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First, credit where credit is due

This prize crowns 40 years of efforts in research.

Over 120 collaborators contributed to it, most notably

X Philippe Capéraà X Johanna Nešlehová
X Bruno Rémillard X Louis-Paul Rivest

who were major sources of inspiration in research. I am also very grateful
for critical guidance provided at various stages of my career (and life) by

X Jim Zidek X Mark Schervish
X Jack Kalbfleisch X Jerry Lawless

X Luc Genest X Lucie Lapointe

Finally, thanks to my family and children for their support and love.
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Purpose and outline of this talk

To give an overview of some of the problems on which I worked,
emphasizing their mathematical nature.

In hindsight, many modeling and inference issues I addressed where
characterized by the absence of directly relevant data:

X expert use;

X dependence modeling;

X risk assessment.

This talk is meant to be accessible to undergraduate math students with
minimal knowledge of statistics (apologies to the professionals).
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A bit of background

Here are three basic concepts underlying much statistical thinking:

X stochastic model;

X parametric inference;

X Bayesian updating.

Picture on the right:
Saguenay flood
July 19-21, 1996 275 mm of rain in 48 hours

Here is a simple illustration having to do with extreme weather.

Side note: This “petite maison blanche,” which survived the flood and was
turned into a museum, belonged to Alyre Genest, my father’s uncle.
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Source : http://montreal.weatherstats.ca/
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Histogram of the rainiest day of the year at Trudeau International Airport
between 1943 and 2017.
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A model is a distribution for the data

A stochastic model is an “idealized histogram” that captures the key
features of the data and makes it possible to evaluate risks and make
predictions beyond what has been observed.
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The yellow and blue curves are two different models for these data.
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Mathematical formulation

Consider data X1,X2, . . . from distribution F and density f = F ′.

The yellow (Gaussian) curve is given, for all x ∈ R, by

f (x | µ, σ) = 1√
2πσ

exp
{
−1
2

(
x − µ
σ

)2
}
.

The blue (generalized extreme-value) curve is given, for all x ∈ R, by

F (x | µ, σ, ξ) = exp
{
−
[
1 + ξ

(
x − µ
σ

)]−1/ξ
+

}
,

where a+ = max(0, a). These models involve parameters that must be
selected, viz. µ ∈ R (location), scale σ > 0 (scale), and ξ ∈ R∗ (shape).
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GEV model justified by the Fisher–Tippett theorem
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Inference

Parameters must be selected from the data in an optimal way, e.g., by
matching moments or maximizing the likelihood function, viz.

`(θ) = `x1,...,xd (θ) =
n∏

i=1
fθ(xi ),

i.e., the joint distribution of the data viewed as a function of the
parameter (vector) θ, e.g., θ = (µ, σ) or θ = (µ, σ, ξ).

In the Gaussian case, both approaches lead to

µ̂ = X̄n = 1
n (X1 + · · ·+ Xn)

but two (slightly) different formulas for σ̂2.

Note that estimators are random variables and are studied as such; their
properties are an important subject of inquiry in Mathematical Statistics.
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What can be done with this?

For the Trudeau Airport annual daily maximum, the MLEs are

Normal GEV (Fréchet)
µ̂ = 51.36 µ̂ = 43.56
σ̂ = 16.25 σ̂ = 10.58

ξ̂ = 0.14

Depending on the choice of model, one can
then compute things such as:

X the probability of a 1996-like event, viz.

Pr(X ≥ 120.6) ≈ 0.68% versus 0.001%;

X the corresponding return period:
once in 148 years versus 97,714 years!
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Bayesian viewpoint

Encode the analyst’s prior information concerning the unknown
parameters in a distribution, e.g., a prior for the mean θ is

π(θ) ≡ N (µ0, σ20).

One can update this information using Bayes’ rule, viz.

π(θ | X1 = x1, . . . ,Xn = xn) ∝ π(θ)`(θ).

