.,

- R is a symmetric irreflexive binary relation on \mathbb{N},
- every finite graph is isomorphic to an induced subgraph of \mathcal{R},
- every isomorphism between two induced subgraphs extends to an automorphism of \mathcal{R}.

An expansion problem of the random graph

Fix a representation $\mathcal{R}=(\mathbb{N}, R)$ of the random graph, i.e.,

- R is a symmetric irreflexive binary relation on \mathbb{N},
- every finite graph is isomorphic to an induced subgraph of \mathcal{R},
- every isomorphism between two induced subgraphs extends to an automorphism of \mathcal{R}.

Problem (Expansion problem)

Fix a positive integer k. Is there an expansion of the random graph (\mathbb{N}, R) that canonizes sub-relations of $\mathbb{N}^{(k)}$ when restricted to a copy of an arbitrarily large finite induced subgraph of \mathcal{R}.?

Notation: $\mathbb{N}^{(k)}=\left\{\left(x_{0}, x_{1}, \ldots, x_{k-1}\right) \in \mathbb{N}^{k}: x_{i} \neq x_{j}\right.$ for $\left.i \neq j\right\}$.

The Nešetřil-Rödl expansion of the random graph

We explain the Nešetřil-Rödl expansion in the case of the random graph $\mathcal{R}=(\mathbb{N}, R)$ which however works for many other countable homogeneous structures.

The Nešetřil-Rödl expansion of the random graph

We explain the Nešetřil-Rödl expansion in the case of the random graph $\mathcal{R}=(\mathbb{N}, R)$ which however works for many other countable homogeneous structures.

Definition

Fix a linear ordering \leqslant^{*} on \mathbb{N} such that the expanded structure $\left(\mathcal{R}, \leqslant^{*}\right)=\left(\mathbb{N}, R, \leqslant^{*}\right)$ has the following properties

- every isomorphism between two finite substructures of $\left(\mathcal{R}, \leqslant^{*}\right)$ extends to an automorphism of $\left(\mathcal{R}, \leqslant^{*}\right)$,
- every finite ordered graph is isomorphic to a substructure of ($\mathcal{R}, \leqslant^{*}$).

Fix a finite graph graph $\mathbf{A}=\left(V_{A}, E_{A}\right)$ and assume that its vertex-set V_{A} is equal to $\{0,1, \ldots k-1\}$ for some positive integer k.

Fix a finite graph graph $\mathbf{A}=\left(V_{A}, E_{A}\right)$ and assume that its vertex-set V_{A} is equal to $\{0,1, \ldots k-1\}$ for some positive integer k.

The graph \mathbf{A} naturally leads to the following atomic $\mathcal{R}=(\mathbb{N}, R)$-canonical k-ary relation

$$
C_{\mathbf{A}}=\left\{\bar{x} \in \mathbb{N}^{(k)}:(\forall i<j<k)\left[(i, j) \in E_{A} \leftrightarrow\left(x_{i}, x_{j}\right) \in R\right]\right\} .
$$

Thus $C_{\mathbf{A}}$ is simply the set of all embeddings of \mathbf{A} into the random graph \mathcal{R}, i.e.,

$$
C_{\mathbf{A}}=\operatorname{Emb}(\mathbf{A}, \mathcal{R})=\binom{\mathcal{R}}{\mathbf{A}}
$$

Fix a finite graph graph $\mathbf{A}=\left(V_{A}, E_{A}\right)$ and assume that its vertex-set V_{A} is equal to $\{0,1, \ldots k-1\}$ for some positive integer k.

The graph A naturally leads to the following atomic $\mathcal{R}=(\mathbb{N}, R)$-canonical k-ary relation

$$
C_{\mathbf{A}}=\left\{\bar{x} \in \mathbb{N}^{(k)}:(\forall i<j<k)\left[(i, j) \in E_{A} \leftrightarrow\left(x_{i}, x_{j}\right) \in R\right]\right\} .
$$

Thus $C_{\mathbf{A}}$ is simply the set of all embeddings of \mathbf{A} into the random graph \mathcal{R}, i.e.,

$$
C_{\mathbf{A}}=\operatorname{Emb}(\mathbf{A}, \mathcal{R})=\binom{\mathcal{R}}{\mathbf{A}}
$$

The Nešetřil-Rödl expansion $\left(\mathcal{R}, \leqslant^{*}\right)=\left(\mathbb{N}, R, \leqslant^{*}\right)$ splits each $C_{\mathbf{A}}$ into its own atomic canonical relations

$$
C_{\mathbf{A}}^{\sigma}=\left\{\bar{x} \in C_{\mathbf{A}}:(\forall i<j<k) x_{\sigma(i)}<^{*} x_{\sigma(j)}\right\},
$$

where σ is an arbitrary permutation of $\{0,1, \ldots k-1\}$.

