

Improving Students' Learning of Mathematics:

Some Insights from Several Decades of Research

Jinfa Cai
 University of Delaware

Funded by various funding agencies, such NSF, Department of ED, Spencer Foundation, National Academy of Education.

Thanks for the Invitation

Improving Students' Learning
Of

MATHEMATICS

Three Lines of Research

First, A Project on Cross-national Comparative Studies

Second, A Project on Curriculum
Third, A Project on Mathematical Problem Posing

U.S. and Chinese Students' Performance on Four Types of Tasks (Cai, 2000, 2001)

- 13 Computation Tasks
- 18 Simple Word PS Tasks
- 6 Process Constrained PS Tasks

6 Process Open PS Tasks

Translation Equivalence

English-back Translation

were used to ensure translation equivalence

Some Research Findings
 (Cai \& Merlino, 2011)

- A total of 1316 high school students
- Different programs:

285 Non-college preparation mathematics 858 college preparation math (traditional)

173 college preparation math (NSF-Funded)

Survey Instrument

We are interested in learning how you think and feel about mathematics. Please take a few minutes to think about the following questions and write how you truly feel. There are no right or wrong answers.

- If Math were a food, it would be_because \qquad
- If Math were a color, it would be_because \qquad
- If Math were an animal, it would be_because

"Purple is my favorite color. It's my birth stone color plus it brings passionate. That's how I feel about math.

"Math is like steak because math is a full, expansive subject. However, like a steak there are tough bits of gristle scattered throughout obstacles you must work around. The full meal is satisfying, but the process of eating is somewhat unusually strenuous.
- "Vegetables are good for you, and so is mathematics for daily things. It is needed in life. Some people like it, and some people don't, but you still need it to live a healthy life.

"I would say a mosquito, because whatever you do to try and get away from it, it always comes back. It's annoying because you hate taking math every year, and whatever you try to do to stop it, it always fails.

- Quantitative Analysis: Holistic scoring (1-5)
1 Point Very Negative
2 points Moderately Negative
3 points Neutral or Ambivalent
4 points Moderately Positive
5 points Very Positive.
- Qualitative Analysis: Reveal what kinds of metaphors students used and why

Figure 2. Percentage Distribution at Each Attitude Level

Background Information in the Ten School Districts in GPSMP

(Kramer, Cai, \& Merlino, 2015)

1	School District	Curriculum (2 Middle School)		Approximate \# of Students (Middle School)	Curriculum (High School)
2	District B (PA)	MiC	Approximate \# of Students (12 High School)		
3	District C (PA)	MiC	1000	CPMP	5000
4	District D (PA)	MiC	1000	CPMP	2000
5	District E (NJ)	CMP	500	IMP	2000
6	District F (PA)	MiC	1000	IMP	1000
7	District G (NJ)	CMP	1000	CPMP	1000
8	District H (NJ)	CMP	1000	IMP	2000
9	District I (PA)	CMP	1000	IMP	2000
10	District J (PA)	CMP	1000	CPMP	2000

Scatter plot of
 "Treatment Growth" "Control Growth"

Longitudinal Investigation of the Effect of Curriculum on Algebra Learning (LieCal Project)

Profile of Schools

(Cai et al., 2011, 2013; Moyer et al., 2018)

Achievement Level	CMP	Non-CMP
High Achieving	2	2
Average Achieving	3	3
Low Achieving	2	2

	Problem Solving	Computation	Equation Solving
Without control for cognitive demand	CMP	---	---
With control for cognitive demand	---	Non-CMP	
With added growth rate from cognitive demand	Non-CMP by	Non-CMP by	Non--- CMP by

Supporting Teachers to Teach Mathematics Through Problem Posing: An Early-Stage Longitudinal Study (in Middle Grades)

Investigating longitudinally how teachers teach and learn to teach mathematics through problem posing and the impact of these processes on students' learning.

Teaching mathematics through PP

(Cai, 2022)

Odd Number Pattern

1
35
$7 \quad 9 \quad 11$
$\begin{array}{llll}13 & 15 & 17 & 19\end{array}$
$\begin{array}{lllll}21 & 23 & 25 & 27 & 29\end{array}$
The pattern continues.

Cai et al., 2015; Cai in preparation

Three Prompts

1. Pose three different mathematical problems that could be solved based on this pattern
2. Pose one easy mathematical problem, one moderately difficult mathematical problem, and one difficult mathematical problem
3. Make three different mathematical conjectures about the pattern

- Can you tell me the next row of numbers? [list]
- How many values in the $17^{\text {th }}$ row?
- List the values in the $10^{\text {th }}$ row? $11^{\text {th }}$.
- Determine the center value (of the row) of row 9.
- can you find all the numbers in row "n". (pattern)
- How many rows would it take to reach a triple digit value?
- Find the sum of the values in row 15.

The next row will contain 8 numbers.
The sum of the values is a row is = to n^{3}. Where " n " is the row. Row number = number of numbers.

- Difference between first and last number of each row increases by 2 as you move down the table, resulting in the rule $2 n-2$ where ' n 'is the row number.
- row 100 would have a difference of 198 between the first + last number.

The row number is the same as
Find the sum of the numbers the number of numbers in the row. in the first 100 rows.

How can I use a perfect square number to determine the row number?

Selected Three Problems/Conjectures

1. The row number is the same as the number of numbers in the row.
2. How can I use a perfect square to determine the row number?
3. Find the sum of the numbers in the first 100 rows.

What is the sum of the numbers in the first n rows?

35				
$7 \quad 9 \quad 11$				
$\begin{array}{llll}13 & 15 & 17 & 19\end{array}$				
$\begin{array}{lllll}21 & 23 & 25 & 27 & 29\end{array}$				

What is the sum of the numbers in the first \mathbf{n} rows?

What is the sum of the numbers in the first n rows?

The sum $=1^{3}+2^{3}+3^{3}+4^{3}+\ldots+(n-1)^{3}+n^{3}$

What is the sum of the numbers in the first n rows?

$$
\begin{aligned}
& 1 \\
& 35 \\
& \begin{array}{lll}
7 & 9 & 11
\end{array} \\
& \begin{array}{llll}
13 & 15 & 17 & 19
\end{array} \\
& \begin{array}{lllll}
21 & 23 & 25 & 27 & 29
\end{array} \\
& {\left[1+3+5+\ldots+(2 m-1)=m^{2}\right]} \\
& =(1+2+3+4+\ldots+n)^{2}
\end{aligned}
$$

An unexpected finding:

$$
\begin{aligned}
& 1^{3}+2^{3}+3^{3}+4^{3}+\ldots+(n-1)^{3}+n^{3} \\
& =(1+2+3+4+\ldots+n)^{2} \\
& =[n(n+1) / 2]^{2}
\end{aligned}
$$

Note: $1+2+3+4+\ldots+n=n(n+1) / 2$

Thanks!

Jinfa Cai

jcai@udel.edu