For example if the data are Gaussian and σ is known, the posterior for θ
is Gaussian with respective mean and precision (= 1/variance)

τ 2
(
µ0
σ20

+ nx̄n
σ2

)
,

1
τ 2

= 1
σ20

+ n
σ2

.
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Easy Bayesian learning example

Consider the event A: a non-hemophiliac woman carryies the (F8) gene
for this blood disorder.

Suppose Pr(A) = p a priori. How does p change with information
through the hemophiliac status X1, . . . ,Xd of her sons?

Pr(X1 = · · · = Xd = 0 | A) = 1/2d ,

Pr(X1 = · · · = Xd = 0 | Ā) = 1.

By Bayes’ rule,

Pr(A | X1 = · · · = Xd = 0) = p × 2−d

p × 2−d + (1− p)× 1 ,

which tends to 0 as d →∞ but jumps to 1 as soon as some Xi = 1.

C. Genest CRM-Fields-PIMS Lecture 2023–04–20 12 / 67



VIGNETTE 1

Expert Use
UBC, Vancouver; CMU, Pittsburgh



Context

There are sometimes no data to inform risk management (e.g., chances
of coastal flood in remote locations).

One way to carry out inference, risk management, and prediction, is to
consult d ≥ 1 experts, whose opinions may differ.

To make things simple, assume θ ∈ R and the expert priors are densities

π1, . . . , πd .

To benefit from all, one can combine them into a single distribution, viz.

(π1, . . . , πd ) 7→ T (π1, . . . , πd ).

The map T is called a pooling operator.
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Examples of pooling operators

The linear opinion pool (Stone, 1961):

Tlin(π1, . . . , πd ) = w1π1 + · · ·+ wdπd .

The logarithmic opinion pool (Madansky, 1964):

Tlog(π1, . . . , πd ) ∝ πw1
1 × · · · × π

wd
d ,

In both formulas, w1, . . . ,wd ∈ [0, 1] are expert weights with

w1 + · · ·+ wd = 1.

If π1 ∼ N (θ0, σ21), . . . , πd ∼ N (θ0, σ2d ), then Tlin is a mixture of
Gaussians while Tlog is a Gaussian distribution with precision

w1

σ21
+ · · ·+ wd

σ2d
.
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External Bayesianity

Now suppose data become available, leading to a likelihood `(θ).

Two options are then possible:

(a) Ask the experts to update their opinions and then pool, leading to

T
(

π1∫
π1dν

, . . . ,
πd∫
πddν

)
.

(b) Pool first and then update yourself, leading to

T ∗(π1, . . . , πd ) = `× T (π1, . . . , πd )∫
`× T (π1, . . . , πd )dν

.

A pooling operator for which T = T ∗ is called externally Bayesian (eB).
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A characterization of eB pooling operators

Suppose that a pooling operator satisfies the local condition

T (π1, . . . , πd )(θ) = G{π1(θ), . . . , πd (θ)} ν-a.e.

Then T = Tlog under minimal conditions (Genest, 1984, AoS).

This result was later extended in various ways, e.g., Genest et al. (1986,
AoS) show that if G can depend on θ, then

T (π1, . . . , πd )(θ) = g(θ)× πw1
1 (θ)× · · · × πwd

d (θ)∫
g(θ)× πw1

1 (θ)× · · · × πwd
d (θ)dν(θ)

for some map g acting effectively as a (previously observed) likelihood.
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A Bayesian view of linear opinion pools

Another line that Mark Schervish (Carnegie-Mellon) and I pursued is

“When does the linear opinion pool result from Bayes’ rule?”

For simplicity, consider an event A (like hemophiliac status) and a vector
X = (X1, . . . ,Xd ) of expert opinions, Bayes’ rule yields

Pr(A | X = x) = Pr(A) Pr(X = x | A)
Pr(X = x) .

Suppose that a decision maker (DM) does not wish (or cannot) specify
the conditional distribution of X given A or its complement Ā.
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Result

Suppose that the DM merely specifies

E(X) = (µ1, . . . , µd )

and seeks a pooling operator T such that whatever the marginal law F of
X, there exists a compatible joint distribution for A and X such that

T (x1, . . . , xd ) = Pr(A | X = x).