Theorem (F.G. Abramson and L. Harrington 1978, J. Nešetřil and V. Rödl 1977)

- The Nešetřil-Rödl expansion $\left(\mathcal{R}, \leqslant^{*}\right)=\left(\mathbb{N}, R, \leqslant^{*}\right)$ solves the expansion problem for the random graph $\mathcal{R}=(\mathbb{N}, R)$, i.e., for every positive integer k for every relation $S \subseteq \mathbb{N}^{(k)}$ there is an arbitrarily large finite induced subgraph (B, R) of $\mathcal{R}=(\mathbb{N}, R)$ such that $S \cap B^{(k)}$ is $\left(\mathcal{R}, \leqslant^{*}\right)$-canonical.

Theorem (F.G. Abramson and L. Harrington 1978, J. Nešetřil and V. Rödl 1977)

- The Nešetřil-Rödl expansion $\left(\mathcal{R}, \leqslant^{*}\right)=\left(\mathbb{N}, R, \leqslant^{*}\right)$ solves the expansion problem for the random graph $\mathcal{R}=(\mathbb{N}, R)$, i.e., for every positive integer k for every relation $S \subseteq \mathbb{N}^{(k)}$ there is an arbitrarily large finite induced subgraph (B, R) of $\mathcal{R}=(\mathbb{N}, R)$ such that $S \cap B^{(k)}$ is $\left(\mathcal{R}, \leqslant^{*}\right)$-canonical.
- In particular, for every finite graph $\mathbf{A}=\left(V_{A}, E_{A}\right)$ such that $V_{A}=\{0,1, \ldots k-1\}$ of some k and every permutation σ of $\{0,1, \ldots k-1\}$ the relation $C_{\mathbf{A}}^{\sigma} \subseteq \mathbb{N}^{(k)}$ is Ramsey, i.e., for every relation $S \subseteq \mathbb{N}^{(k)}$ there is an arbitrarily large finite induced subgraph (B, R) of $\mathcal{R}=(\mathbb{N}, R)$ such that

$$
S \cap C_{\mathbf{A}}^{\sigma} \cap B^{(k)}=\emptyset \text { or } S \cap B^{(k)} \supseteq C_{\mathbf{A}}^{\sigma} \cap B^{(k)}
$$

The Ordering Property

The Ordering Property

Theorem (J. Nešetřil and V. Rödl 1978)
The class of finite graphs has the ordering property, i.e., for every finite graph $\left(A, E_{A}\right)$ there is a finite ordered graph $\left(B, E_{B},<_{B}\right)$ such that for every linear ordering $<^{\prime}$ on A there is an embedding from $\left(A, E_{A},<^{\prime}\right)$ into $\left(B, E_{B},<B\right)$.

The Ordering Property

Theorem (J. Nešetřil and V. Rödl 1978)
The class of finite graphs has the ordering property, i.e., for every finite graph $\left(A, E_{A}\right)$ there is a finite ordered graph $\left(B, E_{B},<_{B}\right)$ such that for every linear ordering $<^{\prime}$ on A there is an embedding from $\left(A, E_{A},<^{\prime}\right)$ into $\left(B, E_{B},<B\right)$.

Corollary
For every finite graph $\mathbf{A}=\left(V_{A}, E_{A}\right)$ with $V_{A}=\{0,1, \ldots k-1\}$ for some k and every permutation σ of $\{0,1, \ldots k-1\}$ the relation $C_{\mathbf{A}}^{\sigma} \subseteq \mathbb{N}^{(k)}$ is essential, i.e, for every sufficiently large induced subgraph (B, R) of the random graph $\mathcal{R}=(\mathbb{N}, R)$ the intersection $C_{\mathbf{A}}^{\sigma} \cap B^{(k)}$ is not empty.

Corollary

Fix a finite graph $\mathbf{A}=\left(V_{A}, E_{A}\right)$ with $V_{A}=\{0,1, \ldots k-1\}$ for some k. Let $\mathcal{E}_{\mathbf{A}}$ be the equivalence relation on the set $\mathcal{E}_{\mathbf{A}}$ of all embeddings from \mathbf{A} into the random graph \mathcal{R} whose classes are the sets $C_{\mathbf{A}}^{\sigma}$ where σ runs over all permutations of $\{0,1, \ldots k-1\}$. Then

Corollary

Fix a finite graph $\mathbf{A}=\left(V_{A}, E_{A}\right)$ with $V_{A}=\{0,1, \ldots k-1\}$ for some k. Let $\mathcal{E}_{\mathbf{A}}$ be the equivalence relation on the set $\mathcal{E}_{\mathbf{A}}$ of all embeddings from \mathbf{A} into the random graph \mathcal{R} whose classes are the sets C_{A}^{σ} where σ runs over all permutations of $\{0,1, \ldots k-1\}$. Then

- All k ! classes of $\mathcal{E}_{\mathbf{A}}$ are realized on every sufficiently large finite induced subgraph or the random graph \mathcal{R}.