Genest & Schervish (1985, AoS) then show that

T (x1, . . . , xd ) = w1(x1 − µ1) + · · ·+ wd (xd − µd )

with w1, . . . ,wd satisfying 2d+1 inequalities. A converse also holds.
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A personal turning point

As it turns out, denoting w = (w1, . . . ,wd )>, one finds

E{(1A − p)(X− µ)} = Σw ⇒ w = Λ−1σd ,

where p = Pr(A) and Σ is a (d + 1)× (d + 1) partitioned matrix, viz.

cov(X, 1A) = Σ =
(

Λ σd
σ>d p(1− p)

)
.

Therefore, for each i ∈ {1, . . . , d}, weight wi should be a measure of
additional information provided by expert i , over and above everyone else
[regression analogy].

This provides a principle for selecting the weights, but beyond that it was
a turning point for me because, as I moved to Waterloo, I realized that

dependence between experts should really be modeled!
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VIGNETTE 2

Dependence Modeling
UW, Waterloo; U. Laval, Québec



Fixed margins and copulas

Given distribution functions F1, . . . ,Fd , how do you construct a
multivariate distribution H with these margins?

Alternatively, you want to build a random vector (X1, . . . ,Xd ) such that

∀x1,...,xd∈R H(x1, . . . , xd ) = Pr(X1 ≤ x1, . . . ,Xd ≤ xd )

and, for all i ∈ {1, . . . , d},

Pr(Xi ≤ xi ) = Fi (xi ).

In the case d = 2, an analog would be to fill a K × L frequency table
whose row and column sums are fixed! [Sudoku analogy]
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“My idea”

As pooling operators are (e.g., arithmetic or geometric) means, I thought
of relying on the concept of “quasi-arithmetic” mean, viz.

M(x1, . . . , xd ) = φ−1{w1φ(x1) + · · ·+ wdφ(xd )},

where φ is a monotonic function. This led me to look at maps of the form

C(u1, . . . , ud ) = φ−1{φ(u1) + · · ·+ φ(ud )},

where u1, . . . , ud ∈ (0, 1), which is now universally known as an
Archimedean copula.

My colleague János Aczél (1924–2020) alerted me to the work of Sklar
and his (then recent) book with Berthold Schweizer, published in 1983.

C. Genest CRM-Fields-PIMS Lecture 2023–04–20 23 / 67



Copulas

Under suitable conditions (see McNeil & Nešlehová, 2009, AoS),

C(u1, . . . , ud ) = φ−1{φ(u1) + · · ·+ φ(ud )},

is a d-variate distribution function with uniform margins on [0, 1].

As a result,
H(x1, . . . , xd ) = C{F1(x1), . . . ,Fd (xd )}

is a d-variate distribution function with arbitrary margins F1, . . . ,Fd .

Surprisingly, many of the multivariate models available back then were of
this form (Genest & MacKay, 1986, Canad. J. Statist.).
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Sklar’s theorem

The following observation is key to dependence modeling, which has now
become an industry.

If (U1, . . . ,Ud ) is a uniform random vector with copula C, then

X1 = F−11 (U1), . . . ,Xd = F−1d (Ud )

has distribution H = C(F1, . . . ,Fd ) with margins F1, . . . ,Fd . Moreover,
any distribution H can be written in this form for some copula C, which
is unique only when F1, . . . ,Fd are continuous.

This is a 1959 PISUP result due to Abe Sklar (1925–2020).

Archimedean copulas is one class of copulas among many others.
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The statistical issue (1–3)

Given data X1, . . . ,Xn, how do you choose between different choices of
φ, called Archimedean generator? Say,

φθ(t) = 1
θ

(t−θ − 1), θ ∈ [−1,∞)

φθ(t) = | ln(t)|θ, θ ∈ [1,∞)

φθ(t) = − ln
(

e−θt − 1
e−θ − 1

)
, θ ∈ R

These lead to very different dependence structures (called the Clayton,
Gumbel, and Frank model, respectively).

And given a family, how would you estimate θ from data?
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Illustration with Gaussian margins

X ∼ N (0, 1), Y ∼ N (0, 1), C =?
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The statistical issue (2–3)

If you have data from the copula, i.e., mutually independent copies of

(U1, . . . ,Ud ) ∼ C

things are relatively simple. For example, you might use

X the method of moments or maximum likelihood estimation;
X Kolmogorov–Smirnov statistics for goodness-of-fit;
X standard model selection techniques, cross-validation, etc.

A crucial point to understand, though, is that you don’t get data from C !
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The statistical issue (3–3)

Focusing on the bivariate case to simplify notation, what you get are data

(X1,Y1), . . . , (Xn,Yn)

from H = C(F ,G). If margins F and G are known and continuous, then

(U1,V1) = (F (X1),G(Y1)), . . . , (Un,Vn) = (F (Xn),G(Yn))

are indirect observations from C .

The (X ,Y ) sample and the (U,V ) sample look quite different!
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Illustration 1
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Illustration 2
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Nonparametric inference (based on ranks)

What to do when you don’t know the margins? Here is a simple but
intriguing idea that goes a long way:

X Compute the ranks of X1, . . . ,Xn, say R1, . . . ,Rn.

X Compute the ranks of Y1, . . . ,Yn, say S1, . . . ,Sn.

The pairs defined, for all i ∈ {1, . . . , n}, by

(Û1, V̂1) = (R1/n,S1/n), . . . , (Ûn, V̂n) = (Rn/n,Sn/n)

are then pseudo-observations from C , but not a random sample.

Consequence: it is possible to carry out inference about a copula C
(selection, estimation, validation) based on indirect observations.
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Why does it work?

It works because if X1, . . . ,Xn form a random sample from F , one can
define a map F̂n by setting, for all x ∈ R,

F̂n(x) = 1
n

n∑
i=1

1(Xi ≤ x).

This map is called the empirical distribution function and, for all
i ∈ {1, . . . , n},

F̂n(Xi ) = Ri/n = Ûi .

The Glivenko–Cantelli lemma states that, as n→∞, F̂n → F point-wise.
In other words, F̂n is a consistent estimator of F !
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Example (1–3)
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Raw data and support of the empirical copula for the price of oil (Light
Sweet Crude) and natural gas (mmBUT) data from 2004 to 2006

Source: Grégoire et al. (2008, Energy Risk)
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Example (2–3)

If, say, the selected model is the Farlie–Gumbel–Morgenstern copula with
density given, for all u, v ∈ [0, 1], by

cθ(u, v) = 1 + θ(1− 2u)(1− 2v),

one could estimate θ ∈ [−1, 1] by maximizing the pseudo log-likelihood

`(θ) =
n∑

i=1
ln[cθ{F̂n(Xi ), Ĝn(Yi )}] =

n∑
i=1

ln{cθ(Ûi , V̂i )},

or using a method of moments, e.g., Spearman’s rho, exploiting the fact
that in this model,

corr(U,V ) = θ/3.
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Example (3–3)

Based on Spearman’s rho, say, the estimator would be

θ̂n = 3− 18
n(n2 − 1)

n∑
i=1

(Ri − Si )2.

This is a rank-based estimator. What are its properties, though?

X Is it unbiased? E(θ̂n) = θ?
X Is it consistent? θ̂n → θ in probability as n→∞?
X Is it asymptotically Gaussian?

√
n (θ̂n − θ) N (0, σ2)?

X Is it the most efficient estimator?
X Equivalently, is the asymptotic variance σ2 as small as it could be?

Similar questions can be asked about the maximum pseudo-likelihood
estimator, which is often not explicit, and others.
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Central theoretical tool

Central to the theoretical developments is the empirical copula defined
(in the bivariate case, for simplicity), for all u, v ∈ [0, 1], by

Ĉn(u, v) = 1
n

n∑
i=1

(Ûi ≤ u, V̂i ≤ v),

This is a random function or a stochastic process.

Its convergence was studied under various scenarios, e.g., by Rüschendorf
(1976), Fermanian et al. (2004, Bernoulli), Segers (2012, Bernoulli),
Genest et al. (2014, Bernoulli), and Genest et al. (2017, JMVA).