Corollary

Fix a finite graph $\mathbf{A}=\left(V_{A}, E_{A}\right)$ with $V_{A}=\{0,1, \ldots k-1\}$ for some k. Let $\mathcal{E}_{\mathbf{A}}$ be the equivalence relation on the set $\mathcal{E}_{\mathbf{A}}$ of all embeddings from \mathbf{A} into the random graph \mathcal{R} whose classes are the sets C_{A}^{σ} where σ runs over all permutations of $\{0,1, \ldots k-1\}$. Then

- All k ! classes of $\mathcal{E}_{\mathbf{A}}$ are realized on every sufficiently large finite induced subgraph or the random graph \mathcal{R}.
- For every equivalence relation \mathcal{E} on $C_{\mathbf{A}}$ with finitely many equivalence classes there is an arbitrarily large induced subgraph B of \mathcal{R} such that the restriction \mathcal{E} on the set $C_{\mathbf{A}} \cap B^{(k)}$ of all embeddings from \mathbf{A} into (B, R) is coarser then the restriction of the canonical equivalence relation $\mathcal{E}_{\mathbf{A}}$ on the same set.

Dynamics of the group $\operatorname{Aut}(\mathcal{R})$

Dynamics of the group $\operatorname{Aut}(\mathcal{R})$

Theorem (A. Kechris, V. Pestov and S. T., 2005)
Let $\mathrm{LO}(\mathbb{N})$ be the compact space of all linear orderings on \mathbb{N}, the vertex-set of the random graph \mathcal{R}. Let $G=\operatorname{Aut}(\mathcal{R})$ and let $\alpha: G \times \operatorname{LO}(\mathbb{N}) \rightarrow \mathrm{LO}(\mathbb{N})$ be the natural continuous action. Then:

Dynamics of the group $\operatorname{Aut}(\mathcal{R})$

Theorem (A. Kechris, V. Pestov and S. T., 2005)
Let $\mathrm{LO}(\mathbb{N})$ be the compact space of all linear orderings on \mathbb{N}, the vertex-set of the random graph \mathcal{R}. Let $G=\operatorname{Aut}(\mathcal{R})$ and let $\alpha: G \times \mathrm{LO}(\mathbb{N}) \rightarrow \mathrm{LO}(\mathbb{N})$ be the natural continuous action. Then:

- The action α is minimal, i.e., all of its orbits are dense in $\mathrm{LO}(\mathbb{N})$.

Dynamics of the group $\operatorname{Aut}(\mathcal{R})$

Theorem (A. Kechris, V. Pestov and S. T., 2005)
Let $\mathrm{LO}(\mathbb{N})$ be the compact space of all linear orderings on \mathbb{N}, the vertex-set of the random graph \mathcal{R}. Let $G=\operatorname{Aut}(\mathcal{R})$ and let $\alpha: G \times \mathrm{LO}(\mathbb{N}) \rightarrow \mathrm{LO}(\mathbb{N})$ be the natural continuous action. Then:

- The action α is minimal, i.e., all of its orbits are dense in $\mathrm{LO}(\mathbb{N})$.
- The action α is universal, i.e., for any other minimal continuous action $\beta: G \times X \rightarrow X$ on a compact space X there is a continuous onto map $\pi: \mathrm{LO}(\mathbb{N}) \rightarrow X$ that commutes with the actions.

References

- F.P. Ramsey, On a Problem of Formal Logic, Proc. London Math. Soc. 30 (1930), 264-286.
- Th. Skolem, Ein Kombinatorische Satz mit Anwendung auf ein Logisches Entscheidungsproblem, Fundamenta Math. 20 (1933), 254-261.
- P. Erdös and R. Rado, A combinatorial theorem, J. London Math. Soc., 25 (1950), 249-255.
- J. D. Halpern and H. Läuchli, A partition theorem, Trans. Amer. Math. Soc., 124 (1966), 360-367.
- J. Nešetřil and V. Rödl, Partitions of finite relational and set systems, J. Comb. Theory 22 (1977), 289-312.
- A. Kechris, V. Pestov and S. Todorcevic, Fraïssé limits, Ramsey theory, and Topological Dynamics of Automorphism groups, GAFA Geom. Funct, Analysis, 15 (2005), 106-189.