Philippe Capéraà and Louis-Paul Rivest (U. Laval), and most importantly
Bruno Rémillard (UQTR, HEC Montréal) played a major part in helping
me to unravel these issues.
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Asymptotic result

If the copula C is “regular,” then, as n→∞,

Ĉn =
√

n (Ĉn − C) Ĉ,

where (in the bivariate case for notational simplicity)

Ĉ(u, v) = C(u, v)− ∂C(u, v)
∂u C(u, 1)− ∂C(u, v)

∂v C(1, v),

with C a Brownian sheet. In short, for large enough sample size n,

Cn ≈ C .

The parts in red are “the price to pay” for not knowing the marginal
distributions, although see Genest & Segers (2010), Genest et al. (2019).
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As Tom Lehrer sang “Ah, ah, begins the fun...”

X Genest & Rivest (1995, JASA): Estimation for bivariate ACs
X Genest et al. (1995, Biometrika): Rank-based ML estimation
X Capéraà et al. (2000, JMVA): Archimax copulas
X Genest & Nešlehová (2007, ASTIN): Copulas for count data
X Genest & Rémillard (2004, Test): Rank-based tests of independence
X Genest et al. (2006, Scand. J. Stat.): Goodness-of-fit testing
X Genest & Segers (2009, AoS): Inference for extreme-value copulas
X Genest et al. (2011, Test): Estimation for multivariate ACs
X Genest et al. (2014, Bernoulli): Empirical multilinear copula process
X Côté et al. (2019, Insur. Math. Econom.): Copula regression models

Of course, many other people contributed to this topic — Remember
that this is only a review of my work!
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A glimpse of the technical challenges

Genest et al. (1995, Biometrika) show that, as n→∞, and under
suitable regularity conditions (specified in the article),

√
n (θ̂n − θ) N (0, τ 2),

where τ 2 is larger than if the marginal distributions were known.

Such a result makes it possible to construct (asymptotic) confidence
intervals and tests of hypotheses.

A similar result can be found when θ ∈ Rp, but things get more
complicated when you estimate a generator φ, say.
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Estimation of the Pickands dependence function

A generalized Fisher–Tippett theorem implies that for bivariate extremes,

C(u, v) = exp
[
ln(uv)A

{
ln(v)
ln(uv)

}]
for all u, v ∈ (0, 1), where

X A : [0, 1]→ [1/2, 1] is convex;

X for all t ∈ [0, 1],

max(t, 1− t) ≤ A(t) ≤ 1.
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Genest–Segers estimators of A (1–2)

Recall that, for all i ∈ {1, . . . , n},

Ûi = Ri/n, V̂i = Si/n.

For any t ∈ (0, 1), set

ξi (t) = − ln(Ûi )
1− t ∧ − ln(V̂i )

t .

The estimators are, with γ denoting the Euler–Masceroni constant,

1/AP
n (t) = 1

n

n∑
i=1

ξi (t) =
∫ 1

0
Ĉn(u1−t , ut)du

u ,

ln{ACFG
n (t)} =

∫ 1

0
{Ĉn(u1−t , ut)− 1(u > e−1)} du

u ln(u) .
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Genest–Segers estimators of A (2–2)

If A is twice continuously differentiable, then as n→∞, one finds

AP
n =
√

n (AP
n − A) AP, ACFG

n =
√

n (ACFG
n − A) ACFG,

in the space C([0, 1]), where for all t ∈ [0, 1],

AP(t) = −A2(t)
∫ 1

0
C(u1−t , ut) du

u ,

ACFG(t) = −A(t)
∫ 1

0
C(u1−t , ut) du

u ln(u) .

Alternatively, estimate A via splines (Cormier et al., 2014, Extremes) for
which asymptotic theory now exists (Bücher et al., 2023, Extremes).
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Goodness-of-fit testing

To test whether a copula family is adequate, one resorts to
goodness-of-fit statistics, e.g., in the bivariate case

Dn = n
∫ 1

0

∫ 1

0
{Cθ̂n

(u, v)− Ĉn(u, v)}2dĈn(u, v)

=
n∑

i=1
{Cθn (Ûi , V̂i )− Ĉn(Ûi , V̂i )}2,

called the Cramér–von Mises statistic.

As its limiting distribution depends on the unknown parameter value θ,
one must approximate it through resampling methods such as the
parametric bootstrap (Genest & Rémillard, 2008, AIHP).
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Copula models with covariates

In regression, the dependence of a variable Y on covariates X1, . . . ,Xp is
modeled through

E(Y | x1, . . . , xd ) = β0 + β1x1 + · · ·+ βpxp.

In contrast, copula regression centers on the distribution of Y1, . . . ,Yd
given X = (X1, . . . ,Xp) = x = (x1, . . . , xp), so that, for all y1, . . . , yd ∈ R,

H(y1, . . . , yd | x1, . . . , xp) = Pr(Y1 ≤ y1, . . . ,Yd ≤ yd | X = x)
= C{F1x(y1), . . . ,Fdx(yd )},

where Fix(yi ) = Pr(Yi ≤ yi | X = x) for each i ∈ {1, . . . , d}.
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Hierarchical copula structures (1–2)

In practice, e.g., actuarial applications, one often deals with tens,
hundreds or thousands of variables.

In such cases, hierarchical structures are used, e.g.,

Source: Côté & Genest (2015, Canad. J. Statist.)
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Hierarchical copula structures (2–2)

Identifying the “best structure” requires intensive computer searches!

1 2 3 4

12 23 34

13|2 24|3

14|23

f (x1, x2, x3, x4) =

f1(x1) f2(x2) f3(x3) f4(x4)

c12{F1(x1), F2(x2)}
c23{F2(x2), F3(x3)}
c34{F3(x3), F4(x4)}

c13|2{F1|2(x1|x2), F3|2(x3|x2) | x2}
c24|3{F2|3(x2|x3), F4|3(x4|x3) | x3}

c14|23{F1|23(x1|x2, x3), F4|23(x4|x2, x3) | x2, x3}
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VIGNETTE 3

Risk Management
U. Laval, Québec; McGill, Montréal



Coastal flooding

It is an important issue:

X Coastal floods accounted for 46% of natural disasters in 2018.

X Losses were estimated at $1 trillion between 1980 and 2013.

X There were more than 220,000 casualties.

Yet no Canadian insurance company covered this risk before 2015.

Sources: Winsemius et al. (Nat. Climate Change, 2013) and Munich Re
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Your mission (if you choose to accept it)

Estimate the flooding risk everywhere without directly relevant data!

Data: Water level series recorded over 50 years in 21 locations (buoys)
Warning: Lots of missing values
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Strategy for spatial extremes

Consider a spatial domain D ⊆ R2 and for monitored sites s1, . . . , sd , let

s = (s1, . . . , sd ) ∈ D × · · · × D.

At site sj , assume that (daily, monthly, yearly) maxima Msj are such that

Msj ∼ GEV(µsj , σsj , ξsj ).

A latent spatial field is then constructed for the GEV parameters

µ = (ms1 , . . . ,msd ), σ = (σs1 , . . . , σsd ), ξ = (ξs1 , . . . , ξsd ).

C. Genest CRM-Fields-PIMS Lecture 2023–04–20 51 / 67



Simplifying assumption

Conditional independence is assumed between sites, viz.

Msj ⊥ Msk | (µ,σ, ξ).

This assumption is rarely met in practice but sufficient to get reliable
results when the focus is on marginal extremal behavior.

Other option: Induce dependence through, say, a Student t copula with ν
degrees of freedom and dispersion matrix

Qjk = exp(−djk/ρQ),

where djk is the distance between sites sj and sk (this is the exponential
covariogram) and, say, ρQ ∼ U [0,maxij(dij/3)].
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Beck et al. (Environmetrics, 2020)

X Model Zi , the annual maximum surge at location si ∈ D, using an
extreme Bayesian hierarchical model. In particular, each station will
be modeled using a GEV.

X Incorporate spatiality, so as to allow information sharing across
stations, improving fit, and interpolate to allow model to include
un-monitored locations.

X Incorporate a copula, to further quantify dependence and ensure
smoothness of the maximum surges across adjacent stations.

X Using realizations of extreme surges across the domain, generate
potentially extreme water-levels and assess the risk of flooding from
these events.
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Storm tides and surges

The surge is the water level rise beyond its expected level at high tide.

The tide is a covariate whose cycles must be taken into account.
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Surges observed at Québec, QC
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Surges observed at Yarmouth, NS
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Surges observed at Halifax, NS
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Hierarchical model

At each of the 21 stations, the maximum surge is modeled with a GEV,

Mi ∼ GEV(ξ, µi , σi ),

with ξ > 0 (Fréchet).

To link the components of µ = (µ1, . . . , µ21) and Φ = (φ1, . . . , φ21),
covariates must be used, e.g., proximity or sea level water pressure, viz.

µ ∼ N (Xβµ, τ
2
µΣµ), Φ ∼ N (XβΦ, τ

2
ΦΣΦ).

However, the shape parameter ξ is assumed to be constant.
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Sea level pressure

Important covariate obtained through a reconstruction of the past climate
using the Canadian Regional Climate Model 5 developed by Ouranos.
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Benefit of the covariate

Return Individual Spatial
Period Model Model %RC

10 1.81 2.26 25
25 1.95 2.63 35
50 2.06 2.93 42
100 2.17 3.25 50
250 2.31 3.71 61
500 2.41 4.09 69
1000 2.52 4.49 78

Station 3248: Vieux Québec

Return Individual Spatial
Period Model Model %RC

10 2.30 2.30 0
25 2.57 2.68 4
50 2.78 2.99 8
100 2.98 3.32 12
250 3.24 3.80 17
500 3.43 4.19 22

1000 3.62 4.61 27

Station 3250: Lauzon

%RC = percent relative change

The spatial model gives more realistic and spatially consistent results.
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Interpolation (1–2)

Once the model has been adjusted at the 21 stations, one can interpolate
anywhere on the grid.

In locations S∗ = {s22, . . . , sd}, the mean vector µS∪S∗ is

µS∪S∗ ∼ Nd (XµS∪S∗βµS∪S∗
, τ 2µS∪S∗ΣµS∪S∗ ),

where XµS∪S∗ = (X>µS ,X
>
µS∗

)> and

ΣµS∪S∗ =
[

ΣµS ΣµS,S∗

ΣµS,S∗ ΣµS∗

]
.
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Interpolation (2–2)

Given µS = m in observed locations, the parameters in non-observed
locations are uncertain but this uncertainty can be quantified, viz.

µS∗ | µS = m ∼ Nd−21(µ̄S∗ , τ 2µS∗ Σ̄µS∗ ),

where
µ̄S∗ = XµS∗βµS∗

+ ΣµS,S∗Σ−1µS,S
(m − XµS βµS

)

and
Σ̄µS∗ = ΣµS∗ − ΣµS,S∗Σ−1µS

ΣµS,S∗ .

It is then possible to simulate surges everywhere on the coast and to
compute the probability and magnitude of future catastrophes.

To do so, of course, one must factor in the systematic tidal effect.
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Mean interpolation
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Scale interpolation
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Other examples of application (1–2)

At McGill, my team has combined Bayesian modeling, expert use and
copula dependence to investigate many issues, e.g.,

Jalbert et al. (2019, JRSS-C)

Estimate the return period of the 2011 Richelieu Valley flood
[Related to flood hazard map updating and boundary water management]

Li et al. (2021, Environmetrics)

Predict the frequency of drought periods on the Rivière des Mille Îles
[Relevant for city waste water management and fresh water supply]
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Other examples of application (2–2)

Côté et al. (2022, Bayesian Anal.)

Model multivariate multilevel insurance claims exploiting partial
information from open, unsettled claims

[Used by a large Canadian insurance company]

Jalbert et al. (2022, JABES):

Production of intensity-duration-frequency (IDF) curves
[Implemented by Hydro-Québec and Québec Department of Environment]
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